CS 341: ALGORITHMS

Lecture 6: greedy algorithms II
Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

OPTIMALITY PROOF

for greedy interval selection

Goal: choose as many disjoint intervals as possible, (i.e., without any overlap)

Algorithm:

3 Sort the intervals in increasing order of finishing times. At any stage, choose the earliest finishing interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is f_{i}).

PROVING OPTIMALITY

Consider an input A[1..n]
Let \mathbf{G} be the greedy solution
Let \mathbf{O} be an optimal solution
"Greedy stays ahead" argument
Intuition: out of the a given set of intervals, greedy picks as many as optimal

VISUAL EXAMPLE

How to compare G and O ? Imagine reordering O to match G !

REORDERING O BY INCREASING FINISH TIME

Now O' and G are both ordered by increasing finish time
This ordering helps us leverage what we know about G in our comparison with O^{\prime}.

Argue for a prefix of the intervals sorted this way, G chooses as many as O^{\prime}

COMPARING O' WITH G

Looks like $f\left(G_{1}\right) \leq f\left(O_{1}^{\prime}\right) \quad$ and $f\left(G_{2}\right) \leq f\left(O_{2}^{\prime}\right)^{\prime} \ldots \quad$ Is $f\left(G_{i}\right) \leq f\left(O_{i}^{\prime}\right)$ for all \boldsymbol{i} ?
If this trend holds in general, then out of the intervals with finish time $\leq \boldsymbol{f}\left(\boldsymbol{O}_{\boldsymbol{i}}^{\prime}\right)$
\mathbf{G} chooses as many intervals as \mathbf{O} !

PROVING LEMMA: $f\left(G_{i}\right) \leq f\left(O_{i}^{\prime}\right)$ FOR ALL \boldsymbol{i}

Base case: $f\left(G_{1}\right) \leq f\left(O_{1}^{\prime}\right)$ since \mathbf{G} chooses the interval with the earliest finish time first.

PROVING LEMMA: $f\left(G_{i}\right) \leq f\left(O_{i}^{\prime}\right)$ FOR ALL \boldsymbol{i}

Inductive step: assume $f\left(G_{i-1}\right) \leq f\left(O_{i-1}^{\prime}\right)$. Show $f\left(G_{i}\right) \leq f\left(O_{i}^{\prime}\right)$.
Since O^{\prime} is feasible, $f\left(O_{i-1}^{\prime}\right) \leq s\left(O_{i}^{\prime}\right)$
So $f\left(G_{i-1}\right) \leq s\left(O_{i}^{\prime}\right)$
So \boldsymbol{G} can choose $\boldsymbol{O}_{\boldsymbol{i}}^{\prime}$ if it has the smallest finish time So $\boldsymbol{f}\left(\boldsymbol{G}_{\boldsymbol{i}}\right) \leq \boldsymbol{f}\left(\boldsymbol{O}_{\boldsymbol{i}}^{\prime}\right)$

USING THIS LEMMA

O'	O_{1}^{\prime}	0_{2}^{\prime}	O_{k}^{\prime}	O_{k+1}^{\prime}
G	G_{1}	G_{2}	$\begin{array}{\|l\|l\|} \hline \ldots & G_{k} \\ \hline \end{array}$	

Suppose $\left|O^{\prime}\right|>|G|$ to obtain a contradiction
So if G chooses k intervals, O^{\prime} chooses at least $k+1$
By the lemma, $f\left(G_{k}\right) \leq f\left(O_{k}\right)$
Since O^{\prime} is feasible, $f\left(O_{k}^{\prime}\right) \leq s\left(O_{k+1}^{\prime}\right)$
But then \boldsymbol{G} can, and would, pick $\boldsymbol{O}_{\boldsymbol{k}+\boldsymbol{1}}^{\prime}$.

Contradiction!

A DIFFERENT PROOF

"Slick" ad-hoc approaches are sometimes possible...

Let $F=\left\{f_{i_{1}}, \ldots, f_{i_{k}}\right\}$ be the finishing times of the intervals in X
No interval finishes strictly to the left

No interval starts strictly to the right Would be chosen by greedy! (contradiction)

So, in addition to the intervals in X, only the following types of intervals are possible

Thus, every interval contains some finishing time in F
And, two intervals in O cannot contain the same element of F

So, there must be as many finishing times in F as there are intervals in 0 . QED

KNAPSACK PROBLEMS

Problem 4.4

Knapsack
Instance: Profits $P=\left[p_{1}, \ldots, p_{n}\right]$; weights $W=\left[w_{1}, \ldots, w_{n}\right]$; and a capacity, M. These are all positive integers.
Feasible solution: An n-tuple $X=\left[x_{1}, \ldots, x_{n}\right]$ where $\sum_{i=1}^{n} w_{i} x_{i} \leq M$.

