2023-09-27

CS 341: ALGORITHMS

Lecture é: greedy algorithms Il
Readings: see website

OPTIMALITY PROOF

Trevor Brown for greedy interval selection
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

Goal: choose as many disjoint infervals as possible, PROVING OPTIMALITY
(i.e.. without any overlap)
3 Sort the intervals in increasing order of . At any stage, Consider an input A[1..n]
Algorithm: choose the earliest finishing interval that is disjoint from all .
previously chosen intervals (i.e., the local evaluation criterion is f;) Let G be the greedy solution

Let O be an optimal solution

[Ani] i [[
\ \W [1]

} “Greedy stays ahead” argument
L L
T

\ \
—— Intuition: out of the a given set of intervals,
2 4 6 8 10 x-axis

[
!
o greedy picks as many as optimal

o4
o
s N
o
o
s

x

a

%,

VISUAL EXAMPLE

Input ‘ l:l ‘ ‘ CRUCIAL: We are NOT
] 1] 1 assuming the optimal algorithm
uses the same sort order!
G ‘ G ‘ E ‘ |
l:l E @ We are merely imagining reordering
- the intervals chosen by the optimal
algorithm so we can easily compare
0 | | \ | their finish times fo intervals in G

How to compare G and O2 Imagine reordering O to match G!

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

REORDERING O BY INCREASING FINISH TIME
(I L]

o
o L1 [l]

Now O' and G are both ordered by increasing finish time

This ordering helps us leverage what we know about G
in our comparison with O'.

Argue for a prefix of the intervals sorted this way, G chooses as many as O’

PROVING LEMMA: f(G;) < f(0}) FOR ALL i

o [o]
e C o] GG |

Base case: f(G,) < f(01) since G chooses
the inferval with the earliest finish time first.

USING THIS LEMMA
‘ o’ L] ‘
IE = |
Suppose |0'| > |G| to obtain a contradiction
Soif G chooses k intervals, 0’ chooses at least k + 1
By the lemma, £(Gy) < £(0y)
Since 0' is feasible, f(0}) < s(0}41)
But then G can, and would, pick 0}, ,.

So assumption
|0'| > |G| is wrong!

So G is optimal
Contradiction!

2023-09-27

COMPARING O’ WITHG _ r¢»

] L]
o
0Ly ') T

I o ——
- A

Is (G < £(0;) for all i2

Looks like f(G1) < f(0'y) and f(G,) < f(O’z):...

If this trend holds in general, then ‘ out of the intervals with finish time < £(0))

G chooses as many intervals as O!

PROVING LEMMA: f(G,) < f(0}) FOR ALL i

<
E = |
I —r— Lol |
Inductive step: assume f(Gi-1) < f(0;_1). Show f(G) < f(0)).
Since O' is feasible, f£(0;_,) < s(0;)
So f(Gi—1) < s(0))
So G can choose 0; if it has the smallest finish time

So f(G) < f(0)

A DIFFERENT PROOF

“slick” ad-hoc approaches are sometimes possible...

2023-09-27

Let F'= {fi,.... fi.} be the finishing times of the intervals in X

No interval finishes] Jia
strictly fo the lef | mmm—)
T
greedy A,
- — - - Would be chosen by
[No interval iniis strictly between these points!] greedy! (contradiction)
[So, in addition o the intervalsin X, only the following types of intervals are possible]

Contains f;, [JI containsy,
e | T PROBLEMS

l Thus, every interval contains some finishing time in F] S_o: ﬂjere ‘must.be as many
[And, twointervalsin 0 cannot contain the same element of F] finishing timesin F as there
are intervalsin 0. QED

13

Problem 4.4
Knapsack

Problem 4.4

Knapsack

Instance: Profits P = [p Instance: Profits P = [p;....,p,|; weights || [wyy... wy); and a

capacity, M. These are all positive integers capaAcity‘ M 'These are all positive integers. ‘ 0-1 Knapsack:
poo Feasible solution: An n-tuple X = [xy,...,x,| where Y7 | wir; < M NP Hard.

