
2023-09-29

1

CS 341: ALGORITHMS
Lecture 8: dynamic programming II

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

ROD CUTTING
A “REAL” DYNAMIC PROGRAMMING EXAMPLE

• Input:

• 𝑛: length of rod

• 𝑝1, … , 𝑝𝑛: 𝑝𝑖 = price of a rod of length 𝑖

• Output:

• Max income possible by cutting the rod of length 𝑛
into any number of integer pieces (maybe no cuts)

𝑛 = 4

All ways of cutting
a rod of length 4

Example output: 10

2

DYNAMIC PROGRAMMING APPROACH

• High level idea (can just think recursively to start)

• Given a rod of length n

• Either make no cuts,
or make a cut and recurse on the remaining parts

• Where should we cut?

Income 𝑝𝑛

Income Left + Income(Right)

3

DYNAMIC PROGRAMMING APPROACH

• Try all ways of making that cut

• I.e., try a cut at positions 1, 2, … , 𝑛 − 1

• In each case, recurse on two rods [0, 𝑖] and [𝑖, 𝑛]

• Take the max income over all possibilities (each 𝑖 / no cut)

…
𝒊 = 𝟑

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝒏 − 𝟏

Optimal substructure:
Max income from two

rods w/sizes 𝑖 and 𝑛 − 𝑖

… is max income we can
get from the rod size 𝑖

+ max income we can
get from the rod size 𝑛 − 𝑖

4

RECURRENCE RELATION
• Define 𝑀(𝑘) = maximum income for rod of length 𝑘

• If we do not cut the rod, max income is 𝒑𝒌

• If we do cut a rod at 𝒊

• max income is 𝑀 𝑖 + 𝑀(𝑘 − 𝑖)

• Want to maximize this over all 𝒊

• 𝒎𝒂𝒙𝒊 𝑴 𝒊 + 𝑴 𝒌 − 𝒊 (for 0 < 𝑖 < 𝑘)

• 𝑴 𝒌 = 𝐦𝐚𝐱 𝒑𝒌, 𝐦𝐚𝐱𝟏≤𝒊≤𝒌−𝟏 𝑴 𝒊 + 𝑴 𝒌 − 𝒊

𝒊 𝒌

Length 𝒊 Length 𝒌 − 𝒊

5

Critical step! Must define what M(k)
means, semantically! COMPUTING SOLUTIONS BOTTOM-UP

• Recurrence: 𝑴 𝒌 = 𝒎𝒂𝒙 𝒑𝒌, 𝐦𝐚𝐱𝟏≤𝒊≤𝒌−𝟏 𝑴 𝒊 + 𝑴 𝒌 − 𝒊

• Compute table of solutions: M[1. . 𝑛]

• Dependencies: entry 𝒌 depends on

• 𝑀[𝑖] → 𝑀[𝟏. . 𝒌 − 𝟏]

• 𝑀[𝑘 − 𝑖] → 𝑀[𝟏. . 𝒌 − 𝟏]

• All of these dependencies are < 𝑘

• So we can fill in the table entries in order 1. . 𝑛

𝑀
1 𝑛𝒌

6

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-09-29

2

Recurrence: 𝑴 𝒌 = 𝒎𝒂𝒙 𝒑𝒌, 𝐦𝐚𝐱𝟏≤𝒊≤𝒌−𝟏 𝑴 𝒊 + 𝑴 𝒌 − 𝒊

Recall, semantically, 𝑀(𝑘) = maximum income for rod of length 𝑘

Time complexity
(unit cost)?

𝚯 𝒏𝟐

7

MISCELLANEOUS TIPS

• Building a table of results bottom-up

is what makes an algorithm DP

• There is a similar concept called memoization

• But, for the purposes of this course,

we want to see bottom-up table filling!

• Base cases are critical

• They often completely

determine the answer

• Try setting f[0]=f[1]=0 in FibDP…

8

DP SOLUTION TO
0-1 KNAPSACK

9

Suppose the
optimal solution

O does not
include this

Then with the O
must achieve the

best possible value
using only items 1-3.

Subproblem: output max
value for ≤ 7kg out of

these three items

Problem: output maximum value
one can get from taking ≤ 7kg,

out of these four items.

This is a smaller
subproblem:

reduced
of items

Let P[i, m] = maximum profit using
any subset of the items 1..i, with weight limit m

If O does not include the camera, then
P[4, 7] = best we can do with the

first three items and weight limit 7kg

Item 4

Item 3

Item 2

Item 1

That is, P[4, 7] = P[3, 7]

What if the camera IS
included in O?

Goal: create recurrence relation to describe
optimal solution in terms of subproblems

Note: P[n, M] (= P[4, 7]) is the optimal profit

10

Suppose the
optimal solution

O includes this

Subproblem: output max
value for ≤ 6kg out of

these three items

Problem: output maximum value
one can get from taking ≤ 7kg,

out of these four items.

