CS 341: ALGORITHMS

Lecture 7: dynamic programming I
Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

FINISHING UP GREEDY

INTERVAL COLOURING

PROBLEM: INTERVAL COLOURING

Instance: A set $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ of intervals.
For $1 \leq i \leq n, A_{i}=\left[s_{i}, f_{i}\right)$, where s_{i} is the start time of interval A_{i} and
f_{i} is the finish time of A_{i}.
Feasible solution: A-colouring is a mapping col: $\mathcal{A} \rightarrow\{1, \ldots, c\}$
that assigns each interval a colour such that two intervals receiving the
same colour are always disjoint.
Find: A c-colouring of \mathcal{A} with the minimum number of colours.

MORE EXAMPLES

Greedy Strategies for Interval Colouring

As usual, we consider the intervals one at a time.
At a given point in time, suppose we have coloured the first $i<n$ intervals using d colours.

We will colour the $(i+1)$ st interval with any permissible colour. If it cannot be coloured using any of the existing d colours, then we introduce a new colour and d is increased by 1 .
Question: In what order should we consider the intervals?

We will colour the $(i+1)$ st interval with any permissible colour. If it cannot be coloured using any of the existing d colours, then we introduce a new colour and d is increased by 1 .

EXAMPLE: ORDER MATTERS!

Consider intervals in the order they are given in the input:
$A_{1} \ldots A_{10}$

EXAMPLE:

EXAMPLE: ORDER MATTERS!

EXAMPLE: ORDER MATTERS!

EXAMPLE: ORDER MATTERS!

EXAMPLE: ORDER MATTERS!

Pre-sort intervals by
increasing start time!

EXAMPLE: ORDER MATTERS!

EXAMPLE: ORDER MATTERS!


```
d= # of colours
    used so far
```

Preprocess(A[1..n])
sort A by increasing start time let $s[1 \ldots n]$ be the start times in A let $\mathrm{f}[1 . . \mathrm{n}]$ be the finish times in A return GreedyIntervalColouring(s, f)

GreedyIntervalColouring(s[1..n], f[1..n])
d = 1
colour [1] $=1 \rightarrow$ Interval 1 gets colour 1
finish[1] $=\mathbf{f}[1]$
for $i=2 \ldots n$
 reused = false
Check if we can reuse any colour cin 1 ..d
Preprocess(A[1..n])
sort A by increasing start time
return GreedyIntervalColouring(s, f)
for $c=1 . . d$
$\begin{aligned} \text { if } & \text { finish[c] }<=s[i] \text { then } \\ & \operatorname{colour}[i]=c \\ & \text { finish[c] }=f[i] \\ & \text { reused }=\text { true } \\ & \text { break }\end{aligned}$
$\begin{aligned} \text { if } & \text { finish[c]<= } \\ & \operatorname{colour}[i]=c \\ & \text { finish[}]=f[i] \\ & \text { reused }=\text { true } \\ & \text { break }\end{aligned}$
$\begin{aligned} \text { if } & \text { finish[c] }<=s[i] \\ & \operatorname{colour}[i]=c \\ & \text { finish[c] }=f[i] \\ & \text { reused }=\text { true } \\ & \text { break }\end{aligned}$
$\begin{aligned} \text { if } & \text { finish[c]<= } \\ & \operatorname{colour}[i]=c \\ & \text { finish[}]=f[i] \\ & \text { reused }=\text { true } \\ & \text { break }\end{aligned}$
$\begin{aligned} \text { if } & \text { finish[c] }==s[i] \\ & \operatorname{colour}[i]=c \\ & \text { finish[c] }=f[i] \\ & \text { reused }=\text { true } \\ & \text { break }\end{aligned}$
if not reused then
d++
colour[i] $=d$
finish[d] $=f[i]$
return d
reused = false
$\begin{aligned} \text { if } & \text { finish[c]<= } \\ & \operatorname{colour}[i]=c \\ & \text { finish[}]=f[i] \\ & \text { reused }=\text { true } \\ & \text { break }\end{aligned}$
.d

