CS 341: ALGORITHMS

Lecture 7: dynamic programming |
Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

INTERVAL COLOURING

MORE EXAMPLES [ooomeer |
but not disjoint...

2023-09-29

FINISHING UP GREEDY

PROBLEM: INTERVAL COLOURING

Instance:

Aset A= {Ay,...,/ i} of intervals
Forl1 <i<n, A, = [s., fi), where s, is the start time of interval A; and
fi is the finish time of A,
Feasible solution: A c-colouring is a mapping col : A — {1..... c}
that assigns each interval a colour such that two intervals receiving the
same colour are always disjoint.
Find: A c-colouring of A with the mimimum numper or coiours
—

‘ 7 intervals,

Example 7 colours.
Feasible, but

1 S O Y I vpichon

Example :] Not feasible!
7 intervals,

6 colours.
Example Feasible, but
Same color, not optimal

but disjoint. OK! |

‘ ‘ 7 intervals,

Example 2 colours.

C— OO 3|

Greedy Strategies for Interval Colouring

As usual, we consider the intervals one at a time.

At a given point in time, suppose we have coloured the first i < n intervals
using d colours.

We will colour the (i + 1)st interval with any permissible colour. If it
cannot be coloured using any of the existing d colours, then we introduce
a new colour and d is increased by 1.

Question: In what order should we consider the intervals?

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-09-29

We will colour the (i + 1)st interval with any permissible colour. If it

cannot be coloured using any of the existing d colours, then we introduce
a new colour and d is increased by 1.

EXAMPLE:
ORDER
MATTERS!

Considerintervalsin

the order they are

givenin the input:
Ay Ay

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

2023-09-29

A A
» HNNEEEEN [L] ~ HNEEEEER INEEEEEEEN
3 A,

EXAMPLE: [EEEEEEEEEEEE EXAMPLE: :i EEE EEEEEEEEEEEE
ORDER OEEEEEE ORDER Py OEEEEEE
MATTERS! K MATTERS! K&
EEEEEEEE BEEEEEEEEE EEEEEEEE BEEEEEEEEEE
EXAMPLE: :i I EEEEEEEEEEEE EXAMPLE: :i 1] EEEEEEEEEEEE
ORDER A OEEEEEE ORDER by OEEEEEE
MATTERS! & MATTERS! K&
EEEEEEEE EEEEEEEE BEEEEEEEEEE
EXAMPLE: ¥ EXAMPLE: ¥4 | | EEEEEEEEEEEE
ORDER & ORDER
MATTERS! K8 MATTERS!

Pre-sortintervals by

Used 4 colours increasing start time!

:L EEEEEEEEEEEEEE
EXAMPLE: ¥ EEEEEEEEEEEE EXAMPLE:
ORDER & ORDER
MATTERS! K MATTERS!
Pre-sortintervals by :’
increasing start fime! 10
EEEEEEEEEEEEEE
EXAMPLE: M EEEEEEEEEEEE EXAMPLE:
ORDER ORDER
MATTERS! ¥ MATTERS!
- EEEEEEEEEEEEEE
EXAMPLE: P EEEEEEEEEEEE EXAMPLE:
ORDER ORDER
MATTERS! K8 MATTERS!

A,
A,
A.

A,
As
AA
A,
A
A,
A

2023-09-29

rrrrrrrrr>

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

Used 3 colours

T
Turns out to be optimal... .
x-axis

2023-09-29

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

I Preprocess(A['..n]) . -
2 sort A by increasing start time finish[c] = finish time of last
used so far 3 let s[1..n] be the start times in A int |t i 1
let f(1_.] be the finish times in A iniervattoreceive coloure
return GreedyIntervalColouring(s, f)
ree:ylncerval(n].mrm(sn .01, f1..n3)
-1
colour[1] = 1 Interval 1 gets colour 1

<
finish[1] = f[1]
For eachinterval 4;,

b for i=2..n search for an appropriate colour ¢
p— ;wud = false
eck It we canreuse for ¢ = 1..d . N
any colourcin 1..d if finish(c] <= s[i] then Considerinterval 4; = (s;, fp).
co = If s; = finish[c], then we can give 4;
finishic] = f[i] colour ¢ without breaking feasibility
reused = true

break
if not reused then
d++ we reused a colour

colour[i] = d
finish{d] = f[1]

return d

If we didn’t reuse a colour,

use a new colour

2023-09-29

‘ Initial state

EXAMPLE:
RUNNING
GREEDY

EXAMPLE:
RUNNING
GREEDY

Kl 2

Is finish[1] < 5,2 Is finish[1] < 5,2

‘ finish(1]= No. We cannot finish[1]= finish[2]= No. We cannot
= reuse colour 1. o b reuse colour 1.

reuse a color d reuse a color d

EXAMPLE: EXAMPLE:
RUNNING RUNNING
GREEDY GREEDY

Is finish[1] < 5,2 Is finish[1] < 5,2

L= [o2 | fshig= finishi2i= No. We canmor | = | a=3 || fnshp= || fnsni= finshi3l= 5 we commot
= b= reuse colour 1. o b 1" Teuse colour 1.