This is a smaller
subproblem:

reduced weight
and # of items

Recall: 𝑃 𝑖, 𝑚 = maximum profit using
any subset of the items 𝟏. . 𝒊, with weight limit 𝒎

If O includes the camera, then
𝑃[4, 7] = 𝑝4 + best we can do with the

first three items and weight limit 7kg – w4 = 6kg

Item 4

Item 3

Item 2

Item 1

That is, 𝑃[4, 7] = 𝑝4 + 𝑃[3, 6]

Then with the remaining
7kg – w4 = 6kg, and

items 1-3, O must achieve
the best possible value.

How to evaluate both
possibilities: in & not in O?

11

If O includes the camera, then
𝑃[4, 7] = 𝒑𝟒 + best we can do with the

first three items and weight limit 7kg – w4 = 6kg
𝑃[4, 7] = 𝑝4 + 𝑃[3, 7 − 𝑤4]

If O does not include the camera, then
𝑃[4, 7] = best we can do with the

first three items and weight limit 7kg

𝑃[4, 7] = 𝑃[3, 7]

Recall: 𝑃[𝑖, 𝑚] = maximum profit using
any subset of the items 𝟏. . 𝒊, with weight limit 𝒎

Try both and take the better result! (How?)

𝑃 4, 7 = 𝐦𝐚𝐱{
 𝑃 3, 7 ,
 𝑝4 + 𝑃[3, 7 − 𝑤4]}

𝑃[𝑖, 𝑚] = 𝐦𝐚𝐱{
 𝑃[𝑖 − 1, 𝑚],
 𝑝𝒊 + 𝑃[𝑖 − 1, 𝑚 − 𝑤𝒊]}

In general:

𝑃[𝑖, 𝑚] = 𝑝𝒊 + 𝑃[𝑖 − 1, 𝑚 − 𝑤𝒊]

𝑃[𝑖, 𝑚] = 𝑃[𝑖 − 1, 𝑚]

Note that max{𝑃[𝑖 − 1, 𝑚], 𝑝𝒊 + 𝑃[𝑖 − 1, 𝑚 − 𝑤𝒊]} is only valid if 𝑖 ≥ 2 and 𝑚 ≥ 𝑤𝑖

What to do when 𝑖 = 1 or 𝑚 < 𝑤𝑖? These are special cases.

12

2023-09-29

3

Special case 3: 𝑖 = 1 and 𝑚 < 𝑤𝑖

Since 𝑖 ≤ 1, we can only use item 1.
Since 𝑚 < 𝑤𝑖, we cannot carry item 1.

So, 𝑃 𝑖, 𝑚 = 0.

Special case 2: 𝑖 = 1 and 𝑚 ≥ 𝑤𝑖

Since 𝑖 ≤ 1, we can only use item 1.
Since 𝑚 ≥ 𝑤𝑖, we can carry item 1.

So, 𝑃 𝑖, 𝑚 = 𝑝𝑖.

Special case 1: 𝑖 ≥ 2 and 𝑚 < 𝑤𝑖

Since 𝑚 < 𝑤𝑖, we cannot carry item i.
So, 𝑃 𝑖, 𝑚 = 𝑃 𝑖 − 1, 𝑚 .

General case: 𝑖 ≥ 2 and 𝑚 ≥ 𝑤𝑖

Since 𝑚 ≥ 𝑤𝑖, we can carry item i.
𝑃 𝑖, 𝑚 = max 𝑃 𝑖 − 1, 𝑚 , 𝑝𝑖 + 𝑃 𝑖 − 1, 𝑚 − 𝑤𝑖

13

𝒎-axis (remaining weight limit)

𝒊-axis

(can use
items in 1. . 𝑖)

FILLING THE ARRAY:

0 2 4 … M

1
3

5
…

n

No data
dependencies

on any other
array cells.

Suppose item 1
does not fit until this

𝒎 value (𝑚 = 𝑤1)

𝒘𝟏

14

𝒎-axis (remaining weight limit)

𝒊-axis

(can use
items in 1. . 𝑖)

FILLING THE ARRAY:

0 0 0 0 0 0 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1

… M

1
3

5
…

n

Suppose 𝒎 < 𝒘𝟐

from here
… to here

Data dependency:
need cell above to be

computed already

𝒘𝟏 𝒘𝟐

0 2 4

15

FILLING THE ARRAY:

0 0 0 0 0 0 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1

0 0 0 0 0 0 p1 p1 p1 p1

𝒎-axis (remaining weight limit)

… M

𝒊-axis

(can use
items in 1. . 𝑖)

1
3

5
…

n

Consider this entry
where 𝒎 ≥ 𝒘𝟐

Entry [𝒊 − 𝟏, 𝒎]

Where is slot
[𝒊 − 𝟏, 𝒎 − 𝒘𝒊]?