For each interval $\boldsymbol{A}_{\boldsymbol{i}}$,
For each interval $\boldsymbol{A}_{\boldsymbol{i}}$,
search for an appropriate colour c
Consider interval $A_{i}=\left(s_{i}, f_{i}\right)$.
If $s_{i} \geq$ finish $[c]$, then we can give A_{i}
colour \boldsymbol{c} without breaking feasibility
$\boldsymbol{f i n i s h}[\boldsymbol{c}]=$ finish time of last
interval to receive colour c
$\boldsymbol{f i n i s h}[\boldsymbol{c}]=$ finish time of last interval to receive colour \boldsymbol{c}

EXAMPLE: RUNNING GREEDY

While loop over \mathbf{c}.
Check if we can
reuse a color in 1..d

EXAMPLE: RUNNING GREEDY

Correctness of the Algorithm

The correctness of this greedy algorithm can be proven inductively as well as by a "slick" method-we give the "slick" proof:
Let D denote the number of colours used by the algorithm.

Let $\boldsymbol{F}_{\boldsymbol{D}}$ be the first interval that has colour \boldsymbol{D}

Let $\boldsymbol{F}_{\boldsymbol{D}}$ be the first interval that has colour \boldsymbol{D}
We prove $\boldsymbol{F}_{\boldsymbol{D}}$ overlaps $\mathrm{D}-1$ other intervals at a single point in time

Let $\boldsymbol{F}_{\boldsymbol{D}}$ be the first interval that has colour \boldsymbol{D}
Let $\boldsymbol{L}_{\boldsymbol{c}}$ be the last interval that has colour \boldsymbol{c} and starts before $\boldsymbol{F}_{\boldsymbol{D}}$ We prove $\boldsymbol{F}_{\boldsymbol{D}}$ overlaps every interval $\boldsymbol{L}_{\boldsymbol{c}}$ for all $c<D$

Let's argue L_{1} overlaps F_{D}
Note L_{1} must exis \dagger (otherwise greedy would just use colour 1 for F_{D})

And finish $\left[L_{1}\right]$ must be after F_{D} starts (same reason)

Same argument applies to L_{2}, \ldots, L_{D-1}
So, F_{D} overlaps $D-1$ intervals!

Moreover, every interval in $\left\{L_{1}, \ldots, L_{D-1}\right\}$ contains the starting time of $\boldsymbol{F}_{\boldsymbol{D}}$
So, we must use D colours!

```
Preprocess(A[1..n])
    sort A by increasing start time
    let s[1..n] be the start times in A
    let f[1..n] be the finish times in A
    return GreedyIntervalColouring(s, f)
GreedyIntervalColouring(s[1..n], f[1..n])
    d = 1
    colour[1] = 1
    finish[1] = f[1]
    for i}=2..n\longrightarrowO(n)\mathrm{ iterations
        reused = false
        for c = 1.d
            if finish[c] <= s[i] then
                colour[i] = c
                finish[c] = f[i]
                reused = true
                break
        if not reused then
            d++
            colour[i] = d
        finish[d] = f[i]
    return d
```

Total $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{n d})$
Could be $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ if only a constant
number of colours are needed (or even $\log n$ colours!)

Could be $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ if n colours are needed

Most accurate complexity statement is $\boldsymbol{\Theta}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{n} \boldsymbol{D})$ where D is \# colours used

What inefficiencies exist in this algorithm? Could we make it faster with clever data structure usage?

