

DYNAMIC PROGRAMMING APPROACH

- High level idea (can just think recursively to start)
 - Given a rod of length n
 - Either make no cuts,
 - or make a cut and recurse on the remaining parts

Income p_n

Income(Left) + Income(Right)

• Where should we cut?

DYNAMIC PROGRAMMING APPROACH

- Try all ways of making that cut
 I.e., try a cut at positions 1, 2, ..., n 1
- In each case, recurse on two rods [0, i] and [i, n]
- Take the max income over all possibilities (each *i* / no cut)

Optimal substructure: Max income from two rods w/sizes i and n – i
is max income we can get from the rod size <i>i</i>

COMPUTING SOLUTIONS BOTTOM-UP

- Recurrence: $M(k) = max\{p_k, \max_{1 \le i \le k-1}\{M(i) + M(k-i)\}\}$
- Compute table of solutions: M[1...n]
- Dependencies: entry k depends on

•
$$M[i] \rightarrow M[\mathbf{1}..(\mathbf{k}-i)]$$

• $M[\mathbf{k}-i] \rightarrow M[\mathbf{1}..(\mathbf{k}-i)]$

- All of these dependencies are < k
- -
- So we can fill in the table entries in order $1 \cdot n$

<pre>RodCutting(n, p[1n] M = new array[1, // compute each of for k = 1n M[k] = p[k]. // try each for i = 1() M[k] = mi</pre>]) .n] entry W[k] // current best = no cuts+ cut in 1(k-1) k-1) ← X(1) ← M(i) + W[k-i]) ←		
return M[n]		Time complexity (unit cost)?	$\Theta(n^2)$

MISCELLANEOUS TIPS

- Building a table of results bottom-up is what makes an algorithm DP
- There is a similar concept called memoization
 - But, for the purposes of this course, we want to see bottom-up table filling!
- Base cases are critical
 - They often completely determine the answer
 - Try setting f[0]=f[1]=0 in FibDP...

Recall: Pli m1 = maximum profit using		
any subset of the items 1. i , with weight limit m		In general:
If O does not include the camera, then <i>P</i> [4,7] = best we can do with the first three items and weight limit 7kg	P[4,7] = P[3,7]	P[i,m] = P[i-1,m]
If O includes the camera, then $P[4, 7] = p_4 + best we can do with thefirst three items and weight limit 7kg - w4 = 6kg$	$P[4,7] = p_4 + P[3,7-w_4]$	$P[i,m] = p_i + P[i-1,m-w_i]$
Try both and take the better result! (How?)	$P[4, 7] = \max\{ P[3, 7], \\ p_4 + P[3, 7 - w_4] \}$	$\begin{split} P[i,m] &= \max \{ & & \\ P[i-1,m], & & \\ p_i + P[i-1,m-w_i] \} \end{split}$
Note that $\max\{P[i-1,m], p_i + P_i\}$	$[i-1, m-w_i]$ is only valid if	$i \ge 2$ and $m \ge w_i$
What to do when $i = 1$	or $m < w_i$? These are specie	al cases.

General case: $i \ge 2$ and $m \ge w_i$	Special case 1: $i \ge 2$ and $m < w_i$
Since $m \ge w_i$, we can carry item i. $P[i,m] = \max\{P[i-1,m], p_i + P[i-1,m-w_i]\}$	Since $m < w_i$, we cannot carry item i. So, $P[i,m] = P[i-1,m]$.
Special case 2: $i = 1$ and $m \ge w_i$	Special case 3: $i = 1$ and $m < w_i$
Since $l \le 1$, we can only use item 1. Since $m \ge w_i$, we can carry item 1. So, $P[l,m] = p_l$.	Since $i \le 1$, we can only use item 1. Since $m < w_i$, we cannot carry item 1. So, $P[i, m] = 0$.
Recurrence Relation:	
$P[i \ m] = \begin{cases} \max\{P[i-1,m], p_i + P[i-1,m] \\ P[i-1,m] \end{cases}$	$\{i-w_i\}\}$ if $i\geq 2,\ m\geq w_i$ if $i\geq 2,\ m< w_i$
$\left[\begin{array}{c} p_1 \\ 0 \end{array} \right] $	if $i = 1, m \ge w_1$ if $i = 1, m < w_1$.