Data dependency:
need this to be

computed already

So, what value should be
stored in this entry?

max{𝑝1, 𝑝2 + 0}
𝒘𝟐

0 2 4

16

FILLING THE ARRAY:

0 0 0 0 0 0 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1

0 0 0 0 0 0 p1 p1 p1 p1

𝒎-axis (remaining weight limit)

… M

𝒊-axis

(can use
items in 1. . 𝑖)

1
3

5
…

n

max{𝑝1, 𝑝2 + 0}

max{𝑝1, 𝑝2 + 0} max{𝑝1, 𝑝2 + 0}

max{𝑝1, 𝑝2 + 0}

Depending how many zeros we have
in the top row, and how far back

we’re looking, might start to get cells
containing max{𝑝1, 𝑝2 + 𝑝1}

We only ever look at
the previous row!

To satisfy data dependencies,
we can fill entries in the order:

for (𝒊 = 𝟏. . 𝒏), for (𝒎 = 𝟎. . 𝑴)

0 2 4
Would the following fill-order work?

for (𝑖 = 1. . 𝑛), for (𝑚 = 𝑀. . 0)
17

EXERCISE

? What do you think ?

?

𝒎-axis

(weight)

𝒊-axis

(items)

18

2023-09-29

4

EXERCISE

𝒎-axis

(weight)

𝒊-axis

(items)

19

Read & return optimal profit How about the
optimal items?

Recall: To satisfy data dependencies,
we can fill entries in the order:

for (𝒊 = 𝟏. . 𝒏), for (𝒎 = 𝟎. . 𝑴)

20

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O

Start at

optimal

profit

18 > 17, so any

optimal solution

must take item 6

remaining weight = 14

Best profit for

remaining

items + weight

Same profit using
items 1..4 or 1..5.

So, there exists an
optimal solution O

that does not use

item 5! Consider O. Exercise: continue, and determine

which other items are in O

? ? ?

Items
you can

take

weight limit remaining

8 > 6 so O must

take item 4

21

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O

Items
you can

take

weight limit remaining

22

Runtime given 𝑃?

Θ(𝑛)

Is this linear time?

23

More on this soon…

A recursive algorithm

would take ~𝚯 𝟐𝒏 time

DP takes 𝚯 𝒏𝑴 time,
which could be

𝚯 𝒏𝟐𝒏 for huge M

n must be
very small

Huge n is fine, but M should
be in poly(n) to get an

asymptotic improvement

So the DP alg is faster when
there are many item types,

but small weight limit

24

2023-09-29

5

SIMPLIFYING BASE CASES

𝒎-axis (remaining weight limit)

𝒊-axis

(can use
items in 1. . 𝑖)

0 2 4 … M

1
3

…
n

0 0 0 0 0 0 0 0 0

0
2

…
n

0 2 4 … M

𝑃 𝑖, 𝑚 = ቐ
max 𝑃 𝑖 − 1, 𝑚 , 𝑝𝑖 + 𝑃 𝑖 − 1, 𝑚 − 𝑤𝑖 if 𝑖 ≥ 1, 𝑚 ≥ 𝑤𝑖

𝑃 𝑖 − 1, 𝑚 if 𝑖 ≥ 1, 𝑚 < 𝑤𝑖

0 if 𝑖 = 0

For 𝑖 = 1,𝑚 < 𝑤𝑖,
we have 𝑃 𝑖 − 1, 𝑚

which is 0

For 𝑖 = 1,𝑚 ≥ 𝑤𝑖,
we have 𝑝𝑖 + 𝑃 𝑖 − 1, 𝑚 − 𝑤𝑖

which is 𝑝𝑖 + 0

25

We get much simpler code!

Compare:

26

SAVING SPACE

We never look at P[i-2][…].

Just keep two arrays

representing P[i] and P[i-1]

Space complexity changes

from 𝑂(𝑚𝑛) to 𝑂(𝑚)

27

COIN CHANGING

28

There is a
denomination

with unit value!

In 0-1 knapsack, we only considered
two subproblems in our recurrence:

taking an item, or not.

Here we can do more than
use a coin denomination or not.

29

Exploring: some sensible base case(s)?

General case:
What are the different ways we could use coin denomination 𝒅𝒊?

What subproblems / solutions should we use?

OR 𝑡 = 0

Final recurrence relation

30

2023-09-29

6

General case:
What are the different ways we could use coin denomination 𝒅𝒊?

What subproblems / solutions should we use?