Is finish[2] < 5,2

Is finish[2] < 5,2
No.

reuse a color d reuse a color d
EXAMPLE: EXAMPLE:
RUNNING colour Create RUNNING colour. Create
GREEDY GREEDY

No. We cannot

Is finish[1] < 5,2

i=4 | d=3 ‘ firish(1]= finish[2]= finish[3]= Yes. We can
= - reuse colour 1.

While loop overe.
Checkif we can
reuse a colorin 1..d

EXAMPLE:
RUNNING
GREEDY

Is finish[1] < 52

finish[3]= No. We cannot
reuse colour 1.

.. .. Is finish[2] < s52
No. We cannot
reuse colour 2.

EXAMPLE: \ Is finish[3] < s52

finish[2]=

finish[1]=

reuse a color d

RUNNlNG Yes. We can
GREEDY 7 reuse colour 3.

Correctness of the Algorithm

The correctness of this greedy algorithm can be proven inductively as well
as by a "slick” method—we give the “slick” proof:
Let I denote the number of colours used by the algorithm.

finish[1]=

Checkif we can
reuse a colorin 1..d

EXAMPLE:
RUNNING
GREEDY

finish[2]=

2023-09-29

Is finish(1] < 5,2

finish[3]=

Yes. We can
reuse colour 1.

d

reuse a color

EXAMPLE:
RUNNING
GREEDY

d=3 finish[1]=

finish[2)=

\ finish(3]=

Is finish[1] < 552

No. We cannot
reuse colour 1.

Is finish[2] < 552

No. We cannot
reuse colour 2.

Is finish[3] < 5,2

Yes. We can
reuse colour 3.

Let Fp be the first interval that has colour D

42

2023-09-29

Let Fp be the first interval that has colour D ‘ Let F) be the first interval that has colour D ‘ Let's argue L, overlaps Fj,

We prove F;, overlaps D-1 other intervals at a single point in fime [Let L, be the last inferval that has colour c and starts before Fp | Note L; must exist

We prove F, overlaps every interval L. for all ¢ < D (otherwise greedy would
just use colour 1 for Fp)

And finish[L;] must be after
Fp starts (same reason)

Same argument applies to
Ly wsLp_y

So, Fp overlaps D — 1 intervals!

Moreover, every intervalin
{Ly, ...,Lp—1} contains the
starting time of Fp,

2 S0, we must use D colours!

i
&
"ﬁ

TR incttsing sars e —{0uion] TIME COMPLEXITY? IMPROVING THIS ALGORITHM
let f{1_.n) be the finish times in A
return GreedyIntervalColouring(s, f) Total O(nlog n + nd)

Current greedy algorithm:

GreedyIntervalColouring(s[’ .n], f(1..n])
d's} Could be 0(nlogn) if only a constant . . . N
number of colours are needed For each interval 4;, compare its start time s; with the

finish[c] times of all colours introduced so-far

colour[1] = 1
finish[1] = f[1]

- - (or even logn colours!)
fori=2..n 0(n) iterations

H
£
10
5
i ed = fal — i ini i i i
g ;:"“‘Ffl‘i":: o ;? "im,m_" Could be 0(2) if n colours are needed Why?2 Looking for some finish[c] time that is earlier than s;
15 i nish(c] <= s[i] then . .
16 solourtd] - ¢ We are doing linear search... Can we do better2
| nishic] = f[i
% e Most accurate complexity statement is Use a priority queue to keep track of the earliest finish[c]
g if ":f.mmd then O(nlogn + nD) where D is # colours used at all times in the clgori‘rhm
2 colour[i] = d What inefficiencies exist in this algorithm? ..
2 finish(d] = f(1] Could we make it faster with clever data Then we only need to look at minimum element
25 return d structure usage?
a5 4