EX	ER	90	С	1	SI					n F	rax P[i]	() _	P[i	i — m]	1	, <i>m</i>	ı], j	p _i	+	P[<i>i</i> -	- 1	<i>, n</i>	ı –	- u	v_i]	}	if if	i i	≥ : ≥ :	2, 1 2, 1	$n \ge w_{i}$ $n < w_{i}$
Suppo capaci	ose v ity :	we 30	e I	ha	av	e	p	rc	ofi	ts	1	, 2	, 3	ι, E	5, 1	7,	10	, v	ve	ig	nts	5 2	, 3	, ;	5, 1	8,	13	, 1	6,	а	nd	
The following table is computed:														n	-0	ixi:	S															
			6	P		1						P															(>	ve	eig	j h	t)	
	_	0	1	2	3	4	5 (5 1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
	2	0	0			1	1 3 3		13			1	1	1		1	1	1	1	1	1		1	1		1	1	1		1	1	
- avis	3	ŏ	ŏ		2	2	3 :	3 8	5	5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
-UXI3	4	0					3 :	3 4	5																							
(items)	5	0					3 :	3 4																								
(1101110)	6	-		-						-	-	-	-		-	-		-		-					-	-		-			18	
	P[З,	1	6]			n	18	х	{	P[2,	16	,	P	2,	1	1]	+	3,		=]	ma	lХ	$\{3$, 3		- 3	}		6.	
																															19	

Re	call: To satisfy data dependent we can fill entries in the order: for $(i = 1n)$, for $(m = 0M)$	$P[i,m] = \langle$	$\max\{P[i - 1, \cdot P[i - 1, \cdot P[i - 1, m] p_1 \\ 0 \end{bmatrix}$	$[m], p_i + P[i - 1, m]$	$-w_i$] if $i \ge 2$, $m \ge w_i$ if $i \ge 2$, $m < w_i$ if $i = 1$, $m \ge w_1$ if $i = 1$, $m \ge w_1$
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	<pre>Multiple control () = method () = met</pre>	=1 =1 e i>=2 hen P[i-1][m] max(P[i-1][m], p[i] + P[i-1]][m-w(i]])		
19 20	return P[n][N]	Read & retu	urn optime	al profit	How about the optimal items?

OL	ITP	UT	TII	Ν	G	;	С	C)	IT	E	N1	ſS	0	F	T	H	Ξ.	С	ΡT	11	N,	AL	.	$\langle N$	١A	٩P	S,	A(CI	< 0		
The	9 0	ptir	na		so	lu	iti	or	ı i	s	со	m	pu	te	d	by	t	ra	cin	g	ba	acl	< t	hr	οι	Jg	h 1	th	e t	al	ole.		
For	For the previous example, consisting of profits $1, 2, 3, 5, 7, 10$, weights																																
2, 3	2, 3, 5, 8, 13, 16, and capacity 30 , the optimal solution is ???																																
	weight limit remaining																																
			0	1	2 3	4	5	6	78	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		
liter		1	0	0	1 1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
lien	ns	2		0	1 2	2	2 3		3 3																			3					
your	an	3		0	1 2	2	2 3	3	4 5	5	6	6	6	6	_6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6		
IGIN	e	4	0	0	1 2	2	3	3	4 5	5	6	7	1	8	8	9	10	10	11	11	11	11	11	11	11	11	11	11	11	11	11		
		5	0	0	1 2		13	3	4 5	5		-7			8	9	10	10	11	11	11	12	12	13	14	14	15	15	16	17	17		
		6	-	-	-					-	-	2		Æ	- 1			-	-	-	-	-	-	-	-	-	-	_			18		
	8 >		$\circ \circ$	m	IUS	î.	2	Sc	ım	e p	orol	it u				Bes	st p	rof	it fo							a	۱y			c	tort at		
							8		em	ıs İ			15			re	m		ina			or								3			
								SO	th	er		vis	ts c	ın		00	00.4					m	ust	tak		ter	n 6			0	ptimai		
								or	tin		100		on	\cap		en	1571	N.	eig	l'm-		-									protit		
								Up th	at	do	00	no	e i ie	<u> </u>	remaining weight = 14																		
indi does noi os												ē																					
								(e)	m s	51 0	-01	ISIC	iei	0.							xe	rcis	se:		niii	nue	e, a	na	ae	le	mine		
																						W	nici		The	er m	litems are in O						

