CS 341: ALGORITHMS

Lecture 8: dynamic programming Il

Trevor

DYNAMIC PROGRAMMING APPROACH

« High levelidea (can just think recursively to start)
» Given arod of length n
« Either make no cufs,
or make a cut and recurse on the remaining parts

| Income p,,
' ' Income(Left) + Income(Right)

* Where should we cut?

RECURRENCE RELATION | iieasesmreeestsivie

« Define M(k) = maximum income for rod of length k

» If we do not cut the rod, maxincome is py,
« Ifwedo cutarodati
| 2
Length i Length k — i
« maxincomeis M(i) + M(k — i)
» Want to maximize this over all i
o max {M(@i) + M(k — i)} (for0 <i<k)

« M(k) = max{pk, maxq<<p_1 M) + M(k — i)}}

2023-09-29

ROD CUTIING

A "REAL" DYNAMIC PROGRAMMING EXAMPLE
* Input: n=14
» n: length of rod
* Py, ... Pn: p; = price of arod of length i
» Output:

» Max income possible by cutting the rod of length n
into any number of integer pieces (maybe no cuts)

All ways of cutting N
arodoflength4 [VBEN]

11 s
Example output: 10 oDoED

DYNAMIC PROGRAMMING APPROACH

« Try all ways of making that cut
* l.e., fry a cut atf positions 1,2, ...,n — 1
* In each case, recurse on two rods [0, i] and [i,n]
» Take the max income over all possibilities (each i / no cut)
Optimal substructure:

Max income from two
rods w/sizes i and n — i

... Is max income we can
get from the rod size i

+max income we can
get from the rod size n — i

4

COMPUTING SOLUTIONS BOTTOM-UP

* Recurrence: M(k) = max{p,, maxy<;,_1{M(D) + M(k — D)}

« Compute table of solutions: M[1..n]
M A
1 n

» Dependencies: depends on
o M[i] > M[1..(k—1)]
o Mlk—i] > M[1..(k—1)]
« All of these dependencies are < k
» So we can fillin the table entries in order 1..n

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

Recall, semantically, M(k) = maximum income for rod of length k
Recurrence: M(k) = max{p;, max 1M (@) + M(k - i)}

/ compi
for k
M[k] = p[
try e
for i)
M[k] = max(M[k], M[i] + M[k-i])
return M[n]
Time complexity
(unit cost)?

'.
,"1 e
It

DP SOLUTION TO |
0-1 KNAPSACK |

A

Problem: output maximum value
Item 4 one can get from taking < 7kg,
Suppose the out of these four items.

optimal solution
—4'1

O includes this
Subproblem: output max N
value forsskgoutol [SUPPIOPeN
Then with the remaining these three items o B e
7kg - w, = 6kg, and - :
items 1-3, O must achieve 3 s Recall: P[i,m] = maximum profit using
the best possible value. any subset of the items 1..i, with weight limit m.

This is a smaller

. If O includes the camera, then
P[4,7] = p, + best we can do with the
first three items and weight limit 7kg - w, = ékg

How to evaluate both Thatis PL47] = p, + PI3,6]
possibilities: in & not in 02

2023-09-29

MISCELLANEOUS TIPS

+ Building a table of results bottom-up
is what makes an algorithm DP

« There is a similar concept called memoization

« But, for the purposes of this course,
we want to see bottom-up table filling!

* Base cases are critical

« They often completely
determine the answer

« Try setting f[0]=f[1]=0in FibDP...