Feasible solution: An n-tuple X = [x
In the 0-1 Knapsack problem (often denoted just as Knapsack), we Probably requires
require that z; € {0,1}, 1 <i<n exponential ime to
In the Rational Knapsack problem, we require that x; € Q and solve...
0<z<1,1<i<n
A feasible solution X that maximizes Y0, pix;

Rational knapsack:
Can be solvedin
polynomial time by a
greedy alg!

Lets uss il
other one later

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

Strategy 1: consider items in decreasing order of profit
(i.e., we maximize the local evaluation criterion p;)

How about a second example input
Profits P =1[20,50,100]
Weights W =[10,20,100]
Weight limit M =10

Algorithm selects last item for 10 profit
Not optimal!

Strategy 1: consider items in decreasing order of profit
(i.e., we maximize the local evaluation criterion p;)

Let's try an example input
Profits P =[20,50,100]
Weights W =[10,20,10]
Weight limit M =10

Algorithm selects last item for 100 profit
Looks optimal in this example

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

Strategy 2: consider items in increasing order of weight
(i.e.. we minimize the local evaluation criterion w;)

Counterexample
Profits P =120,50,100]
Weights W = [10,20,100]
Weight limit M =10
Algorithm selects first item for 20 profit
It could select half of second item, for 25 profit!

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

Strategy 3: consider items in decreasing order of profit divided
by weight (i.e., we maximize local evaluation criterion p;/w;)

Let's try our second example input
Profits P =[20,50,100]
Weights W = [10,20,100]
Weight limit M = 10
Profit divided by weight
P/W = [2,25,1]
Algorithm selects second item for 25 profit (optimal)

It tums out strategy #3 is optimal... ‘

2

Preprocess(A[1..n], M) // A[i] = (p_i, w_i)
sort A by decreasing profit divided by weight

q —
2
3 let p[1..n] be the profits in A
4 let w[1..n] be the weights in A Cand -
5 return GreedyRationalKnapsack(p, w, M) an i:g(’relﬁgf)e“‘"g
6
7 GreedyRationalKnapsack(p['..n], w[!..n], M)
L X'= 10, ..., 0] Create array in
10
n for 1 = N -

terations each
13 X[i] = (M - welght) / wpi] L_9oing) work

14 break

15 else

T X[i] = 1 Total 0(‘?'logn)'
17 weight = weight + w[i] (or 6(n) if input is
18 already sorted)
19 return X

2023-09-27

POSSIBLE GREEDY STRATEGIES FOR KNAPSACK PROBLEMS

Strategy 3: consider items in decreasing order of profit divided
by weight (i.e., we maximize local evaluation criterion p;/w;)

Let’s try our first example input
Profits P =[20,50,100]
Weights W =[10,20,10]
Weight limit M = 10
Profit divided by weight
P/W = [2,2.5,10]
Algorithm selects last item for 100 profit (optimal)

1 Preprocess(A[1..n], M) // A[i] = (p_i, w_i)
2 sort A by decreasing profit divided by weight
3 let p[1..n] be the profits in A

4 let w[1..n] be the weights in A

5 return GreedyRationalKnapsack(p, w, M)
6
7
8
9

GreedyRationalKnapsack(p['1..n], w['..n], M)

weX = e “]
R ' No if h t
lght =10 0 items are chosen ye!

10 Current weight of knapsack

1 fori=1..n For allitems If we cannot fit
12 if weight + w[i] > M then the enfire item

13 X[i] = (M - weight) / w[i]
14 break Putin as much of the item
15 else as you can, to exactly fill
16 X[i] = 1 the knapsack
17 weight = weight + w([i]
18 Otherwise take
19 return X the entire item 2
~ - -
Either X=(1.1.....1.0....,0) or X=(1.1....,1,x;.0....,0) where x; € (0,1)

INFORMAL FEASIBILITY ARGUMENT
(SHOULD BE GOOD ENOUGH TO SHOW FEASIBILITY ON ASSESSMENTS)