Empty, so a new
colouris needed

EXAMPLE: Initicl state EXAMPLE: ‘Hemﬂom;] ‘cr';e‘;mersp
HEAP-BASED HEAP-BASED
ALGORITHM ALGORITHM

Min element: NULL Min element: NULL

Heap Heap

EXAMPLE:
HEAP-BASED
ALGORITHM

Min element:

finish at
ime 3

EXAMPLE:
HEAP-BASED
ALGORITHM

finish at
ime 3

Min element:

EXAMPLE:
HEAP-BASED
ALGORITHM

Check heap
minimum

Iterationi=1 |

Empty, 50 a new
colouris needed

s
L | | [|
s

Check heap

Iterationi=2 | minimum

Check f finish fime
3is befores,

No. New colour!

s
L | | [|

Check heap

Iteration i=; .
eration i=3 | minimum

Check if finish fime
3is before s3

No. New colour!

finish at

Min element: "\, 3

Heap

s
L | | [|
s

EXAMPLE:
HEAP-BASED
ALGORITHM

finish at
Min element:| fime 3

Heap

fime 3

EXAMPLE:
HEAP-BASED
ALGORITHM

. finish at
Min element: " - 5

EXAMPLE:
HEAP-BASED
ALGORITHM

2023-09-29

Check heap

- New
minimum No. New colour!

‘ Iteration i=2 ‘

Check if finish time
3is before s,

‘ Iterationi=3 ‘

Check heap

inir 1
minimum No. New colour!

Checkif finish time
3is before s;

‘ Iteration i=4 ‘

Check heap
minimum

Checkif finish time
3is before s,

Yes. Reuse colour,
deleteMin and

insert new finish
time into heap!

finish at

Min element: "\ 3

L T | [] |
3

Yes. Reuse colour,
deleteMin and
insert new finish
time into heap!

Check if finish time

Check heap
3is before s,

minimum

EXAMPLE:
HEAP-BASED
ALGORITHM

| finish at
Min element; ", o

Iteration i=4 |

Heap
finish at | | finish at
i

Check heap
minimum

EXAMPLE:
HEAP-BASED
ALGORITHM

5is before s5 deleteMin and
insert new finish
time into heap!

A Check if finish time | | Yes. Reuse colour,
Iterationi=5

inish af

N E
Min elemem,[fime 5

Heap

fi
time 7

t
it
fime 5

1" Preprocess(A[1..n])

sort A by increasing start time
let s[1..n] be the start times in A
let f[1..n] be the finish times in A
return GreedyIntervalColouring(s, f)

y—

P REENZ S vanawn

_GreedyIntervalColouring(s[1..n], f[1..n])
d=1

colour[1] = 1
h = new minPQ
h.insert([f[1],colour(1]])

s ?f:.zéi: h.min()

if fc <= s[i] then

h.deleteMin()
colour(i] = ¢ 0(log D)

0(log S) where
S = size(priority queue)

1 else Total @(nlogn) + O(nlog D)
0 colour(i] = d Since n = D, 8(nlogn)
] h. i f[i], cole i

g nsert([f[i], colour(il]) % 0GogD)

23 return d

EXAMPLE:
HEAP-BASED
ALGORITHM

finish at
Min element:| fime 5

EXAMPLE:
HEAP-BASED
ALGORITHM

‘ Iteration i=4 ‘

Check if finish time

Check heap
3is before s,

minimum

Yes. Reuse colour,
deleteMin and
insert new finish
time into heap!

2023-09-29

‘ Iterationi=5 ‘

Check heap
minimum

5is before ss

finish at

Min element; "\, ° -

Heap

fi
time 7

it
it
time 13

‘ Check if finish time | | Yes. Reuse colour,
deleteMin and
insert new finish

time into heap!

DYNAMIC PROGRAMMING

What?

10

2023-09-29

—Richard Bellman, Eye of the Hurricane: An Autobiography
(1984, excerpts from page 159)

“Bottom-up recursion”
might also a reasonable
name, as we'll see...

COMPUTING FIBONACCI NUMBERS INEFFICIENTLY
A TOY EXAMPLE TO COMPARE D&C TO DYNAMIC PROGRAMMING

Where did the name, dynamic programming, come from? The

1950s were not good years for mathematical research.

We had a very interesting gentleman in Washington

named Wilson. He was Secretary of Defense, and he actually
had a pathological fear and hatred of the word "research”... He
would turn red, and he would get violent if people used the term
research in his presence. You can imagine how he felt, then,
about the term mathematical.

