CS 341: ALGORITHMS

Lecture 8: dynamic programming II

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

ROD CUTTING

A "REAL" DYNAMIC PROGRAMMING EXAMPLE

Input: n = 4 $n: length of rod <math display="block">\frac{length \ j}{price \ p_j} \frac{1}{1} \frac{2}{5} \frac{3}{8}$

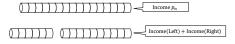
 $p_1, ..., p_n$: p_i = price of a rod of length i

:tuatuO

Max **income** possible by cutting the rod of length n into any number of **integer** pieces (maybe **no** cuts)

DYNAMIC PROGRAMMING APPROACH

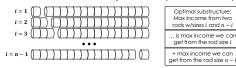
- High level idea (can just think recursively to start)
 - Given a rod of length n
 - Either make no cuts, or make a cut and **recurse** on the remaining parts



Where should we cut?

DYNAMIC PROGRAMMING APPROACH

- Try all ways of making that cut
 - l.e., try a cut at positions 1, 2, ..., n-1
 - In each case, recurse on two rods [0, i] and [i, n]
- Take the maxincome over all possibilities (each i / no cut)

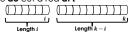


RECURRENCE RELATION Critical step! Must define what M(k) means, semantically!

Define M(k) = maximum income for rod of length k

If we do **not** cut the rod, max income is p_k

If we **do** cut a rod **at** *i*



max income is M(i) + M(k-i)

Want to maximize this ${\it over all} \; i$

 $max_i\{M(i) + M(k-i)\} \qquad \text{(for } 0 < i < k\text{)}$

 $M(k) = \max\{p_k, \max_{1 \leq i \leq k-1}\{M(i) + M(k-i)\}\}$

COMPUTING SOLUTIONS BOTTOM-UP

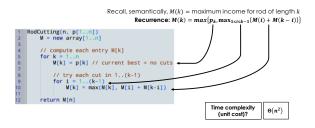
- Recurrence: $M(k) = max\{p_k, \max_{1 \le i \le k-1} \{M(i) + M(k-i)\}\}$
- Compute **table** of solutions: M[1..n]

Dependencies: entry k depends on

$$\begin{array}{ccc}
M[i] & \rightarrow M[\mathbf{1}..(k-1)] \\
M[k-i] & \rightarrow M[\mathbf{1}..(k-1)]
\end{array}$$

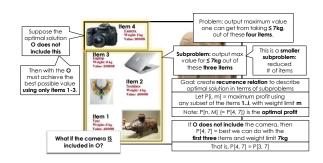
 $^{\circ}$ All of these dependencies are < k

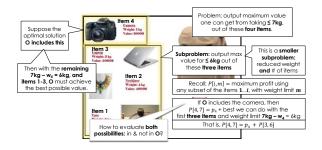
 $^{\circ}$ So we can fill in the table entries in order 1.. n



MISCELLANEOUS TIPS

- Building a table of results bottom-up is what makes an algorithm DP
- There is a similar concept called **memoization**
 - But, for the purposes of this course, we want to see bottom-up table filling!
- Base cases are critical
 - They often completely determine the answer
 - Try setting f[0]=f[1]=0 in FibDP...



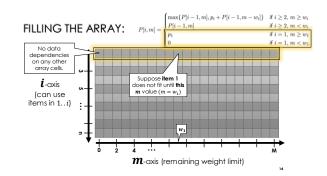


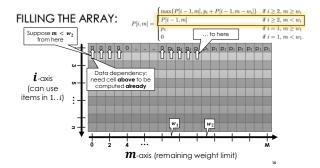
Recall: $P[i,m] = \text{maximum profit using}$]		
any subset of the items $1l$, with weight limit \emph{m}		In general:	
If O does not include the camera, then $P[4,7] = \text{best}$ we can do with the first three items and weight limit 7kg	P[4,7] = P[3,7]	P[i,m] = P[i-1,m]	
If O includes the camera, then $P[4,7] = p_4 + \text{best we can do with the}$ first three items and weight limit $7\text{kg} - \text{w}_4 = 6\text{kg}$	$P[4,7] = p_4 + P[3,7 - w_4]$	$P[i,m] = p_i + P[i-1,m-w_i]$	
Try both and take the better result! (How?)	$P[4, 7] = \max\{$ P[3, 7], $p_4 + P[3, 7 - w_4]\}$	$\begin{split} P[i,m] &= \max \{ \\ P[i-1,m], \\ p_i + P[i-1,m-w_i] \} \end{split}$	
Note that $\max\{P[i-1,m], p_i + P[i-1,m-w_i]\}$ is only valid if $i \ge 2$ and $m \ge w_i$			
What to do when $i=1$ or $m < w_i$? These are special cases .			