Feasibility: all x; are in [0, 1] and total weightis < M
Either everything fits in the knapsack, or:
When we exit the loop, weight is exactly M

Every time we write to x; it's either O, 1 or
(M — weight) /w; where weight + w[i] > M

Rearranging the latter we get (M — weight) /w; < 1

And weight <M, n for i = —
i 12 if welgh(+ w[i] = M then
SO (M — weight)/w; = 0 i SRt oS T
1
So, we have x; € [0,1] I o -
” weight = weight + w(i]

24

2023-09-27

Sm fori=in
MINOR MODIFICATION TO FACILITATE FORMAL PROOF FORMAL FEASIBILITY ARG & ™ ifwie oo wonen
2 weight - M
1 GreedyRationalKnapsack(p[1..n], w[1..n]l, M) Loop invariant: v; : x; € [0,1] o el
S i i -
§ :e;ggg'zf)" ! and weight = ¥, wix; <M B
; fori=10h Base case. Initially weight =0 and v; : x; = 0.
6 if weight + w[i] > M then S0 0 =weight =Y w;-0=XL wix; <M
7 X[i] = (M - weight) / w[i] 3
8 Inductive step.
9 brea Does NOT change behaviour) . 3 .
10 else of the algorithm at allt Suppose invariant holds at start of iteration i
u xgéh: 1 e iant Wil Let weight', x;' denote values of weight, x; at end of iteration i
Wi = Wi w
13 Prove invariant holds at end of iteration i
" L i.e.V;:x;€[0,1] and weight' = ¥ wix'; <M

25
FORMAL FEASIBILITY ARG & ™ irucigm - wiai - u e FORMAL FEASIBILITY ARG & ™ iruciiie « i - u sven
: el G T ORI X ? TR
WIP: v, : x; € [0,1] : rprek A LT i ook
and weight' = XL, wix'i < M H R e 1= g e
: : weight +w; >
Case 1: weight +w; <M ase 2 welg wi .
' Lo e . We have w; > M — weight (by case)
x; =1 whichisin [0,1] (by line 11) and M — weight = 0 (by invariant)
weight' = weight + w; (by line 12) S0 0 < M=weldht - 1 which means x;} € [0,1)
and this is < M by the case r wi " N by lne 8)
. . . weight’ = M = weight + (M — weight) y line
weight’ = YR_i xwi +w; (by invariant o
-g , :‘1 Kk , (‘y ,) weight' = Y, x;wy + (M — weight) (by invariant)
weight' = Xk_; Xxwy +x;w; (since x; = 1) But x} = xi for all k # i and x; = 050 Xp_; xjwy = X{w; + Dpey XxWy
And x;, = x; for all k # i and x; = 050 LRy xpwye = xX{w; + X=y XieWi Rearrange to get TR_; x,wy, = (ZRoy xpwy — x{w;)
Rearrange to get Xi_; xpwy = (Xioy Xpwi — x{w;) So weight' = (-, xgwy — x{w;) + (M — weight)
And M — weight = xjw; so weight' = ¥}_; x;wy
28

S0 weight' = (i xiowic = Xiwo) + xiwy = o KW Y

OPTIMALITY — AN EXCHANGE ARUGMENT

ATRADE OFFERA
For simplicity, assume that the profit / weight ratios are all distinct, so
i receive: you receive
PP Pa
wy ~ wa tWn
Suppose the greedy solution is X = (z,..., y,) and the optimal solution

i8Y =(y,..., Yn)-
We will prove that X =V, ie, zj=y; forj=1,..., n. Therefore there
is a unique optimal solution and it is equal to the greedy solution

