CS 341: ALGORITHMS

Lecture 8: dynamic programming II
Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

ROD CUTTING

A "REAL" DYNAMIC PROGRAMMING EXAMPLE

Input:
n : length of rod
$p_{1}, \ldots, p_{n}: p_{i}=$ price of a rod of length i
Output:
Max income possible by cutting the rod of length n into any number of integer pieces (maybe no cuts)

```
All ways of cutting
a rod of length 4
```

Example output: 10

DYNAMIC PROGRAMMING APPROACH

High level idea (can just think recursively to start)
Given a rod of length n
Either make no cuts,
or make a cut and recurse on the remaining parts

Where should we cut?

DYNAMIC PROGRAMMING APPROACH

Try all ways of making that cut
I.e., try a cut at positions $1,2, \ldots, n-1$

In each case, recurse on two rods $[0, i]$ and $[i, n]$
Take the max income over all possibilities (each $i / n o$ cut)

Optimal substructure: Max income from two rods w/sizes i and $n-i$
\ldots is max income we can get from the rod size i
+ max income we can get from the rod size $n-i$

RECURRENCE RELATION

Define $M(k)=$ maximum income for rod of length k If we do not cut the rod, max income is $\boldsymbol{p}_{\boldsymbol{k}}$ If we do cut a rod at \boldsymbol{i}

max income is $M(i)+M(k-i)$
Want to maximize this over all \boldsymbol{i}

$$
\begin{gathered}
\max _{\boldsymbol{i}}\{\boldsymbol{M}(\boldsymbol{i})+\boldsymbol{M}(\boldsymbol{k}-\boldsymbol{i})\} \quad(\text { for } 0<i<k) \\
\boldsymbol{M}(\boldsymbol{k})=\boldsymbol{\operatorname { m a x }}\left\{\boldsymbol{p}_{\boldsymbol{k}}, \max _{\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{k}-\mathbf{1}}\{\boldsymbol{M}(\boldsymbol{i})+\boldsymbol{M}(\boldsymbol{k}-\boldsymbol{i})\}\right\}
\end{gathered}
$$

COMPUTING SOLUTIONS BOTTOM-UP

Recurrence: $M(k)=\max \left\{p_{k}, \max _{1 \leq i \leq k-1}\{M(i)+M(k-i)\}\right\}$
Compute table of solutions: M[1..n]

Dependencies: entry \boldsymbol{k} depends on

$$
\begin{array}{ll}
M[i] & \rightarrow M[\mathbf{1} . .(k-\mathbf{1})] \\
M[k-i] & \rightarrow M[\mathbf{1} . .(k-\mathbf{1})]
\end{array}
$$

All of these dependencies are $<k$
So we can fill in the table entries in order $1 . . n$

Recall, semantically, $M(k)=$ maximum income for rod of length k Recurrence: $\boldsymbol{M}(\boldsymbol{k})=\max \left\{\boldsymbol{p}_{\boldsymbol{k}}, \max _{1 \leq i \leq k-1}\{\boldsymbol{M}(\boldsymbol{i})+\boldsymbol{M}(\boldsymbol{k}-i)\}\right\}$

```
RodCutting(n, p[1..n])
```

 \(M\) = new array[1..n]
 // compute each entry M[k]
 for $k=1$..n
$M[k]=p[k] / /$ current best $=$ no cuts
// try each cut in 1..(k-1)
for $\mathbf{i}=1 \ldots(k-1)$
$M[k]=\max (M[k], M[i]+M[k-i])$
return M[n]

Time complexity (unit cost)?	$\Theta\left(n^{2}\right)$

MISCELLANEOUS TIPS

Building a table of results bottom-up is what makes an algorithm DP

There is a similar concept called memoization
But, for the purposes of this course, we want to see bottom-up table filling!
Base cases are critical
They often completely determine the answer

Try setting $\mathrm{f}[0]=\mathrm{f}[1]=0$ in FibDP...