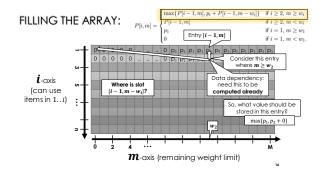
General case: $i \ge 2$ and $m \ge w_i$	Special case 1: $i \ge 2$ and $m < w_i$	
Since $m \ge w_i$, we can carry item i. $P[i,m] = \max\{P[i-1,m], p_i + P[i-1,m-w_i]\}$	Since $m < w_i$, we cannot carry item i. So, $P[i,m] = P[i-1,m]$.	
Special case 2: $i = 1$ and $m \ge w_i$	Special case 3: $i = 1$ and $m < w_i$	
Since $i \le 1$, we can only use item 1. Since $m \ge w_i$, we can carry item 1. So, $P[i, m] = p_i$.	Since $i \le 1$, we can only use item 1. Since $m < w_i$, we cannot carry item 1. So, $P[i, m] = 0$.	

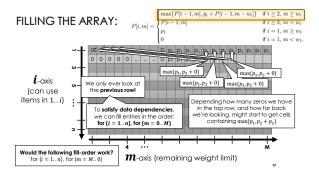
Recurrence Relation:

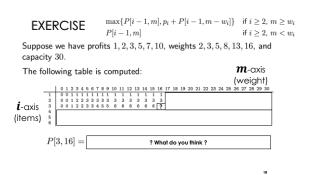
	$\max\{P[i-1,m], p_i + P[i-1,m-w_i]\}$	if $i \geq 2$, $m \geq w_i$
P[i, m] = i	$P[i-1,m] \\ p_1$	$\text{if } i \geq 2 \text{, } m < w_i \\$
1 [1, m] -	p_1	if $i=1$, $m\geq w_1$
	[0	if $i = 1$, $m < w_1$







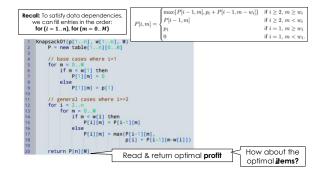




 $\begin{array}{ll} \mathsf{EXERCISE} & \max\{P[i-1,m], p_i + P[i-1,m-w_i]\} & \text{if } i \geq 2, \, m \geq w_i \\ & P[i-1,m] & \text{if } i \geq 2, \, m < w_i \end{array}$

Suppose we have profits 1,2,3,5,7,10, weights 2,3,5,8,13,16, and capacity 30.

```
P[3, 16] = \max\{P[2, 16], P[2, 11] + 3\} = \max\{3, 3 + 3\} = 6.
```



OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O

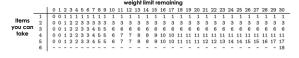
The optimal solution is computed by tracing back through the table.

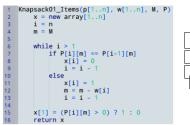
For the previous example, consisting of profits 1,2,3,5,7,10, weights 2,3,5,8,13,16, and capacity 30, the optimal solution is $\ref{30}$??

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O

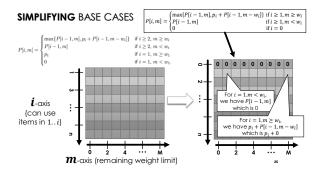
The optimal solution is computed by tracing back through the table.

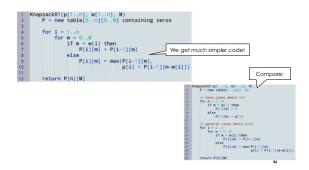
For the previous example, consisting of profits 1,2,3,5,7,10, weights 2,3,5,8,13,16, and capacity 30, the optimal solution is [1,1,0,1,0,1].

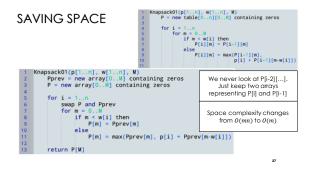




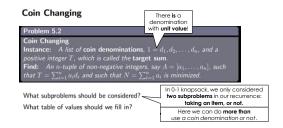
Complexity of the Algorithm So the DP alg is faster wher there are **many item types**. Suppose we assume the unit cost model, so additions / subtractions take but small weight limit time O(1). Huge **n** is fine, but **M** should be in **poly(n)** to get an asymptotic improvement The complexity to construct the table is $\Theta(nM)$ Is this a polynomial-time algorithm, as a function of the size of the problem instance? DP takes $\Theta(nM)$ time We have $\operatorname{size}(I) = \log_2 M + \sum_{i=1}^n \log_2 w_i + \sum_{i=1}^n \log_2 p_i.$ $\Theta(n2^n)$ for huge M Note in particular that M is exponentially large compared to $\log_2 M$. So constructing the table is not a polynomial-time algorithm, even in the unit cost model A recursive algorithm What would the complexity of a recursive algorithm be?







COIN CHANGING



the first i coin denominations d_1,\dots,d_i and target sum t.

Exploring: some sensible base case(s)?

General case:

What are the different ways we could use coin denomination d_i ?

What subproblems / solutions should we use?