Gotta respect the weight limit M...

Problem 4.4

Knapsack
Instance: Profits $P=\left[p_{1}, \ldots, p_{n}\right]$; weights $W=\left[w_{1}, \ldots, w_{n}\right]$; and a capacity, M. These are all positive integers.
Feasible solution: An n-tuple $X=\left[x_{1}, \ldots, x_{n}\right]$ where $\sum_{i=1}^{n} w_{i} x_{i} \leq M$. In the 0-1 Knapsack problem (often denoted just as Knapsack), we require that $x_{i} \in\{0,1\}, 1 \leq i \leq n$.
In the Rational Knapsack problem, we require that $x_{i} \in \mathbb{Q}$ and $0 \leq x_{i} \leq 1,1 \leq i \leq n$.
Find: A feasible solution X that maximizes $\sum_{i=1}^{n} p_{i} x_{i}$.

0-1 Knapsack: NP Hard.
Probably requires exponential time to solve...

Rational knapsack:

Can be solved in polynomial time by a greedy alg!

Lets discuss this now... other one later

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

Strategy 1: consider items in decreasing order of profit
(i.e., we maximize the local evaluation criterion $\boldsymbol{p}_{\boldsymbol{i}}$)

Let's try an example input

$$
\begin{array}{ll}
\text { Profits } & P=[20,50,100] \\
\text { Weights } & W=[10,20,10] \\
\text { Weight limit } & M=10
\end{array}
$$

Algorithm selects last item for 100 profit
Looks optimal in this example

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

Strategy 1: consider items in decreasing order of profit
(i.e., we maximize the local evaluation criterion $\boldsymbol{p}_{\boldsymbol{i}}$)

How about a second example input

$$
\begin{array}{ll}
\text { Profits } & P=[20,50,100] \\
\text { Weights } & W=[10,20,100] \\
\text { Weight limit } & M=10
\end{array}
$$

Algorithm selects last item for $\mathbf{1 0}$ profit
Not optimal!

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

Strategy 2: consider items in increasing order of weight
(i.e., we minimize the local evaluation criterion $\boldsymbol{w}_{\boldsymbol{i}}$)

Counterexample
Profits $\quad P=[20,50,100]$
Weights $\quad W=[\mathbf{1 0}, 20,100]$
Weight limit $M=10$
Algorithm selects first item for 20 profit
It could select half of second item, for 25 profit!

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

Strategy 3: consider items in decreasing order of profit divided by weight (i.e., we maximize local evaluation criterion $\boldsymbol{p}_{\boldsymbol{i}} / \boldsymbol{w}_{\boldsymbol{i}}$)
Let's try our first example input

- Profits $\quad P=[20,50,100]$
- Weights $\quad W=[10,20,10]$
- Weight limit $M=10$

Profit divided by weight

$$
P / W=[2,2.5,10]
$$

Algorithm selects last item for 100 profit (optimal)

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

Strategy 3: consider items in decreasing order of profit divided by weight (i.e., we maximize local evaluation criterion $\boldsymbol{p}_{\boldsymbol{i}} / \boldsymbol{w}_{\boldsymbol{i}}$)
Let's try our second example input

- Profits $\quad P=[20,50,100]$
- Weights $\quad W=[10,20,100]$
- Weight limit $M=10$

Profit divided by weight

$$
P / W=[2,2.5,1]
$$

Algorithm selects second item for 25 profit (optimal)

```
Preprocess(A[1..n], M) // A[i] = (p_i, w_i)
```