DP SOLUTION TO 0-1 KNAPSACK

In general:

If \mathbf{O} does not include the camera, then
$P[4,7]=$ best we can do with the

$$
P[4,7]=P[3,7]
$$

$$
P[i, m]=P[i-1, m]
$$

first three items and weight limit 7kg
If \mathbf{O} includes the camera, then
$P[4,7]=\boldsymbol{p}_{4}+$ best we can do with the
first three items and weight limit $7 \mathrm{~kg}-\mathrm{w}_{4}=6 \mathrm{~kg}$

$$
P[4,7]=p_{4}+P\left[3,7-w_{4}\right] \quad P[i, m]=p_{i}+P\left[i-1, m-w_{i}\right]
$$

$$
P[i, m]=\boldsymbol{\operatorname { m a x }}\{
$$

Try both and take the better result! (How?)

$$
\begin{aligned}
P[4,7]= & \max \{ \\
& P[3,7], \\
& \left.p_{4}+P\left[3,7-w_{4}\right]\right\}
\end{aligned}
$$

$$
P[i-1, m],
$$

$$
\left.p_{i}+P\left[i-1, m-w_{i}\right]\right\}
$$

> Note that $\max \left\{P[i-1, m], p_{i}+P\left[i-1, m-w_{\boldsymbol{i}}\right]\right\}$ is only valid if $i \geq 2$ and $m \geq w_{i}$
> What to do when $i=1$ or $m<w_{i}$? These are special cases.

General case: $i \geq 2$ and $m \geq w_{i}$
Since $m \geq w_{i}$, we can carry item \mathbf{i}. $P[i, m]=\max \left\{P[i-1, m], p_{i}+P\left[i-1, m-w_{i}\right]\right\}$

Special case 1: $i \geq 2$ and $m<w_{i}$
Since $m<w_{i}$, we cannot carry item \mathbf{i}. So, $P[i, m]=P[i-1, m]$.

Special case 2: $i=1$ and $m \geq w_{i}$
Since $i \leq 1$, we can only use item 1 . Since $m \geq w_{i}$, we can carry item 1 .

$$
\text { So, } P[i, m]=p_{i} \text {. }
$$

Special case 3: $i=1$ and $m<w_{i}$
Since $i \leq 1$, we can only use item 1. Since $m<w_{i}$, we cannot carry item 1 .

$$
\text { So, } P[i, m]=0
$$

Recurrence Relation:

$$
P[i, m]= \begin{cases}\max \left\{P[i-1, m], p_{i}+P\left[i-1, m-w_{i}\right]\right\} & \text { if } i \geq 2, m \geq w_{i} \\ P[i-1, m] & \text { if } i \geq 2, m<w_{i} \\ p_{1} & \text { if } i=1, m \geq w_{1} \\ 0 & \text { if } i=1, m<w_{1}\end{cases}
$$

FILLING THE ARRAY:

\boldsymbol{m}-axis (remaining weight limit)

FILLING THE ARRAY:

\boldsymbol{i}-axis (can use items in 1..i)

FILLING THE ARRAY:

$$
P[i, m]= \begin{cases}\left\lvert\, \begin{array}{ll}
\max \left\{P[i-1, m], p_{i}+P\left[i-1, m-w_{i}\right]\right\} & \text { if } i \geq 2, m \geq w_{i} \\
P[i-1, m] & \text { if } i \geq 2, m<w_{i} \\
p_{1} & \text { if } i=1, m \geq w_{1} \\
0 & \text { if } i=1, m<w_{1}
\end{array}\right. \text {. }\end{cases}
$$

Would the following fill-order work? for $(i=1 . . n)$, for $(m=M . .0)$
\boldsymbol{m}-axis (remaining weight limit)

EXERCISE

$$
\begin{array}{ll}
\max \left\{P[i-1, m], p_{i}+P\left[i-1, m-w_{i}\right]\right\} & \text { if } i \geq 2, m \geq w_{i} \\
P[i-1, m] & \text { if } i \geq 2, m<w_{i}
\end{array}
$$

Suppose we have profits $1,2,3,5,7,10$, weights $2,3,5,8,13,16$, and capacity 30 .

The following table is computed:
\boldsymbol{m}-axis
(weight)

$P[3,16]=\square$? What do you think?

EXERCISE

$$
\begin{array}{ll}
\max \left\{P[i-1, m], p_{i}+P\left[i-1, m-w_{i}\right]\right\} & \text { if } i \geq 2, m \geq w_{i} \\
P[i-1, m] & \text { if } i \geq 2, m<w_{i}
\end{array}
$$

Suppose we have profits $1,2,3,5,7,10$, weights $2,3,5,8,13,16$, and capacity 30 .