IMPROVING THIS ALGORITHM

Current greedy algorithm:
For each interval $\boldsymbol{A}_{\boldsymbol{i}}$, compare its start time $\boldsymbol{s}_{\boldsymbol{i}}$ with the finish[c] times of all colours introduced so-far

Why? Looking for some finish[c] time that is earlier than $\boldsymbol{s}_{\boldsymbol{i}}$
We are doing linear search... Can we do better?
Use a priority queue to keep track of the earliest finish[c] at all times in the algorithm

Then we only need to look at minimum element

\section*{EXAMPLE: HEAP-BASED ALGORITHM
 | Min element:finish at
 time 5 |
| :--- |
| Heap |
| finish at
 time 7finish at
 time 5 |
 }

\section*{EXAMPLE: HEAP-BASED ALGORITHM
 | Min element:finish at
 time 5
 Heapfinish at
 time 9
 finish at
 time 7
 finish at
 time 5 |
| :--- |
 Check heap minimum
 Check if finish time 3 is before s_{4}
 Yes. Reuse colour, deleteMin and insert new finish time into heap!
 }

\section*{EXAMPLE: HEAP-BASED ALGORITHM
 | Min element:finish at
 time 5
 Heapfinish at
 time 9
 finish at
 time 7
 finish at
 time 5 |
| :--- |
 Check heap minimum
 Check if finish time 5 is before s_{5}
 Yes. Reuse colour, deleteMin and insert new finish time into heap!
 }

\section*{EXAMPLE: HEAP-BASED ALGORITHM
 | Min element:finish at
 time 7
 Heapfinish at
 time 9
 finish at
 time 7finish at
 time 13 |
| :--- |
 Iteration i=5
 $\mathrm{A}_{1} 1$}

 d = 1
 colour[1] = 1
 \(\mathrm{h}=\) new minPQ
 h.insert([f[1],colour[1]])
 for \(i=2 \ldots n\)
 (fc, c) \(=\) h.min()
 if \(\mathrm{fc}<=\mathrm{s}\) [i] then
 h.deleteMin()
 \(O(\log D)\)
 else
 colour[i] = c
    ```


```

 d++
 colour[i] = d
 Total \(\Theta(n \log n)+\Theta(n \log D)\)
 $$
\text { Since } n \geq D, \Theta(n \log n)
$$

 h.insert([f[i], colour[i]])
    ```

```

 return d
 | Total $\Theta(n \log n)+\Theta(n \log D)$ |
| :---: |
| Since $n \geq D, \Theta(n \log n)$ |

```
```

```
Preprocess(A[1..n])
```

```
Preprocess(A[1..n])
    sort A by increasing start time
    sort A by increasing start time
    let s[1..n] be the start times in A
    let s[1..n] be the start times in A
    let f[1..n] be the finish times in A
    let f[1..n] be the finish times in A
    return GreedyIntervalColouring(s, f)
    return GreedyIntervalColouring(s, f)
GreedyIntervalColouring(s[1..n], f[1..n])
```

GreedyIntervalColouring(s[1..n], f[1..n])

```
```

 \(S=\) size(priority queue)
    ```
```

 \(S=\) size(priority queue)
    ```
\[
O(1)
\]

\section*{DYNAMIC PROGRAMMING}

What?

Where did the name, dynamic programming, come from? The 1950s were not good years for mathematical research.

We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word "research"... He would turn red, and he would get violent if people used the term research in his presence. You can imagine how he felt, then, about the term mathematical.

I felt I had to do something to shield Wilson ... from the fact that I was really doing mathematics... What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word "programming." I wanted to get across the idea that this was "dynamic," this was multistage, this was time-varying. I thought, let's kill two birds with one stone.

I thought dynamic programming was a good name. It was something not even a Congressman could object to.


\section*{COMPUTING FIBONACCI NUMBERS INEFFICIENTLY}

\section*{A TOY EXAMPLE TO COMPARE D\&C TO DYNAMIC PROGRAMMING}
```

1 BadFib(n)

```
        if n == 0 or n == 1 then return n
```

 if n == 0 or n == 1 then return n return \(\operatorname{BadFib}(n-1)+\operatorname{BadFib}(n-2)\)
    ```