Preprocess(A[1..n], M) // A[i] = (p_i, w_i)
sort A by decreasing profit divided by weight
sort A by decreasing profit divided by weight
let $p[1 . . n]$ be the profits in A
let $p[1 . . n]$ be the profits in A
let $w[1 . . n]$ be the weights in A
let $w[1 . . n]$ be the weights in A
return GreedyRationalKnapsack(p, w, M)
return GreedyRationalKnapsack(p, w, M)
$\begin{array}{llll}X=[0, \ldots, & 0 \\ \text { weight }\end{array}=0 \xrightarrow{\text { No items are chosen yet }}$
$\begin{array}{llll}X=[0, \ldots, & 0 \\ \text { weight }\end{array}=0 \xrightarrow{\text { No items are chosen yet }}$
$\begin{array}{llll}\mathrm{X}=[0, \ldots, 0 \\ \text { weight } & =0 & \text { No items are chosen yet } \\ \text { Current weight of knapsack }\end{array}$
$\begin{array}{llll}\mathrm{X}=[0, \ldots, 0 \\ \text { weight } & =0 & \text { No items are chosen yet } \\ \text { Current weight of knapsack }\end{array}$
$\begin{array}{llll}\mathrm{X}=[0, \ldots, 0 \\ \text { weight } & =0 & \text { No items are chosen yet } \\ \text { Current weight of knapsack }\end{array}$
$\begin{array}{llll}\mathrm{X}=[0, \ldots, 0 \\ \text { weight } & =0 & \text { No items are chosen yet } \\ \text { Current weight of knapsack }\end{array}$
for $\begin{aligned} & \text { i }=1 . . n \rightarrow \text { For all items } \\ & \text { if weight }+w[i]>M \text { then } \\ & \text { the entire item fit }\end{aligned}$
for $\begin{aligned} & \text { i }=1 . . n \rightarrow \text { For all items } \\ & \text { if weight }+w[i]>M \text { then } \\ & \text { the entire item fit }\end{aligned}$
for $\begin{aligned} & \text { i }=1 . . n \rightarrow \text { For all items } \\ & \text { if weight }+w[i]>M \text { then } \\ & \text { the entire item fit }\end{aligned}$
for $\begin{aligned} & \text { i }=1 . . n \rightarrow \text { For all items } \\ & \text { if weight }+w[i]>M \text { then } \\ & \text { the entire item fit }\end{aligned}$
X[i] = (M - weight) / w[i]
X[i] = (M - weight) / w[i]
break
break
else
else
$X[i]=1$
$X[i]=1$

If we cannot fit the entire item
sort A by decreasing profit divided by weight let $\mathrm{p}[1 . . \mathrm{n}$] be the profits in A let w[...n] be the weights in A return GreedyRationalKnapsack(p, w, M)

```
GreedyRationalKnapsack(p[1..n], w[1..n], M)
```

```
GreedyRationalKnapsack(p[1..n], w[1..n], M)
```

```
GreedyRationalKnapsack(p[1..n], w[1..n], M)
```

Put in as much of the item as you can, to exactly fill the knapsack

```
            weight = weight + w[i]
```

 weight = weight + w[i]
    ```
            weight = weight + w[i]
    return X
```

```
    return X
```

```
    return X
```

```
```

 Otherwise take
    ```
                Otherwise take
                    the entire item
```

 the entire item
    ```

1 Preprocess(A[1..n], M) // A[i] = (p_i, w_i)
2 sort A by decreasing profit divided by weight let \(\mathrm{p}[1 . . \mathrm{n}\) ] be the profits in A let \(w[1 . . n]\) be the weights in \(A\) return GreedyRationalKnapsack(p, w, M)

Running time complexity?

GreedyRationalKnapsack(p[1..n], w[1..n], M)
\[
\begin{array}{ll}
X=[0, & \mathrm{X} \\
\text { weight }=0 & \text { Create array in } \\
\Theta(n) \text { time }
\end{array}
\]

Can do preprocessing in \(\Theta(n \log n)\)
```

 for i = 1..n
 if weight + w[i] > M then
 X[i] = (M - weight) / w[i]
 break
 else
 X[i] = 1
 weight = weight + w[i]
 return X
    ```

Total \(\boldsymbol{\Theta}(\boldsymbol{n} \log \boldsymbol{n})\) (or \(\Theta(n)\) if input is already sorted)

\title{
INFORMAL FEASIBILITY ARGUMENT
}
(SHOULD BE GOOD ENOUGH TO SHOW FEASIBILITY ON ASSESSMENTS)
Feasibility: all \(x_{i}\) are in \([0,1]\) and total weight is \(\leq M\)
Either everything fits in the knapsack, or:
When we exit the loop, weight is exactly \(\mathbf{M}\)
Every time we write to \(x_{i}\) it's either 0,1 or \((M-\) weight \() / w_{i}\) where weight \(+w[i]>M\)

Rearranging the latter we get ( \(M-\) weight) \(/ w_{i}<1\)
And weight \(\leq M\),
so ( \(M-\) weight) \(/ w_{i} \geq 0\)
So, we have \(x_{i} \in[0,1]\)

\section*{MINOR MODIFICATION TO FACILITATE FORMAL PROOF}
```