Problem: output maximum value
one can get from taking < 7kg,

Suppose the out of these four items.

optimal solution -
O does not -

include this . This is a smaller
Subproblem: output max subproblem:

<
value for £ 7kg out of reduced

Then with the O fisejibreeioms # of rems

must achieve the oy
using only items 1-3. 3 Weleht 4 optimal solution in terms of sul blems
Let P[i, m] = maximum profit using
any subset of the items 1..i, with weight limit m
Note: P[n, M] (= P[4, 7]) is the optimal profit

If O does not include the camera, then
P[4, 7] = best we can do with the

a e ca als irst three items and weight limit 7kg

included in O? That s, P[4, 7] =P[3, 7]

Recall: P[i,m] = maximum profit using

any subset of the items 1..i, with weight limit m T
If O does not include the camera, then
P[4,7] = best we can do with the P[4,7] = P[3,7] Pli,m] = P[i —1,m]

first three items and weight imit 7kg

If O includes the camera, then
P[4,7] = p, + best we can do with the P[4,7] =p,+ P[3,7 —w,] | P[im] = p;+ P[i —1,m —w,]
first three items and weight limit 7kg - w, = ékg

P[4,7] = max{ P[i,m] = max{
P[3,7], Pli—1,m],
pa+P[3,7 - wy]} pi + Pli—1m—w]}

Try both and fake the better result! (How?)

Note that max{P[i — 1,m],p; + P[i —1,m —w,]} is only valid if i = 2 and m = w;

What to do when i = 1 or m < w;? These are special cases.

2023-09-29

Generalcase: i > 2.and m = w; Specialcase 1:i =2 and m < w;
Since m = w;, we can carry item i. Since m < w;, we cannot carry item i. F”‘LING THE ARRAY
P[i,m] = max{P[i — 1,m],p; + P[i — 1, m —w;]} So, P[i,m] = P[i —1,m].
No data
dependencies
on any other
array cells.

Specialcase2:i=1andm > w; Specialcase3:i =1andm <w;
Since i < 1, we can only use item 1.
Since m = w;, we can carry item 1.
So, P[i,m] = p;.

Since i < 1, we can only use item 1.
Since m < w;, we cannot carry item 1.
0.

Recurrence Relation:

. _ Suppose item 1
L-axis does not fit until this
m value (m = wy)

(can use
itemsin 1..i)

FILLING THE ARRAY:

ARR A R K R K LT
Supposem < wy
from here
o .1 0|1 /P |Pi |1 Ry P11 Py P1 P Py P
ololofofo].[.[. [0 | onsider this
L-axis

need cell above to be a
computed already

(can use
itemsin 1..i)

M-axis (remaining weight limit)

EXERCISE

Suppose we have profits 1,
capacity 30.

max{ps,

L-axis
(can use
itemsin 1..i)

PO y

We only everlook at ‘

max{py, pz + 0}

the previous row! ‘

Tak{piaital)

|
max(py,p2 + 0} ||
|

The following table is computed

Depending how many zeros we have
|I in the top row, and how far back
we're looking, might start fo get cells
containing max{p, pa + p1}
|

Would the following fill-order wor

or m) M-axis (remaining weight limit)

+ Pli — 1,m — w;]}

EXERCISE

Suppose we have profits 1,2

7,10, weights 2, : 3,13, 16, and

capacit
The following table is computed m-oxis

14 15 16 17
11111111

i-axis
(items)

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O
The optimal solution is computed by tracing back through tl

For the previous example, consisting of profits 1,2, 3,5,
8,13, 16, and capacity 30, the optimal solution i

8>6s00must Same profit using Best profit for 18> 17, s0 any Start at
take item 4 items1..40r1..5. remaining
So, there exists an items + weight ~ must take item 6 profit
optimalsolution O A= S
that does not Use remaining weight = 14
item 5! Consider O.

Knapsack01_Items(p[

X = new array[

i=n

m=M
Runtime given P?

while i

if P[i][m] == P[i |
X[i] o(n)

Is this linear time?
More on this sool

m=m - wl[i]
i=1i

(P[i][m]
return x

optimal solution optimal

Exercise: continue, and dermine

2023-09-29

ck01(p[1..n]
new table

pli] + P[i-1][m-w[i]])
How about the

return P[n][M] il
Read & return optimal profit optimal Hems?

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O
The optimal solution is computed by tracing back through the table.