Let N[i,t] denote the optimal solution to the subproblem consisting of

Final recurrence relation

Let N[i,t] denote the optimal solution to the subproblem consisting of the first i coin denominations d_1,\ldots,d_i and target sum t. Also N[t,0]=0 for all i. Since $d_1=1$, we immediately have N[1,t]=t for all t. Also N[t,0]=0 for all i. General case: What are the different ways we could use coin denomination d_i ? What subproblems / solutions should we use?

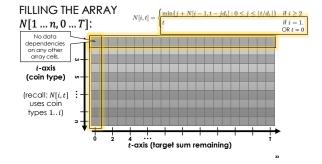
Let N[i,t] denote the optimal solution to the subproblem consisting of the first i coin denominations a_1,\ldots,d_i and target sum t. Also $N[t,\mathbf{0}] = \mathbf{0}$ for all t.

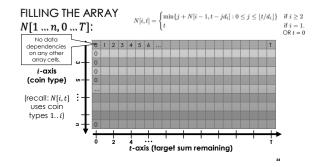
For $i\geq 2,$ the number of coins of denomination d_i is an integer j where $0\leq j\leq \lfloor t/d_i\rfloor.$

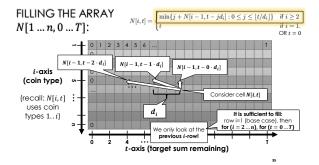
If we use j coins of denomination d_i , then the target sum is reduced to $t-jd_i$, which we must achieve using the first i-1 coin denominations.

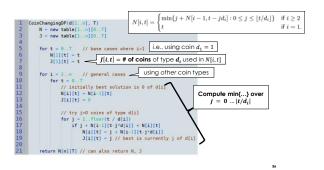
Thus we have the following recurrence relation:

$$N[i,t] = \begin{cases} \min\{j + N[i-1,t-jd_i] : 0 \leq j \leq \lfloor t/d_i \rfloor\} & \text{if } i \geq 2 \\ t & \text{if } i = 1 \text{ OR } t = 0 \end{cases}$$









OUTPUTTING OPTIMAL SET OF COINS

37

```
1 CoinChangingOP(d[i.n], T)
2 N - new table[i..n][0..T]
3 J - new table[i..n][0..T]
5 for t - 0..T // base cases where i=1
N[i][t] - t
7 J[i][t] - t
8 J[i][t] - t
9 for i = 0..T // general cases
10 for t = 0..T // general cases
11 [i] N[i][t] - t
12 N[i][t] - i
13 J[i][t] = 0
14 // try j=0 coins of type d[i]
16 for j - 1..floor(t / d[i])
17 if j + N[i][t] - j / N[i][t] - N[i][t] -
```

POLYNOMIAL TIME

- An algorithm runs in (worst case) **polynomial time** IFF its runtime R(I) on every input is upper bounded by a polynomial in the input size S
- i.e., $R(I) \in O(c_0 + c_1S + c_2S^2 + c_3S^3 + \dots + c_kS^k)$ for **constants** k and c_0, \dots, c_k
- ... so is $O(nT^2)$ polynomial in our input size S?

INPUT SIZE

- $S = bits(T) + bits(d_1) + \dots + bits(d_n)$
- It takes $\lceil \log_2 T \rceil$ bits to store T
- It takes $[\log_2 d_i]$ bits to store each d_i

Assume $d_i \leq T$ (otherwise d_i cannot be used at all, and should be omitted from the input)

- Then we have $\lceil \log_2 d_i \rceil \in O(\log T)$
- So, $S \in O(n \log T)$

COMPARING T(I) TO S

Recall $R(I) \in O(nT^2)$ and $S \in O(n \log T)$

As an example, if n is fixed at 10 and T is allowed to vary, then $S \in \mathbf{O}(\log T)$ and $R(I) \in \mathcal{O}(T^2)$

In this case, R(I) is **exponential in** S

However, if T is fixed at 10 and n is allowed to vary, then $S \in O(n)$ and $R(I) \in O(n)$

- In this case, R(I) is **linear in** S
- So, large n and small T is where this DP solution shines!

A BIT MORE ANALYSIS

Recall $R(I) \in O(nT^2)$ and $S \in O(n \log T)$

If $T \in O(n)$, then $S \in O(n \log n)$ and $R(I) \in O(n^3)$

- Note $O(n^3)$ is a **smaller** runtime than $O(S^3) = O(n^3 \log n)$
- And S^3 is polynomial in S, so $O(n^3)$ is a **polynomial runtime**

So, **for some inputs** with *relatively small* T, we can get polynomial runtimes!

- In particular, for $T \in \mathcal{O}(n^k)$ where k is constant, $R(l) \in \mathcal{O}\left(n{n\choose k}^2\right) = \mathcal{O}(n^{2k+1})$ and $S \in \mathcal{O}\left(n\log n^k\right) = \mathcal{O}(n\log n)$
- And $R(I) \in O(n^{2k+1}) \subseteq O((n \log n)^{2k+1}) = O(S^{2k+1})$