1 GreedyRationalKnapsack(p[1..n], w[1..n], M)
4

Optional slide, just for your notes

```
2 X = [0, ..., 0]
```

2 X = [0, ..., 0]
3 weight = 0
3 weight = 0
5 for i = 1..n
5 for i = 1..n
6 if weight + w[i] > M then

```
6 if weight + w[i] > M then
```

$X[i]=(M-w e i g h t) / w[i]$

```
                            Does NOT change behaviour
    else
    else
                                    of the algorithm at all!
            X[i] = 1
            X[i] = 1
            weight = weight + w[i]
            weight = weight + w[i]
return X
```

return X

```

\section*{FORMAL FEASIBILITY ARG \\ Loop invariant: \(\forall_{i}: x_{i} \in[0,1]\) \\ \[
\text { and weight }=\sum_{i=1}^{n} w_{i} x_{i} \leq M
\]}

Base case. Initially weight \(=0\) and \(\forall_{i}: x_{i}=0\).
So \(0=\) weight \(=\sum_{i=1}^{n} w_{i} \cdot 0=\sum_{i=1}^{n} w_{i} x_{i} \leq M\)

Optional slide, just for your notes

Inductive step.
Suppose invariant holds at start of iteration \(i\)
Let weight \({ }^{\prime}, x_{i}{ }^{\prime}\) denote values of weight, \(x_{i}\) at end of iteration \(i\)
Prove invariant holds at end of iteration \(i\)
i.e., \(\forall_{i}: \boldsymbol{x}_{\boldsymbol{i}}^{\prime} \in[0,1]\) and weight \(=\sum_{i=1}^{n} w_{i} x^{\prime}{ }_{i} \leq M\)

\section*{FORMAL FEASIBILITY ARG}

WTP: \(\forall_{i}: x_{i}^{\prime} \in[0,1]\)
and weight \(=\sum_{i=1}^{n} w_{i} x_{i}^{\prime} \leq M\)
```

if weight + w[i] > M then

```
if weight + w[i] > M then
        X[i] = (M - weight) / w[i]
        X[i] = (M - weight) / w[i]
        weight = M
        weight = M
                        break
                        break
else
else
    X[i] =
    X[i] =
    weight = weight + w[i]
```

 weight = weight + w[i]
    ```

Case 1: weight \(+w_{i} \leq M\)
\(x_{i}^{\prime}=1\) which is in \([\mathbf{0}, \mathbf{1}]\)
(by line 11)

Optional slide, just for your notes
weight \({ }^{\prime}=w e i g h t+w_{i}\)
(by line 12) and this is \(\leq \boldsymbol{M}\) by the case
weight \({ }^{\prime}=\sum_{k=1}^{n} x_{k} w_{k}+w_{i} \quad\) (by invariant)
weight \({ }^{\prime}=\sum_{k=1}^{n} x_{k} w_{k}+x_{i}^{\prime} w_{i} \quad\left(\right.\) since \(\left.x_{i}^{\prime}=1\right)\)
And \(x_{k}^{\prime}=x_{k}\) for all \(k \neq i\) and \(x_{i}=0\) so \(\sum_{k=1}^{n} x_{k}^{\prime} w_{k}=x_{i}^{\prime} w_{i}+\sum_{k=1}^{n} x_{k} w_{k}\)
Rearrange to get \(\sum_{k=1}^{n} x_{k} w_{k}=\left(\sum_{k=1}^{n} x_{k}^{\prime} w_{k}-x_{i}^{\prime} w_{i}\right)\)
So weight \(=\left(\sum_{k=1}^{n} x_{k}^{\prime} w_{k}-x_{i}^{\prime} w_{i}\right)+x_{i}^{\prime} w_{i}=\sum_{k=1}^{n} x_{k}^{\prime} w_{k}\)

\section*{FORMAL FEASIBILITY ARG}

WTP: \(\forall_{i}: \boldsymbol{x}_{\boldsymbol{i}}^{\prime} \in[\mathbf{0}, \mathbf{1}]\)
and weight \({ }^{\prime}=\sum_{i=1}^{n} w_{i} x_{i}^{\prime} \leq M\)
    weight \(=\) weight \(+w[i]\)