For the previous example, consisting of profits 1, , 10, weights

13,16, and capacity 30, the optimal solution is [1,1,0

weight limit remaining

11 11 11 11
15 16

Complexity of the Algorithm
So the DP alg is faster when

there are many item types,

Suppose we assume the unit cost model, so additions / subtractions take but small weight limit

time O(1)
Huge nis fine, but M should
be in poly(n) to get an
asymptotic improvement

The complexity to construct the table
Is this a polynomial-time algorithm, as a function of the size of the
problem instance?

DP takes ©(nM) time,
We have .

size(1)

Note in particular that M is exponentially lar, So
constructing the table is not a polynomial-time alg § the unit

cost model
A recursive algorithm

t would the complexity recursive algorithm be?

very small

SIMPLIFYING BASE CASES P[i,m]:{maﬂ"li*tm]rm+P[i71,m—w‘]) 12 1m 2w,

Pli—1,m) 1Lm<w;
0 0

5 I For m<w, 17

B we have P[i —1,m]
L-axis e

(can use s s B

itemsin 1..i)

Fori=1mz=w;

[wehavep;+Pli—1,m—w]
ich is p; +
EEEEEEEEN IR0

()
M-axis (remaining weight limit)

SAVINGSPACE ¢ U

i] then
1 = Pli-1][m
] = max(P[i-1][m

pli] + P[i-1][m-w[i]]
1 Knapsack01(p[1,

Pprev = new ar

containing We never look at P[i-2][...].

Just keep two arrays
A representing P[i] and P[i-1]
swap P and Pprev
for m =
if m < w[i] then
P[m] Pprev[m]
else
P[m] = max(Pprev[m], p[i] + Pprev[m-w[i]])

1
y[)
P = new array[1 containing zer

Space complexity changes
from 0(mn) to 0(m)

return P[M]

Coin Changing Therela
denomination

Problem 5.2 with unit value!

Coin Changing

Instance: A list of coin denominations, | = dy,dy.... . d,, and a
positive integer T', which is called the target sum,

Find: An n-tuple of non-negative integers, say A = [ay....,a,), such
that T' = 377, aid; and such that N = Y7 a; is minimized.

In 0-1 knapsack, we only considered
two subproblems in our recurrence:
What table ? taking an item, or not.

What subpre ild be

Here we can do more than
use a coin denomination or not.

2023-09-29

wl1..n], W)
10] containing zeros

if m < w[i] then
P[i][m] P[i-11[m] We get much simpler code!
else
P[i][m] = max(P[i-1][m],
pli) + PLi-11[m-w[i

Compare:
return P[n][M]

new table
here i=

wi1] then

ifm
PL11(m]

" Prm = pr

a1 cases where i

if m < wii) then
PLi1(n] = PLi-1](m

else
PLLI(n] = max(P(i-1](m]
Pli] + PLi-11(n-wli]

return PLn] (M o

COIN CHANGING

Let N i, t] denote the optimal solution to the subproblem consisting of

e first i coin denominations d; d; and target sum t

Exploring: some sensible base case(s
General case:

What are the different ways we could use coin denomination d;2
What subproblems / solutions should we use?

Final recurrence relation

Let N[i,t] denote the optimal solution to the subproblem consisting of

the first i coin denominations d; ., d; and target sum ¢
< Also N[i,0] = 0 for all i
Since dq = 1, we immediately have N|[1,t| = ¢ for all ¢.

General case:
What are the different ways we could use coin denomination d,2
What subproblems / solutions should we use?

Final recurrence relation

FILLING THE ARRAY
N[Gm 058 E

No data
dependencies
on any other
array cells.

i-axis
(coin type)

(recall: N[i, t]
uses coin
types 1..i)

4
t-axis (target sum remaining)

ARR A
0
©)
ol1[2]3]4]5]6]... T
i 0-d
o pe 0 T
oo i —
2L L] =
e o]
=5 d; Itis sufficient fo fil:
o | rowi=1 base case), then
We only look at the ‘gl on bzl for (¢ =0..T)
previous i-row!
0
a arge emaining

2023-09-29

Let N[i,t] denote the optimal solution to the subproblem consisting of

the first ¢ coin denominations dy,...,d; and target sum t.
Also N[i,0] = 0 for all i
Since dy = 1, we immediately have N[1,t] =t for all t

> 2, the number of coins of denomination d; is an integer j where

j < |t/di]
If we use j coins of denomination d;, then the target sum is reduced to
t — jd;, which we must achieve using the first i — 1 coin denominations.