The following table is computed:

$$
P[3,16]=\max \{P[2,16], P[2,11]+3\}=\max \{3,3+3\}=6 .
$$

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O

 The optimal solution is computed by tracing back through the table.For the previous example, consisting of profits $1,2,3,5,7,10$, weights $2,3,5,8,13,16$, and capacity 30 , the optimal solution is ? ? ?
weight limit remaining

Exercise: continue, and determine which other items are in \mathbf{O}

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O

The optimal solution is computed by tracing back through the table.
For the previous example, consisting of profits $1,2,3,5,7,10$, weights $2,3,5,8,13,16$, and capacity 30 , the optimal solution is $[1,1,0,1,0,1]$.
weight limit remaining

Items you can take		0		2	34	5	6	18		10	1	12				16	17	18	19	20	1	22	23	24	25	26	27	28	29	30
	1	0	0	1	11	1	1	11	3	3	3	3	1	3	1	3	3	3	3	1	1	1	3	3	1	1	1	1	1	3
	3	0	0	1	22	3	3	45	5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
	4	0	0	1	22	3	3	45	5	6	7	7	8	8	9	10	10	11	11	11	11	11	11	11	11	11	11	11	11	11
	5	0	0	1	22	3	3	45	5	6	7	7	8	8	9	10	10	11	11	11	12	12	13	14	14	15	15	16	17	17
										-	-												-				-			

1 Knapsack01_Items(p[1..n], w[1..n], M, P)

```
    x = new array[1..n]
```

 \(\mathbf{i}=\mathrm{n}\)
 \(m=M\)
 while i > 1
 if \(P[i][m]==P[i-1][m]\)
 \(x[i]=0\)
 \(\mathbf{i}=\mathbf{i}-1\)
 else
 \(x[i]=1\)
 \(m=m-w[i]\)
 \(\mathbf{i}=\mathbf{i}-1\)
 \(\mathbf{x}[1]=(P[\mathbf{i}][\mathrm{m}]>0) ? 1: 0\)
 return \(x\)
 Runtime given P ?

$$
\Theta(n)
$$

Is this linear time?
More on this soon...

Complexity of the Algorithm

Suppose we assume the unit cost model, so additions / subtractions take time $O(1)$.
The complexity to construct the table is $\Theta(n M)$
Is this a polynomial-time algorithm, as a function of the size of the

Huge \mathbf{n} is fine, but \boldsymbol{M} should be in poly(\mathbf{n}) to get an asymptotic improvement problem instance?

We have

$$
\operatorname{size}(I)=\log _{2} M+\sum_{i=1}^{n} \log _{2} w_{i}+\sum_{i=1}^{n} \log _{2} p_{i} .
$$

DP takes $\boldsymbol{\Theta}(\boldsymbol{n M})$ time, which could be $\boldsymbol{\Theta}\left(\boldsymbol{n 2}^{n}\right)$ for huge M

Note in particular that M is exponentially large compared to $\log _{2} M$. So constructing the table is not a polynomial-time algorithm, even in the unit cost model.
What would the complexity of a recursive algorithm be?

A recursive algorithm would take $\sim \boldsymbol{\Theta}\left(2^{n}\right)$ time

SIMPLIFYING BASE CASES

$$
P[i, m]= \begin{cases}\max \left\{P[i-1, m], p_{i}+P\left[i-1, m-w_{i}\right]\right\} & \text { if } i \geq 1, m \geq w_{i} \\ P[i-1, m] & \text { if } i \geq 1, m<w_{i} \\ 0 & \text { if } i=0\end{cases}
$$

$$
P[i, m]= \begin{cases}\max \left\{P[i-1, m], p_{i}+P\left[i-1, m-w_{i}\right]\right\} & \text { if } i \geq 2, m \geq w_{i} \\ P[i-1, m] & \text { if } i \geq 2, m<w_{i} \\ p_{1} & \text { if } i=1, m \geq w_{1} \\ 0 & \text { if } i=1, m<w_{1}\end{cases}
$$