Case 2: weight \(+w_{i}>M\)
(by case)
(by invariant)

Optional slide, just for your notes

So \(0 \leq \frac{M \text {-weight }}{w_{i}}<1\) which means \(\boldsymbol{x}_{\boldsymbol{i}}^{\prime} \in[\mathbf{0 , 1})\)
\(\boldsymbol{w e i g h t} \boldsymbol{t}^{\prime}=\boldsymbol{M}=\) weight \(+(M-\) weight \()\)
weight \({ }^{\prime}=\sum_{k=1}^{n} x_{k} w_{k}+(M-\) weight \()\)
(by line 8)
(by invariant)

But \(x_{k}^{\prime}=x_{k}\) for all \(k \neq i\) and \(x_{i}=0\) so \(\sum_{k=1}^{n} x_{k}^{\prime} w_{k}=x_{i}^{\prime} w_{i}+\sum_{k=1}^{n} x_{k} w_{k}\)
Rearrange to get \(\sum_{k=1}^{n} x_{k} w_{k}=\left(\sum_{k=1}^{n} x_{k}^{\prime} w_{k}-x_{i}^{\prime} w_{i}\right)\)
So weight \({ }^{\prime}=\left(\sum_{k=1}^{n} x_{k}^{\prime} w_{k}-x_{i}^{\prime} w_{i}\right)+(M-\) weight \()\)
And \(M-\) weight \(=x_{i}^{\prime} w_{i}\) so weight \({ }^{\prime}=\sum_{\boldsymbol{k}=\mathbf{1}}^{n} \boldsymbol{x}_{\boldsymbol{k}}^{\prime} \boldsymbol{w}_{\boldsymbol{k}}\)


\section*{EXCHANGE ARGUMENT for proving optimality}

\section*{OPTIMALITY - AN EXCHANGE ARUGMENT}

For simplicity, assume that the profit / weight ratios are all distinct, so
\[
\frac{p_{1}}{w_{1}}>\frac{p_{2}}{w_{2}}>\cdots>\frac{p_{n}}{w_{n}} .
\]

Suppose the greedy solution is \(X=\left(x_{1}, \ldots, x_{n}\right)\) and the optimal solution is \(Y=\left(y_{1}, \ldots, y_{n}\right)\).
We will prove that \(X=Y\), i.e., \(x_{j}=y_{j}\) for \(j=1, \ldots, n\). Therefore there is a unique optimal solution and it is equal to the greedy solution.
Suppose \(X \neq Y\) To obtain a contradiction
Pick the smallest integer \(j\) such that \(x_{j} \neq y_{j}\). \(X\) and \(Y\) are identical up to \(x_{j}\) and \(y_{j}\), respectively


What's the relationship between \(x_{j}\) and \(y_{j}\) ?






\section*{Since item j is worth more per unit weight, replacing even a tiny amount of item \(k\) with item \(j\) will improve the solution}

So, we remove an infinitesimal \(\delta>0\) of weight of item \(k\), and add \(\delta\) weight of item j



The idea is to show that
\(Y^{\prime}\) is feasible, and \(\operatorname{profit}\left(Y^{\prime}\right)>\operatorname{profit}(Y)\).
This contradicts the optimality of \(Y\) and proves that \(X=Y\).
To show \(Y^{\prime}\) is feasible, we show \(y_{k}^{\prime} \geq 0, y_{j}^{\prime} \leq 1\) and weight \(\left(Y^{\prime}\right) \leq M\)

\section*{FEASIBILITY OF \(\boldsymbol{Y}^{\prime}\)}

To show \(Y^{\prime}\) is feasible, we show \(y_{k}^{\prime} \geq 0, y_{j}^{\prime} \leq 1\) and weight \(\left(Y^{\prime}\right) \leq M\) Let's show \(y_{k}^{\prime} \geq 0\)

By definition, \(y_{k}^{\prime}=y_{k}-\frac{\delta}{w_{k}}\)
So, \(y_{k}^{\prime} \geq 0\) iff \(y_{k}-\frac{\delta}{w_{k}} \geq 0\) iff \(\delta \leq y_{k} w_{k}\)
And we know \(y_{k}\) and \(w_{k}\) are both positive
So, this constrains \(\delta\) to be smaller than this positive number Therefore, it is possible to choose positive \(\delta\) s.t. \(y_{k}^{\prime} \geq 0\)