1 BadFib(n)
2 if n == 0 or n == 1 then return n
3 return BadFib(n-1) + BadFib(n-2)

|

| felt | had to do something to shield Wilson ... from the fact that |
was really doing mathematics... What title, what name, could |
choose? In the first place | was interested in planning, in decision
making, in thinking. But planning, is not a good word for various
reasons. | decided therefore to use the word “programming.” |
wanted to get across the idea that this was “dynamic,” this was
multistage, this was time-varying. | thought, let's kill two birds with
one stone.

I thought dynamic programming was a good name.
It was something not even a Congressman could object to.

RUNTIME WHY IS THIS SO SLOW?

i 1 BadFib(n) The Recursion Tree to Evaluate f:
In unit cost model 1] Subproblems have

== or n == 1 then return n

(UNREALISTIC!) 3 return BadFib(n-1) + BadFib(n-2) LOTS of overlap!

Tn)=Th—-1)+T(n-2)+0(1) This O(1) would change in the bit Every subtree on
lexit del i

T(n) 2 2T(n —2) + 0(1) comperymese ;hnef;l]géf}’regppeors

T <27 —1) +0(1) recursivel
n/2 levels of recursion for the first expression E h subt Y

"
n levels for the second expression Cg;psjfedee s
Work doubles at each level exponentially
T(n) is certainly in 2(2™2) and 0(2™) often inits depth
This overlap suggests dynamic
63 programming may be able to help! J
Designing Dynamic Programming Algorithms for Designing Dynamic Programming Algorithms (cont.)

Optimization Problems .
Recurrence Relation
Derive a recurrence relation on the optimal solutions to the

[(Opﬁmul) Recursive Structure l instances in S(I). This recurrence relation should be
- . completely specified in terms of optimal solutions to
Examine the structure of an optimal solution to a problem (sm::\er) li”nsrances in (1) and[uf base cases
instance I, and determine if an optimal solution for I can be . .)
expressed in terms of optimal solutions to certain Computs Optimal Solutions . . .
subproblems of 1. Compute the optimal solutions to all the instances in S(I).
Define Subprobl Compute these solutions using the recurrence relation in a
eline Subpro ‘ems 3 bottom-up fashion, filling in a table of values containing
Def t of subprobl S(I) of th t. I, the
efine a set of subproblems S(/) of the instance /, the these optimal solutions. Whenever a particular table entry is
solution of which enables the optimal solution of I to be filled in using the recurrence relation, the optimal solutions
computed. I will be the last or largest instance in the set of relevant subproblems can be looked up in the table (they
S(1). have been computed already). The final table entry is the
solution to 1.

11

SOLVING FIB USING DYNAMIC PROGRAMMING
(Optimal) Recursive Structure

Solution to n-th Fibonacci number f(n) can be expressed
as the addition of smaller Fibonacci numbers

No notion of optimality for this particular problem
Define Subproblems
The set subproblems that will be combined to obtain Fib(n)
is {Fib(n — 1), Fib(n — 2)}
S() = {Fib(0), Fib(1), ..., Fib(n)}
Recurrence Relation {{(nf DHf(n-2):i22
0

Computing (Optimal) Solutions
Create table f[1..n] and compute its entries “bottom-up”

DP SOLUTION

1 FibDP(n} represents f[i-2]

2 fiz2 =0
1 FiboP(n) BN -t

= 4

é f = new array of size n 8 for i< 2.0 Save T before
4 f[o] =0 5 temp = fi overwriting it (so
5 f[1] = 7 its value can be
6 8 fi = fi1 + fi2 stored in f[i-1]
7 for i = 2..n 9 . later)
8 f(i] = fri-1] + fri-2) [fiz = fi1
9 i fil = temp
10 return f[n] 12

13 return fi

Space saving optimization: ‘&
We never look at f[i-3] or earlier

Can make do with a few
variables instead of a table

This is still considered to be
dynamic programming...
We've just optimized out the table.

8

MODEL OF COMPUTATION FOR RUNTIME

Unit cost model is not very realistic for this problem,
because Fibonacci numbers grow quickly

F[10]=55
F[100]=354224848179261915075
F[300]=2222322446294204455297398934619099672066669390964997 64990979600
Value of F[n] is exponentialin n: f, € 8(¢™) where ¢ = 1.6
@™ needs log(¢p™) bits to store it
So F[n] needs 0(n) bits to store!

But let’s use unit cost
anyway for simplicity

2023-09-29

FILLING THE TABLE “BOTTOM-UP"

Key idea:
When computing a table entry

Must have already computed
the entries it depends on!