\boldsymbol{m}-axis (remaining weight limit)


```
Knapsack01(p[1..n], w[1..n], M)
    P = new table[0..n][0..M] containing zeros
```

```
for i = 1..n
    for m = 0..M
    if m < w[i] then
        P[i][m] = P[i-1][m]
    else
            P[i][m] = max(P[i-1][m],
                p[i] + P[i-1][m-w[i]])
return P[n][M]
```


SAVING SPACE

Knapsack01(p[1..n], w[1..n], M)
$P=$ new table[0..n][0..M] containing zeros

```
    for i}=1\ldots
        for m = 0..M
        if m < w[i] then
        P[i][m] = P[i-1][m]
    else
        P[i][m] = max(P[i-1][m],
                            p[i] + P[i-1][m-w[i]])
```

```
Knapsack01(p[1..n], w[1..n], M)
    Pprev = new array[0..M] containing zeros
    P = new array[0..M] containing zeros
    for i = 1..n
        swap P and Pprev
        for m = O..M
            if m < w[i] then
            P[m] = Pprev[m]
            else
```

We never look at $\mathrm{P}[i-2][. .$.$] .$ Just keep two arrays representing $P[i]$ and $P[i-1]$

Space complexity changes from $O(m n)$ to $O(m)$

```
            P[m] = max(Pprev[m], p[i] + Pprev[m-w[i]])
        return P[M]
```


COIN CHANGING

Coin Changing

```
Problem 5.2
Coin Changing
Instance: \(A\) list of coin denominations, \(1=d_{1}, d_{2}, \ldots, d_{n}\), and a
positive integer \(T\), which is called the target sum.
Find: An \(n\)-tuple of non-negative integers, say \(A=\left[a_{1}, \ldots, a_{n}\right]\), such
that \(T=\sum_{i=1}^{n} a_{i} d_{i}\) and such that \(N=\sum_{i=1}^{n} a_{i}\) is minimized.
```

What subproblems should be considered?
What table of values should we fill in?

In 0-1 knapsack, we only considered two subproblems in our recurrence: taking an item, or not.
Here we can do more than use a coin denomination or not.

Let $N[i, t]$ denote the optimal solution to the subproblem consisting of the first i coin denominations d_{1}, \ldots, d_{i} and target sum t.

Exploring: some sensible base case(s)?
\quad General case:
What are the different ways we could use coin denomination $\boldsymbol{d}_{\boldsymbol{i}}$? What subproblems / solutions should we use?
Final recurrence relation

Let $N[i, t]$ denote the optimal solution to the subproblem consisting of the first i coin denominations d_{1}, \ldots, d_{i} and target sum t.
Since $d_{1}=1$, we immediately have $N[1, t]=t$ for all t.
General case:
What are the different ways we could use coin denomination $\boldsymbol{d}_{\boldsymbol{i}}$? What subproblems / solutions should we use?

Final recurrence relation

Let $N[i, t]$ denote the optimal solution to the subproblem consisting of the first i coin denominations d_{1}, \ldots, d_{i} and target sum t. Also $N[i, \mathbf{0}]=\mathbf{0}$ for all i
Since $d_{1}=1$, we immediately have $N[1, t]=t$ for all t.
For $i \geq 2$, the number of coins of denomination d_{i} is an integer j where $0 \leq j \leq\left\lfloor t / d_{i}\right\rfloor$.
If we use j coins of denomination d_{i}, then the target sum is reduced to $t-j d_{i}$, which we must achieve using the first $i-1$ coin denominations.

Thus we have the following recurrence relation:

$$
N[i, t]= \begin{cases}\min \left\{j+N\left[i-1, t-j d_{i}\right]: 0 \leq j \leq\left\lfloor t / d_{i}\right\rfloor\right\} & \text { if } i \geq 2 \\ t & \text { if } i=1 \text { OR } t=0\end{cases}
$$

FILLING THE ARRAY $N[1 \ldots n, 0 \ldots T]:$

$$
N[i, t]= \begin{cases}\min \left\{j+N\left[i-1, t-j d_{i}\right]: 0 \leq j \leq\left|t / d_{i}\right|\right\} & \text { if } i \geq 2 \\ \hline t & \text { if } i=1 . \\ \text { OR } t=0\end{cases}
$$

FILLING THE ARRAY $N[1 \ldots n, 0 \ldots T]:$

$$
N[i, t]= \begin{cases}\min \left\{j+N\left[i-1, t-j d_{i}\right]: 0 \leq j \leq\left\lfloor t / d_{i}\right\rfloor\right\} & \text { if } i \geq 2 \\ t & \text { if } i=1 \\ \text { OR } t=0\end{cases}
$$

No data
dependencies
on any other
array cells.