Existence proof, but a non-constructive one

\section*{FEASIBILITY OF \(\boldsymbol{Y}^{\prime}\)}

To show \(Y^{\prime}\) is feasible, we show \(y_{k}^{\prime} \geq 0, y_{j}^{\prime} \leq 1\) and weight \(\left(Y^{\prime}\right) \leq M\) Now let's show \(y_{j}^{\prime} \leq 1\)

By definition, \(y_{j}^{\prime}=y_{j}+\frac{\delta}{w_{j}}\)
So, \(y_{j}^{\prime} \leq 1\) iff \(y_{j}+\frac{\delta}{w_{j}} \leq 1\) iff \(\delta \leq\left(1-y_{j}\right) w_{j}\)
Recall \(y_{j}<x_{j}\), so \(y_{j}<1\), which means \(\left(1-y_{j}\right)>0\)
So, this constrains \(\delta\) to be smaller than some positive number

\section*{FEASIBILITY OF \(\boldsymbol{Y}^{\prime}\)}

Finally, we show weight \(\left(Y^{\prime}\right) \leq M\)



Recall changes to get \(Y^{\prime}\) from \(Y\)
We move \(\delta\) weight from item \(k\) to item \(j\)
This does not change the total weight!
So weight \(\left(Y^{\prime}\right)=\) weight \((Y) \leq M\)
Therefore, \(Y^{\prime}\) is feasible!

\section*{SUPERIORITY OF \(\boldsymbol{Y}^{\prime}\)}

Finally we compute profit \(\left(Y^{\prime}\right)\)
\[
\begin{aligned}
& \operatorname{profit}\left(Y^{\prime}\right)=\operatorname{profit}(Y)+\frac{\delta}{w_{j}} p_{j}-\frac{\delta}{w_{k}} p_{k} \\
& =\operatorname{profit}(Y)+\delta\left(\frac{p_{j}}{w_{j}}-\frac{p_{k}}{w_{k}}\right)
\end{aligned}
\]

Since j is before k , and we consider items with more profit per unit weight first, we have \(\frac{p_{j}}{w_{j}}>\frac{p_{k}}{w_{k}}\).

So, if \(\delta>0\) then \(\delta\left(\frac{p_{j}}{w_{j}}-\frac{p_{k}}{w_{k}}\right)>0\)

Contradicts optimality of \(Y\) ! So assumption \(X \neq Y\) is bad. Therefore, X is optimal.

Since we can choose \(\delta>0\), we have \(\operatorname{profit}\left(Y^{\prime}\right)>\operatorname{profit}(Y)\).

\section*{WHAT IF ELEMENTS DON'T HAVE DISTINCT PROFIT/WEIGHT RATIOS?}

\section*{OPTIMALITY PROOF WITHOUT DISTINCTNESS}

There may be many optimal solutions
Key idea: Let \(Y\) be an optimal solution that matches \(\boldsymbol{X}\) on a maximal number of indices

Observe: if \(X\) is really optimal, then \(Y=X\)
Suppose not for contra
We will modify \(Y\), preserving its optimality, but making it match \(X\) on one more index (a contradiction!)




Must exist \(\mathbf{k}>\mathbf{j}\) such that \(\mathbf{y}_{\mathbf{k}}>\mathbf{x}_{\mathbf{k}}\) because weight of \(X\) and \(Y\) must be the same

Remove some weight \(\boldsymbol{\delta}\) of item \(\mathbf{k}\) and add the same weight of item \(\mathbf{j}\)
With the goal of making the solutions equal on index \(k\) or index \(j\)

\section*{Optimal} solution \(\mathbf{Y}\)

Fraction we should add to j to make solutions equal on index \(\mathrm{j}: \boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{y}_{\boldsymbol{j}}\)

Fraction we should remove from \(k\) to make solutions equal on index \(\mathrm{k}: \boldsymbol{y}_{\boldsymbol{k}}-\boldsymbol{x}_{\boldsymbol{k}}\)

Weight to
remove:
\(w_{k}\left(y_{k}-x_{k}\right)\)
\[
\begin{gathered}
\text { Let } \boldsymbol{\delta}=\boldsymbol{\operatorname { m i n }}\left\{\boldsymbol{w}_{\boldsymbol{j}}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{y}_{\boldsymbol{j}}\right), \boldsymbol{w}_{\boldsymbol{k}}\left(\boldsymbol{y}_{\boldsymbol{k}}-\boldsymbol{x}_{\boldsymbol{k}}\right)\right\} \\
\text { Observe } \delta>0
\end{gathered}
\]