\section*{RUNTIME}

In unit cost model
(UNREALISTIC!)
\begin{tabular}{ll}
1 & BadFib \((n)\) \\
2 & if \(n==0\) or \(n==1\) then return \(n\) \\
3 & return \(\operatorname{BadFib}(n-1)+\operatorname{BadFib}(n-2)\)
\end{tabular}
\[
\begin{gathered}
T(n)=T(n-1)+T(n-2)+O(1) \\
T(n) \geq 2 T(n-2)+O(1) \\
T(n) \leq 2 T(n-1)+O(1)
\end{gathered}
\]
\(n / 2\) levels of recursion for the first expression
n levels for the second expression
- Work doubles at each level
\(T(n)\) is certainly in \(\boldsymbol{\Omega}\left(\mathbf{2}^{\boldsymbol{n} / \mathbf{2}}\right)\) and \(\boldsymbol{O}\left(\mathbf{2}^{\boldsymbol{n}}\right)\)

\section*{WHY IS THIS SO SLOW?}

Subproblems have LOTS of overlap!

Every subtree on the right appears on the left
... recursively ...
Each subtree is computed exponentially often in its depth

The Recursion Tree to Evaluate \(f_{5}\) :


\section*{Designing Dynamic Programming Algorithms for Optimization Problems}

\section*{(Optimal) Recursive Structure}

Examine the structure of an optimal solution to a problem instance \(I\), and determine if an optimal solution for \(I\) can be expressed in terms of optimal solutions to certain subproblems of \(I\).

\section*{Define Subproblems}

Define a set of subproblems \(\mathcal{S}(I)\) of the instance \(I\), the solution of which enables the optimal solution of \(I\) to be computed. \(I\) will be the last or largest instance in the set \(\mathcal{S}(I)\).

\section*{Designing Dynamic Programming Algorithms (cont.)}

\section*{Recurrence Relation}

Derive a recurrence relation on the optimal solutions to the instances in \(\mathcal{S}(I)\). This recurrence relation should be completely specified in terms of optimal solutions to (smaller) instances in \(\mathcal{S}(I)\) and/or base cases.

\section*{Compute Optimal Solutions}

Compute the optimal solutions to all the instances in \(\mathcal{S}(I)\).
Compute these solutions using the recurrence relation in a bottom-up fashion, filling in a table of values containing these optimal solutions. Whenever a particular table entry is filled in using the recurrence relation, the optimal solutions of relevant subproblems can be looked up in the table (they have been computed already). The final table entry is the solution to \(I\).

\section*{SOLVING FIB USING DYNAMIC PROGRAMMING}
(Optimal) Recursive Structure
Solution to \(n\)-th Fibonacci number \(f(n)\) can be expressed as the addition of smaller Fibonacci numbers
No notion of optimality for this particular problem
Define Subproblems
The set subproblems that will be combined to obtain \(\operatorname{Fib}(n)\)
is \(\{\operatorname{Fib}(n-1), \operatorname{Fib}(n-2)\}\)
\(S(I)=\{F i b(0), F i b(1), \ldots, F i b(n)\}\)
Recurrence Relation
\[
f(n)= \begin{cases}f(n-1)+f(n-2) & : i \geq 2 \\ 1 & : i=1 \\ 0 & : i=0\end{cases}
\]

Computing (Optimal) Solutions
Create table f[1..n] and compute its entries "bottom-up"

\section*{FILLING THE TABLE "BOTTOM-UP"}

Key idea:
When computing a table entry Must have already computed the entries it depends on!
Dependencies
Extract directly from recurrence
Entry \(n\) depends on \(n-1\) and \(n-2\)
Computing entries in order \(\mathbf{1 . . n}\) guarantees n -1 and \(\mathrm{n}-2\) are already computed when we compute n


\section*{DP SOLUTION}
```

FibDP(n)
f = new array of size n
f[0] = 0
f[1] = 1
for i = 2..n
f[i] = f[i-1] + f[i-2]
return f[n]