(coin type)

(recall: $N[i, t]$ uses coin types 1..i)

FILLING THE ARRAY $N[1 \ldots n, 0 \ldots T]:$

$$
N[i, t]=\begin{array}{ll}
\begin{array}{ll}
\min \left\{j+N\left[i-1, t-j d_{i}\right]: 0 \leq j \leq\left\lfloor t / d_{i}\right\rfloor\right\} & \text { if } i \geq 2 \\
\hline t & \text { if } i=1 \\
\text { OR } t=0
\end{array}
\end{array}
$$

$$
N[i, t]= \begin{cases}\min \left\{j+N\left[i-1, t-j d_{i}\right]: 0 \leq j \leq\left\lfloor t / d_{i}\right\rfloor\right\} & \text { if } i \geq 2 \\ t & \text { if } i=1 .\end{cases}
$$

$N=$ new table $[1 \ldots n][0 \ldots T]$
$\mathrm{J}=$ new table[1..n][0..T]
i.e., using coin $d_{1}=1$
$\begin{aligned} & \mathrm{N}[1][\mathrm{t}]=\mathrm{t} \\ & \mathrm{J}[1][\mathrm{t}]=\mathrm{t}\end{aligned} \quad \boldsymbol{J}[\boldsymbol{i}, \boldsymbol{t}]=$ \# of coins of type $\boldsymbol{d}_{\boldsymbol{i}}$ used in $N[i, t]$
for $\mathrm{i}=2 \ldots \mathrm{n} \quad / /$ general cases using other coin types
for $t=0 . . T$
// initially best solution is 0 of $d[i \quad$ Compute min\{...\} over
$N[i][t]=N[i-1][t]$
$\mathrm{J}[\mathrm{i}][\mathrm{t}]=0$
// try j>0 coins of type d[i]
for $\mathrm{j}=1 .$. floor(t / d[i])
if $\mathrm{j}+\mathrm{N}[\mathrm{i}-1][\mathrm{t}-\mathrm{j} * \mathrm{~d}[\mathrm{i}]]<\mathrm{N}[\mathrm{i}][\mathrm{t}]$
$N[i][t]=j+N[i-1][t-j * d[i]]$
$\mathrm{J}[\mathrm{i}][\mathrm{t}]=\mathrm{j} / /$ best is currently j of $\mathrm{d}[\mathrm{i}]$
return $N[n][T] / /$ can also return N, J

OUTPUTTING OPTIMAL SET OF COINS

```
1 CoinChangingDP_coins(d[1..n], J[1..n][0..T])
    counts = new array[1..n]
    t = T
    for i=n..1 
        t = t counts[i]*d[i] We start at J[n][T]=# of coins of
    return counts
    type d}\mp@subsup{d}{n}{}\mathrm{ used in the optimal solution
```


Exercise for later:

compute the correct output
without using $J[i, t]$
(i.e., using only N, d, T)

```
CoinChangingDP(d[1..n], T)
    N = new table[1..n][0..T]
    J = new table[1..n][0..T]
    for t = 0..T // base cases where i=1
        N[1][t] = t
        J[1][t] = t
    for i = 2..n // general cases
        for t = 0..T
            // initially best solution is 0 of d[i]
            N[i][t] = N[i-1][t]
            J[i][t] = 0
            // try j>0 coins of type d[i]
            for j = 1..floor(t / d[i])
                if j + N[i-1][t-j*d[i]] < N[i][t]
                    N[i][t] = j + N[i-1][t-j*d[i]]
                    J[i][t] = j // best is currently j of d[i]
    return N[n][T] // can also return N, J
```