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O																																
The o	The optimal solution is computed by tracing back through the table.																															
For the previous example, consisting of profits $1, 2, 3, 5, 7, 10$, weights																																
$2,3,5,8,13,16,$ and capacity $30,$ the optimal solution is $\left[1,1,0,1,0,1\right].$																																
weight limit remaining																																
		0	1	2	3	4	5	6	7	89	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Home	1	0	0	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
YOU COD	2	0	0	1	2	2	3	3	3	33	-	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
take	3	0	0		2	2	3	3	4	55	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
Take	4		0		2 2	2 2	30	30	4		6	7		0	0	9	10	10	11	11	11	11	11	11	11	11	11	11	11	11	11	
	6	-	-		-												-	-	-	-	-	-	-	-	1	-	-	-	-		18	
000000000000000000000000000000000000000																																
																														22		

POLYNOMIAL TIME

- An algorithm runs in (worst case) **polynomial time** IFF its runtime *R*(*I*) on every input is upper bounded by a polynomial in the input size S
- I.e., $R(I) \in O(c_0 + c_1S + c_2S^2 + c_3S^3 + \dots + c_kS^k)$ for constants k and c_0, \dots, c_k
- ... so is $O(nT^2)$ polynomial in our input size S?

INPUT SIZE

- $S = bits(T) + bits(d_1) + \dots + bits(d_n)$
- It takes [log₂ T] bits to store T
- It takes [log₂ d_i] bits to store each d_i
- Assume $d_i \leq T$ (otherwise d_i cannot be used at all, and should be omitted from the input)
 - Then we have $\lceil \log_2 d_i \rceil \in O(\log T)$
 - So, $S \in O(n \log T)$

COMPARING T(I) TO S

- Recall $R(I) \in O(nT^2)$ and $S \in O(n \log T)$
- As an example, if *n* is fixed at 10 and *T* is allowed to vary, then $S \in O(\log T)$ and $R(I) \in O(T^2)$
 - In this case, R(I) is exponential in S
- However, if T is fixed at 10 and n is allowed to vary, then $S \in O(n)$ and $R(I) \in O(n)$
 - In this case, *R*(*I*) is **linear in** *S*
- So, large *n* and small *T* is where this DP solution shines!

A BIT MORE ANALYSIS

- Recall $R(I) \in O(nT^2)$ and $S \in O(n \log T)$
- If $T \in O(n)$, then $S \in O(n \log n)$ and $R(I) \in O(n^3)$
 - Note $O(n^3)$ is a smaller runtime than $O(S^3) = O(n^3 \log n)$
 - And S^3 is polynomial in S, so $O(n^3)$ is a polynomial runtime
- So, for some inputs with relatively small T, we can get polynomial runtimes!
 - In particular, for $T \in O(n^k)$ where k is constant, $R(I) \in O\left(n(n^k)^2\right) = O(n^{2k+1})$ and $S \in O\left(n \log n^k\right) = O(n \log n)$
 - And $R(l) \in O(n^{2k+1}) \subseteq O((n \log n)^{2k+1}) = O(S^{2k+1})$