EXCHANGE ARGUMENT Suppose X # Y.~ Toobtana conraeton |

s 5 o Pick the smallest integer j such that z; # y; X and Y are identical up fo
for proving opfimality % and y,, respectively

j= firstindex where the

solutions differ Optimal

Greedy
solution X solution Y
1+ 1+
fraction of
itemin A Y1| (Y2 A &
knapsack
[o e e e e e B 0
-« z < -« = <
55 5 5 5 5 5
What's the relationship
between x; and y; 2
il
j = firstindex where the
Greedy solutions differ Optimal
solution X solution Y
1 1
fraction of
itemin villyd --
knapsack
o [s e s s s s B
-~ B < -« z <
3
j = firstindex where the
Greedy solutions differ Optimal
solution X solution Y
1 1
fraction of
itemin Y1) (Y2 A
knapsack
o [l o o —+t
e £ £ 8 -
§5 8 5 55 g 5§

Must exist k > j such that y, >0 But, by our sort order,
item j is worth more

M i L — er unit of weight]
Remove some of item k e ”,:JOL iier‘;: k\?)

and replace it with some
of itemj2

How much of item k
should we remove? 1

2023-09-27

j = firstindex where the

Greedy solutions differ Optimal
solution Y

solution X

1+ 1

fraction of

itemin e V1| V2| A Y,
knapsack 1
[[TR | Not Greedy
O 1T+ +TT T 0 =——T—T—T"T"T1"T wouldtake
s} = = o = | more of item
€ £ e
g E L E’ S 5 9 jifitcould.
32
j = firstindex where the
Greedy solutions differ Optimal
solution X solution Y
1 1
fraction of
item in (V1| |Y2| s
knapsack
0 o S
-~ T c -~ c
£
58 : 5 §5 5
No! It would be worth less than X H Can beall lerﬁ
]
j = firstindex where the
Greedy solutions differ Optimal
solution X solution Y
1 1
fraction of
itemin V1| V2| cee
knapsack
0 o L+ '
— o B c -~ c
£

Since item jis worth more per unit weight, replacing even a tiny amount
of item k with item j will improve the solution

So, we remove an infinitesimal & > 0 of weight of item k,
and add § weight of item j

To move & weight from
item k fo item

j=firstindex where the
Greedy solutions differ
solution X What fraction PO T
T 1| ofitemjare
we adding?
fraction of
itemin .
knapsack
[o e e e e e B 0
-« z c
§5 s §
1
Modified optimal
solution Y’
0

What fraction
of item k are

we removing?

FEASIBILITY OF Y’

To show Y is feasible, we show yi = 0,y; < 1 and weight(Y') < M

Let's show y; =0
- r_y 9
By definition, y; = yx Wi
S0, v, = 0iff y, —Wikz 0iff & < yxwye

And we know y, and wy, are both positive

So, this constrains § to be smaller than this positive number
Therefore, it is possible to choose positive & s.t. y; = 0

Existence proof, but a
non-constructive one

FEASIBILITY OF Y’

Finally, we show weight(Y') < M

Modified optimal
solution Y’

“Optimal”
solution Y

Recall changes to get Y’ from Y
We move & weight from item k to item j
This does not change the total weight!
So weight(Y') = weight(Y) < M
Therefore, Y' is feasible!

Modified optimal
solution Y*

0
The idea is to show that
Y is feasible, and
profit(Y”) > profit(Y').
This contradicts the optimality of ¥ and proves that X =Y

To show Y is feasible, we show y;, = O,y; <1 and weight(Y') <M

FEASIBILITY OF Y’

To show Y' is feasible, we show yi 2 0,y; < 1 and weight(Y') < M
Now let's show yj < 1

-~ - KA

By definition, y; = y; + w;

So.y < 1iffy+ 2 <1if6 < (1-y)w
J

Recall y; < ;. 50 y; < 1, which means (1 - y;) > 0

So, this constrains & to be smaller than some positive number

SUPERIORITY OF Y’

(Fraction of item j added)

x (profit foritemj)
Finally we compute profit(Y")

it(Y") = i s &
profit(Y') = profit(Y) + WPl e

(Fraction of item k removed)
x (profit for item k)

Since jis before k, and we consider items with more profit per
unit weight first, we have 2 > P&,
Wi wi

=profit(Y) + 6 (:}—’] - 5—"’)

Contradicts optimality of Y!
So assumption X # Y is bad.
Therefore, X is optimal.

so, if6>0fhen6(%—§/—‘;)>0
J

Since we can choose § > 0, we have profit(Y") > profit(Y).