```

\section*{Space saving optimization:}

We never look at \(f[i-3]\) or earlier
Can make do with a few variables instead of a table
            fi2
                represents f[i-2]
            \(=\)
                represents \(f[i-1]\)
        fi2 \(=\) fi1
        fi1 = temp
    return fi
\[
\begin{array}{ll}
\text { for } \begin{array}{ll}
\mathrm{i}=2 \ldots n & \text { Save } f[i] \text { befor } \\
\text { overwriting it ( } s \\
\text { temp }=\mathrm{fi} \\
\mathrm{fi}=\mathrm{fi} 1+\mathrm{fi2} & \begin{array}{c}
\text { its value can } b \\
\text { stored in } f[i-1] \\
\text { later) }
\end{array}
\end{array}
\end{array}
\]


This is still considered to be
dynamic programming...
We've just optimized out the table.

\section*{CORRECTNESS}

Step 1
Order 0..n means i-1 and i-2 are already computed when we compute i
Prove that when computing a table entry, dependent entries are already computed

Step 2 (similar to D\&C)
Suppose subproblems are solved correctly (optimally)
Prove these (optimal) subsolutions are combined into a(n optimal) solution

Suppose \(f[i-1]\) and \(f[i-2]\) are the (i-1)th and (i-2)th Fib \#s
Then prove \(\mathrm{f}[\mathrm{i}]=\) the \(n\)-th Fib \#
```

FibDP(n)

```
    \(f=\) new array of size \(n\)
    \(\mathrm{f}[0]=0\)
    \(f[1]=1\)
    for \(\mathrm{i}=2 . . n\)
        \(f[i]=f[i-1]+f[i-2]\)
    return \(\mathrm{f}[\mathrm{n}]\)

\section*{MODEL OF COMPUTATION FOR RUNTIME} Unit cost model is not very realistic for this problem, because Fibonacci numbers grow quickly
\(\mathrm{F}[10]=55\)
\(F[100]=354224848179261915075\)
\(\mathrm{F}[300]=222232244629420445529739893461909967206666939096499764990979600\)
Value of \(\mathrm{F}[\mathrm{n}]\) is exponential in \(\mathrm{n}: f_{n} \in \Theta\left(\phi^{n}\right)\) where \(\phi \cong 1.6\) \(\phi^{n}\) needs \(\log \left(\phi^{n}\right)\) bits to store it
So \(\mathrm{F}[\mathrm{n}]\) needs \(\Theta(n)\) bits to store!
But let's use unit cost anyway for simplicity

\section*{RUNNING TIME (UNIT COST)}
\(T(n) \in \boldsymbol{\Theta}(\boldsymbol{n})\)
\begin{tabular}{ll}
1 & FibDP \((\mathrm{n})\) \\
2 & \(\mathrm{f}=\) new array of size n \\
3 & \(\mathrm{f}[0]=0\) \\
4 & \(\mathrm{f}[1]=1\) \\
5 & \\
6 & for \(\mathbf{i}=2 \ldots n\) \\
7 & \(\mathrm{f}[\mathrm{i}]=\mathrm{f}[\mathrm{i}-1]+\mathrm{f}[\mathbf{i}-2]\) \\
8 & \\
9 & return \(\mathrm{f}[\mathrm{n}]\)
\end{tabular}

\section*{A BRIEF ASIDE}

\section*{Is this linear runtime?}

Express \(T(n)\) as a function of the input size \(S\) (in bits)
NO ! This is "a linear function of \(\mathbf{n}\) "
When we say "linear runtime" we mean "a linear function of the input size"
What is the input size \(\boldsymbol{S}\) ?
The input is the number \(n\).
How many bits does it take to store n ? \(O(\log n)\)
So \(S=\log n\) bits

\section*{ROD CUTTING}

A "REAL" DYNAMIC PROGRAMMING EXAMPLE

Input:
\(n\) : length of rod
\(p_{1}, \ldots, p_{n}: p_{i}=\) price of a rod of length \(i\)
Output:
Max income possible by cutting the rod of length \(n\) into any number of integer pieces (maybe no cuts)
```

All ways of cutting
a rod of length 4

```

Example output: 10

\section*{DYNAMIC PROGRAMMING APPROACH}

High level idea (can just think recursively to start)
Given a rod of length \(n\)
Either make no cuts,
or make a cut and recurse on the remaining parts


Where should we cut?