\section*{Modified optimal solution \(\mathbf{Y}^{\prime}\)}


To show \(Y^{\prime}\) is feasible, we show weight \(\left(Y^{\prime}\right) \leq M\) and \(y_{k}^{\prime} \geq 0, y_{j}^{\prime} \leq 1\)
\begin{tabular}{|l|l|}
\hline Weight & \begin{tabular}{l} 
We move \(\delta\) weight from item \(k\) to item \(j\) \\
This does not change the total weight! \\
So weight \(\left(Y^{\prime}\right)=\) weight \((Y)=M\)
\end{tabular} \\
\hline
\end{tabular}

\section*{FEASIBILITY OF \(\boldsymbol{Y}^{\prime}\)}

Showing \(y_{k}^{\prime} \geq 0\)
By definition, \(y_{k}^{\prime}=y_{k}-\frac{\delta}{w_{k}} \geq 0\) iff \(\boldsymbol{\delta} \leq \boldsymbol{y}_{\boldsymbol{k}} \boldsymbol{w}_{\boldsymbol{k}}\)
But \(\delta\) is the minimum of \(w_{j}\left(x_{j}-y_{j}\right)\) and \(w_{k}\left(y_{k}-x_{k}\right) \leq w_{k} y_{k}\)
And \(w_{k}\left(y_{k}-x_{k}\right) \leq w_{k} y_{k}\) so \(\boldsymbol{\delta} \leq \boldsymbol{y}_{\boldsymbol{k}} \boldsymbol{w}_{\boldsymbol{k}}\)
Showing \(y_{j}^{\prime} \leq 1\)
\[
\begin{array}{ll}
y_{j}^{\prime}=y_{j}+\frac{\delta}{w_{j}} \leq 1 \text { iff } \frac{\delta}{w_{j}} \leq 1-y_{j} \text { iff } \boldsymbol{\delta} \leq \boldsymbol{w}_{\boldsymbol{j}}\left(\mathbf{1}-\boldsymbol{y}_{\boldsymbol{j}}\right) & \text { (rearranging) } \\
\delta \leq \boldsymbol{w}_{\boldsymbol{j}}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{y}_{\boldsymbol{j}}\right) & \text { (definition of } \delta \text { ) }
\end{array}
\]
and \(w_{j}\left(x_{j}-y_{j}\right) \leq \boldsymbol{w}_{\boldsymbol{j}}\left(\mathbf{1}-\boldsymbol{y}_{\boldsymbol{j}}\right) \quad\left(\right.\) by feasibility of X , i.e., \(\left.x_{j} \leq 1\right)\)

PROFIT OF \(\boldsymbol{Y}^{\prime}\)
(Fraction of item j added) \(\times\) (profit for entire item)
\(\operatorname{profit}\left(Y^{\prime}\right)=\operatorname{profit}(Y)+\frac{\delta}{w_{j}} p_{j}-\frac{\delta}{w_{k}} p_{k}=\operatorname{profit}(Y)+\delta\left(\frac{p_{j}}{w_{j}}-\frac{p_{k}}{w_{k}}\right)\)
Since j is before k , and we consider items with more profit per unit weight first, we have \(\frac{p_{j}}{w_{j}} \geq \frac{p_{k}}{w_{k}}\).
Since \(\delta>0\) and \(\frac{p_{j}}{w_{j}} \geq \frac{p_{k}}{w_{k}}\), we have \(\delta\left(\frac{p_{j}}{w_{j}}-\frac{p_{k}}{w_{k}}\right) \geq 0\)
Since \(Y\) is optimal, this cannot be positive
So \(Y^{\prime}\) is a new optimal solution
that matches \(\boldsymbol{X}\) on one more index than \(\boldsymbol{Y}\)
Contradiction: \(Y\) matched \(X\) on a maximal number of indices!

\section*{SUMMARIZING EXCHANGE ARGUMENTS}

If inputs are distinct
So there is a unique optimal solution
Let \(O\) != G be an optimal solution that beats greedy
Show how to change O to obtain a better solution
If not
There may be many optimal solutions
Let \(O\) != G be an optimal solution that matches greedy on as many choices as possible
Show how to change O to obtain an optimal solution O' that matches greedy for even more choices```