42

2023-09-27

Covering the next 9
slides is homework!

WHAT IF ELEMENTS DON'T HAVE
DISTINCT PROFIT/WEIGHT RATIOS?2

j = first index where the

Greedy
solution X

1

fraction of
itemin
knapsack
0
-« T <
55 8 5
Greedy

solution X
1
fraction of

itemin
knapsack

0

x
£
i

£
g

tem 2
Itemj
Itemn

Must exist k > j such that y, > x, because
weight of X and Y must be the same

Remove some weight § of item k and
add the same weight of item j

solutions differ

Optimal

solution Y
Y1[|Y2 LERS

e I
LI N N I B B N I N B B B
-~ = T
45

Optimal Fraction we should add
solution Y i to jto make solutions |

equal on index j: x; - y; |

Weight fo ad
wily =)

L
A T
<
£
L
remove from k to Weight to
make solutions equal remove:
on index k: y, — xx wi Yk — x)

With the goal of making the solutions
equal on index k or index j

Let & = min{w;(x; - y;), wi (i — x10}
Observe s > 0

OPTIMALITY PROOF WITHOUT DISTINCTNESS

There may be many optimal solutions

Key idea: Let Y be an optimal solution
that matches X on a maximal number of indices

Observe: if X is really optimal, then Y = X
Suppose not for contra
We willmodify Y, preserving its optimality,

2023-09-27

but making it match X on one more index (a contradiction!)

Optimal
solution Y

Greedy
solution X

1

fraction of
item in il
knapsack m
0 [o e o 1+
R T c -~ =
%
Optimal
Gregdy solution Y Suppose & = wy(yi — xi)
solution X
1 T
fraction of
item in &
knapsack
: G I A -
LI N L
o RN - £ ¢ £
) 55§ §5 &

[IS

Modified optimal
solution Y’

In this case, since § = wi(yi — xi).
we end up with y} = x

‘ 1f & were w;(x; - y,). we would have yj = x; ‘

Modified optimal
so\uhon Y

To show Y' is feasible, we show weight(Y') <M and y; 2 0,y; < 1

We move § weight from item k to item j
Weight This does not change the total weight!
So weight(Y') = weight(Y) = M

PROFIT OF Y’ ‘ (Fraction of item j added) x (profit for entire item) ‘

. . [[: pj
profit(Y') = profit(Y) + wiPi TP = profit(Y) + & (;’I - Z—’;)

Since j is before k, and we consider items with more profit per
unit weight first, we have p’ > Z"

Since5>00ndﬂzﬂ,wehcve&(ﬂ—ﬂ)zo
wj T wi Wj Wk,
Since Y is optimal, this cannot be positive

So Y’ is a new optimal solution
that matches X on one more index than Y

Contradiction: ¥ matched X on a maximal number of indices!

51

2023-09-27

FEASIBILITY OF Y’
Showing y; =0
By definition, yj = yj — Wik > 0iff 6 < ypwy
But & is the minimum of w;(x; — y;) and wy (v — xi) < Wik

ANnd wi (Y — Xi) < WYk SO 8 < ypwy
Showing y; < 1

¥ =y +i <1 iff% <1-y;ifd<wj(1-y;) (rearanging)

J
8 <wi(x;-y)) (definition of &)
and w;(x; —y;) <w;(1-y;) (oy feasibility of X, i.e., x; < 1)

50

SUMMARIZING EXCHANGE ARGUMENTS

If inputs are distinct
So there is a unique optimal solution
Let O |= G be an optimal solution that beats greedy
Show how to change O to obtain a better solution
If not
There may be many optimal solutions

Let O I= G be an optimal solution that matches greedy on
as many choices as possible

Show how to change O to obtain an optimal solution O’
that matches greedy for even more choices