Thus we have the following recurrence relation:

Jmill\'_l +N[i—1,t—jdi]:0<j < [t/d;
|t

FILLING THE ARRAY
N[1..n,0..T]:

No data
dependencies
on any other
array cells.

i-axis
(coin type)

(recall: N[i, t]
uses coin
types 1..i)

e e e

4
t-axis (target sum remaining)

10 CoinChangingDP (d
2 N = new table[
3 = new table(

11t] = t
t Jli, t] = # of coins of type d, used in N[i, t]
using other coin types

Compute min{...} over
J=0..lt/d]

try >0 c
for j t / dli])
if § + N[i-111¢-3°d[4]] < N[i][t]
N[L[t] = § + N{d-1)(t-jedld
Ji][t]] e \

return N(n] (T a

2023-09-29

OUTPUTTING OPTIMAL SET OF COINS

P

Unit cost computational

model is reasonable here

Considerinstance I = (d,T)
counts[i] = Jri Recall J[i, t] = # of coins of type d; used in N[i, t] ° Runfime R() € 0(2?‘:22{:0[&])

t =t - counts[il*d[i] We start at J[n][T] = # of coins of 2 A : . :

type d,, used in the optimal solution ¢ i e N hast ; 5 1w

o IO ;IZ, t

=

Exercise for later: z
T : . L1+
G y i R() €0 (Zd—

return counts

t) =k
N(i t-jedli] N[il[t

NEI[E] = § + N(-1](t-57d(d
1Ll = is ont

R(I) € 0(DT?)
where D = 2{‘,25 <n.

ERtEnHinie; . Y . If T is small, this is much
better than brute force
u

POLYNOMIAL TIME INPUT SIZE

= An algorithm runs in (worst case) polynomial time IFF e S = bits(T) + bits(dy) + - + bits(d,)

its runtime R(I) on every input is upper bounded by a - It takes [log, T] bits o store T

polynomial in the input size S
« It takes [log, d;] bits to store each d;

e Le, R(D) € 0(co + €18 + ;5% + 583 + -+ + ¢,SK)

for constants k and ¢, ..., ¢, « Assume d; < T (otherwise d; cannot be used at all,

and should be omitted from the input)
» Then we have [log, d;] € 0(log T)

* ... 501is 0(nT?) polynomialin our input size S2
Uil P * SO, S € 0(nlogT)

COMPARING T(I) TO S A BIT MORE ANALYSIS

* Recall R(D) € 0(nT*) and S € O logT) « Recall R(I) € O(nT?) and § € 0(n logT)
» As an example, if n is fixed at 10 and T is allowed to vary, “fTeo then S € O(nl and R(D € 0(n3
then § € 0(logT) and R(1) € 0(T?) = (m, e oy

; ;i + Note 0(n®) is a smaller runtime than 0(5%) = 0(n® logn)
« In this case, R(I) is exponentialin S ;

S 3 + And 53 is polynomialin S, so 0(n®) is a polynomial runtime
However, if T is fixed at 10 and n is allowed to vary, % i ;
then § € 0(m) and R(I) € 0(n) « So, for some inputs W|jh re/og‘/ve/ysmo/IT,
we can get polynomial runtimes!
+ Infhis case, R(1) is linearin § « In particular, for T € 0(n*) where k is constant,
So, large n and small T is where this DP solution shines! R(DEO (n(n’\')“) = 0(n?*1) and S € 0(nlogn*) = 0(nlogn)

« And R(I) € 0(n?**1) c 0 ((nlngn)”“) = 0(§2%k+1)