Time complexity?
Unit cost computational model is reasonable here

Consider instance $I=(d, T)$
Runtime $\boldsymbol{R}(\boldsymbol{I}) \in O\left(\sum_{i=2}^{n} \sum_{t=0}^{T} \left\lvert\, \frac{t}{d_{i}}\right.\right)$
$R(I) \in O\left(\sum_{i=2}^{n} \frac{1}{d_{i}} \sum_{t=0}^{T} t\right)$
$R(I) \in O\left(\sum_{i=2}^{n} \frac{1}{d_{i}}\left(\frac{T(T+1)}{2}\right)\right)$

$$
R(I) \in O\left(D T^{2}\right)
$$

where $D=\sum_{i=2}^{n} \frac{1}{d_{i}}<n$.
If T is small, this is much better than brute force

POLYNOMIAL TIME

An algorithm runs in (worst case) polynomial time IFF its runtime $R(I)$ on every input is upper bounded by a polynomial in the input size S

$$
\text { I.e., } R(I) \in O\left(c_{0}+c_{1} S+c_{2} S^{2}+c_{3} S^{3}+\cdots+c_{k} S^{k}\right)
$$ for constants \boldsymbol{k} and $\boldsymbol{c}_{\mathbf{0}}, \ldots, \boldsymbol{c}_{\boldsymbol{k}}$

... so is $O\left(n T^{2}\right)$ polynomial in our input size S ?

INPUT SIZE

$S=\operatorname{bits}(T)+\operatorname{bits}\left(d_{1}\right)+\cdots+\operatorname{bits}\left(d_{n}\right)$
It takes $\left\lceil\log _{2} \boldsymbol{T}\right\rceil$ bits to store T
It takes $\left\lceil\log _{2} \boldsymbol{d}_{\boldsymbol{i}}\right\rceil$ bits to store each d_{i}
Assume $d_{i} \leq T$ (otherwise d_{i} cannot be used at all, and should be omitted from the input)

Then we have $\left[\log _{2} d_{i}\right\rceil \in O(\log T)$
So, $S \in \boldsymbol{O}(n \log T)$

COMPARING $T(I)$ TO S

Recall $\boldsymbol{R}(I) \in \boldsymbol{O}\left(\boldsymbol{n T} \boldsymbol{T}^{\mathbf{2}}\right.$) and $\boldsymbol{S} \in \boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{T})$
As an example, if n is fixed at 10 and T is allowed to vary, then $\boldsymbol{S} \in \mathbf{O}(\log \boldsymbol{T})$ and $\boldsymbol{R}(I) \in \boldsymbol{O}\left(\boldsymbol{T}^{2}\right)$

In this case, $R(I)$ is exponential in S
However, if T is fixed at 10 and n is allowed to vary, then $\boldsymbol{S} \in \boldsymbol{O}(\boldsymbol{n})$ and $\boldsymbol{R}(\boldsymbol{I}) \in \boldsymbol{O}(\boldsymbol{n})$

In this case, $R(I)$ is linear in S
So, large \boldsymbol{n} and small \boldsymbol{T} is where this DP solution shines!

A BIT MORE ANALYSIS

Recall $\boldsymbol{R}(I) \in \boldsymbol{O}\left(\boldsymbol{n T} \boldsymbol{T}^{\mathbf{2}}\right.$) and $\boldsymbol{S} \in \boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{T})$
If $\boldsymbol{T} \in \boldsymbol{O}(\boldsymbol{n})$, then $S \in O(n \log n)$ and $R(I) \in O\left(n^{3}\right)$
Note $O\left(n^{3}\right)$ is a smaller runtime than $O\left(S^{3}\right)=O\left(n^{3} \log n\right)$
And S^{3} is polynomial in S, so $O\left(n^{3}\right)$ is a polynomial runtime
So, for some inputs with relatively small T, we can get polynomial runtimes!

In particular, for $\boldsymbol{T} \in \boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$ where \boldsymbol{k} is constant,

$$
R(I) \in O\left(n\left(n^{k}\right)^{2}\right)=O\left(n^{2 k+1}\right) \text { and } S \in O\left(n \log n^{k}\right)=O(n \log n)
$$

And $R(I) \in O\left(n^{2 k+1}\right) \subseteq O\left((n \log n)^{2 k+1}\right)=O\left(S^{2 k+1}\right)$