Dependencies
Extract directly from recurrence
Entry n depends on n-1 and n-2

Computing entries in order 1..n
guarantees n-1 and n-2 are already
computed when we compute n

CORRECTNESS

St 1 Order 0..n means i-1 and i-2 are already
ep computed when we compute i

Prove that when computing a table entry,
dependent entries are already computed

L. Suppose f[i-1] and f[i-2] are the
Step 2 (similar to D&C) (i-1)th and (i-2)th Fib #s
Suppose subproblems are Then prove f[i] = the n-th Fib #

solved correctly (optimally) 1 FibDP(n)
X 2 f = new array of size n
Prove these (optimal) 3 R
N N 4 f[o] =0
subsolutions are combined 5 1] =
into a(n optimal) solution : for i =2z n
B f[i] = fri-1] + fri-21
9
10 return f[n] 7
RUNNING TIME (UNIT COST)
1 FibDP(n)
T(n) € G(n) 2 . f r:' new array of size n
3
4 f[0] = 0
5 f[1] =
6
7 for i = 2..n
B fli] = f[i-1] + f[i-2]
9
10 return f[n]
72

12

A BRIEF ASIDE

Is this linear runtime 2

Express T(n) as a function
of the input size $ (in bits)

T
25

NO! This is “a linear function of n”

)
n
So T(n) € 6(25)

This algorithm is exponential
in the input size!

... but still exponentially
faster than 2"/2

When we say “linear runtime” we mean
“a linear function of the input size”

What is the input size $2
The input is the number n.

How many bits does it take to store n2
O(logn)
So S = logn bits

DYNAMIC PROGRAMMING APPROACH

High level idea (can just think recursively to start)
Given arod of length n

Either make no cuts,
or make a cut and recurse on the remaining parts

T T T D)~ neomer,]
(D) (I T T T T~ reometet sncometugo |

Where should we cut?

WE STOPPED HERE

2023-09-29

ROD CUTTING

A “REAL" DYNAMIC PROGRAMMING EXAMPLE

Input:

n: length of rod v
P, -, Pn: p; = price of arod of length i
Output:

Max income possible by cutting the rod of length n
into any number of integer pieces (maybe no cuts)

arod of length 4

Example output: 10

7

DYNAMIC PROGRAMMING APPROACH

Try all ways of making that cut
l.e., try a cut at positions 1,2,...,n — 1
In each case, recurse on two rods [0, i] and [i, n]
Take the max income over all possibilities (each i / no cut)

=t QOITITTTTTTITTT])
=z ()QIITTTITTITTT])
CITTTITITTIIT])

i=3

Optimal substructure:
Max income from two
rods w/sizes i and n — i

... Ismax income we can
coe get from the rod size i

=t TTTITITITTIT 0

+maxincome we can
get from the rod size n — i

7%

Crifical step! Must define what M(k)

RECURRENCE RELATION mebns, ssmanticaly!

Define M (k) = maximum income for rod of length k

If we do not cut the rod, maxincome is py,
Ifwe do cutarod at i

CIIITD) QITTITTII])

maxincome is M(i) + M(k — i)

Want to maximize this over all i
max;{M@) + M(k — i)} (foro<i<k)
M(k) = max{p;, max; -1 (M) + Mk — D}

13

COMPUTING SOLUTIONS BOTTOM-UP

Recurrence: M(k) = max{py, max,;c;—1{M() + M(k —)}

Compute table of solutions: M[1..n]

Depenldencies: entry k depends on -
Ml[i] > M[1..(k—1)]
Mlk—i > M[1.(k—1)]
All of these dependencies are < k
So we can fillin the table enfries in order 1..n

MISCELLANEQOUS TIPS

Building a table of results bottom-up
is what makes an algorithm DP

There is a similar concept called memoization

But, for the purposes of this course,
we want to see bottom-up table filling!

Base cases are critical

They often completely
determine the answer

Try setting f[0]=f[1]=0in FibDP...

RodCutting(n, p[1..n1)
]

2023-09-29

Recall, semantically, M(k) = maximum income for rod of length k
Recurrence: M(k) = max{py, max;<i<x—1 (M (D) + M(k — D)}

= new array[1..n]
/1 compute each entry M(k]
for k = 1..n
M[K] = p[k] // current best = no cuts
/4 try each cut in 1..(k-1)

for i = 1..(k-1)
M[k] = max(M[k], M[i] + M[k-1i])

return M[n]
e compls
(unit cost)?

l Is this a “quadratic time" algorithm? l