\section*{DYNAMIC PROGRAMMING APPROACH}

Try all ways of making that cut
I.e., try a cut at positions \(1,2, \ldots, n-1\)

In each case, recurse on two rods \([0, i]\) and \([i, n]\)
Take the max income over all possibilities (each \(i / n o\) cut)


Optimal substructure: Max income from two rods \(w /\) sizes \(i\) and \(n-i\)
... is max income we can get from the rod size \(i\)

\author{
+ max income we can
}
get from the rod size \(n-i\)

WE STOPPED HERE

\section*{RECURRENCE RELATION}

Define \(M(k)=\) maximum income for rod of length \(k\) If we do not cut the rod, max income is \(\boldsymbol{p}_{\boldsymbol{k}}\) If we do cut a rod at \(\boldsymbol{i}\)

max income is \(M(i)+M(k-i)\)
Want to maximize this over all \(\boldsymbol{i}\)
\[
\begin{gathered}
\max _{\boldsymbol{i}}\{\boldsymbol{M}(\boldsymbol{i})+\boldsymbol{M}(\boldsymbol{k}-\boldsymbol{i})\} \quad(\text { for } 0<i<k) \\
\boldsymbol{M}(\boldsymbol{k})=\boldsymbol{\operatorname { m a x }}\left\{\boldsymbol{p}_{\boldsymbol{k}}, \max _{\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{k}-\mathbf{1}}\{\boldsymbol{M}(\boldsymbol{i})+\boldsymbol{M}(\boldsymbol{k}-\boldsymbol{i})\}\right\}
\end{gathered}
\]

\section*{COMPUTING SOLUTIONS BOTTOM-UP}

Recurrence: \(M(k)=\max \left\{p_{k}, \max _{1 \leq i \leq k-1}\{M(i)+M(k-i)\}\right\}\)
Compute table of solutions: M[1..n]


Dependencies: entry \(\boldsymbol{k}\) depends on
\[
\begin{array}{ll}
M[i] & \rightarrow M[\mathbf{1} . .(k-\mathbf{1})] \\
M[k-i] & \rightarrow M[\mathbf{1} . .(k-\mathbf{1})]
\end{array}
\]

All of these dependencies are \(<k\)
So we can fill in the table entries in order \(1 . . n\)

Recall, semantically, \(M(k)=\) maximum income for rod of length \(k\)
Recurrence: \(\boldsymbol{M}(\boldsymbol{k})=\max \left\{\boldsymbol{p}_{\boldsymbol{k}}, \max _{1 \leq i \leq k-1}\{\boldsymbol{M}(\boldsymbol{i})+\boldsymbol{M}(\boldsymbol{k}-i)\}\right\}\)
```

RodCutting(n, p[1..n])

```
    \(M\) = new array[1..n]
    // compute each entry M[k]
for \(k=1\)..n
    \(M[k]=p[k] / /\) current best \(=\) no cuts
    // try each cut in 1..(k-1)
        for \(\mathbf{i}=1 \ldots(k-1)\)
            \(M[k]=\max (M[k], M[i]+M[k-i])\)
return M[n]

Time complexity (unit cost)?

Is this a "quadratic time" algorithm?

\section*{MISCELLANEOUS TIPS}

Building a table of results bottom-up is what makes an algorithm DP

There is a similar concept called memoization
But, for the purposes of this course, we want to see bottom-up table filling!
Base cases are critical
They often completely determine the answer

Try setting \(\mathrm{f}[0]=\mathrm{f}[1]=0\) in FibDP...```