Also 𝑵[𝒊, 𝟎] = 𝟎 for all 𝑖

OR 𝑡 = 0

Final recurrence relation

31

Also 𝑵[𝒊, 𝟎] = 𝟎 for all 𝑖

OR 𝑡 = 0

32

FILLING THE ARRAY

𝑁[1 … 𝑛, 0 … 𝑇]:

𝒕-axis (target sum remaining)
0 2 4 … T

𝒊-axis
(coin type)

(recall: 𝑁[𝑖, 𝑡]
uses coin
types 1. . 𝑖)

1
3

5
…

n

No data
dependencies

on any other
array cells.

OR 𝑡 = 0

33

FILLING THE ARRAY

𝑁[1 … 𝑛, 0 … 𝑇]:

0 1 2 3 4 5 6 … T

0

0

0

0

…

0

𝒕-axis (target sum remaining)
0 2 4 … T

𝒊-axis
(coin type)

(recall: 𝑁[𝑖, 𝑡]
uses coin
types 1. . 𝑖)

1
3

5
…

n

No data
dependencies

on any other
array cells.

OR 𝑡 = 0

34

FILLING THE ARRAY

𝑁[1 … 𝑛, 0 … 𝑇]:

0 1 2 3 4 5 6 … T

0

0

0

0

…

0

𝒕-axis (target sum remaining)
0 2 4 … T

𝒊-axis
(coin type)

(recall: 𝑁[𝑖, 𝑡]
uses coin
types 1. . 𝑖)

1
3

5
…

n

Consider cell 𝑵[𝒊, 𝒕]

𝒅𝒊

𝑵[𝒊 − 𝟏, 𝒕 − 𝟎 ⋅ 𝒅𝒊]
𝑵[𝒊 − 𝟏, 𝒕 − 𝟏 ⋅ 𝒅𝒊]𝑵[𝒊 − 𝟏, 𝒕 − 𝟐 ⋅ 𝒅𝒊]

…

We only look at the
previous 𝒊-row!

It is sufficient to fill:
row i=1 (base case), then

for (𝒊 = 𝟐 … 𝒏), for (𝒕 = 𝟎 … 𝑻)

OR 𝑡 = 0

35

using other coin types

𝑱 𝒊, 𝒕 = # of coins of type 𝒅𝒊 used in 𝑁[𝑖, 𝑡]

i.e., using coin 𝑑1 = 1

Compute min{…} over
𝒋 = 𝟎 … 𝒕/𝒅𝒊

36

2023-09-29

7

Exercise for later:
compute the correct output

without using 𝐽 𝑖, 𝑡
(i.e., using only 𝑁, 𝑑, 𝑇)

OUTPUTTING OPTIMAL SET OF COINS

Recall 𝑱 𝒊, 𝒕 = # of coins of type 𝒅𝒊 used in 𝑁[𝑖, 𝑡]

We start at 𝐽 𝑛 𝑇 = # of coins of

type 𝑑𝑛 used in the optimal solution

37

Time complexity?

Unit cost computational
model is reasonable here

Runtime 𝑹 𝑰 ∈ 𝑂 σ𝑖=2
𝑛 σ𝑡=0

𝑇 𝑡

𝑑𝑖

Consider instance 𝐼 = (𝑑, 𝑇)

𝑅 𝐼 ∈ 𝑂 ෍

𝑖=2

𝑛
1

𝑑𝑖
෍

𝑡=0

𝑇

𝑡

𝑅 𝐼 ∈ 𝑂 ෍

𝑖=2

𝑛
1

𝑑𝑖

𝑇 𝑇 + 1

2

𝑹 𝑰 ∈ 𝑶 𝑫𝑻𝟐

where 𝐷 = σ𝑖=2
𝑛 1

𝑑𝑖
< 𝑛.

38

If T is small, this is much

better than brute force

POLYNOMIAL TIME

• An algorithm runs in (worst case) polynomial time IFF
its runtime 𝑅 𝐼 on every input is upper bounded by a
polynomial in the input size S

• I.e., 𝑅 𝐼 ∈ 𝑂 𝑐0 + 𝑐1𝑆 + 𝑐2𝑆2 + 𝑐3𝑆3 + ⋯ + 𝑐𝑘𝑆𝑘

for constants 𝒌 and 𝒄𝟎, … , 𝒄𝒌

• … so is 𝑂(𝑛𝑇2) polynomial in our input size 𝑆?

39

INPUT SIZE

• 𝑆 = 𝑏𝑖𝑡𝑠 𝑇 + 𝑏𝑖𝑡𝑠 𝑑1 + ⋯ + 𝑏𝑖𝑡𝑠 𝑑𝑛

• It takes ⌈𝐥𝐨𝐠𝟐 𝑻⌉ bits to store 𝑇

• It takes 𝐥𝐨𝐠𝟐 𝒅𝒊 bits to store each 𝑑𝑖

• Assume 𝒅𝒊 ≤ 𝑻 (otherwise 𝒅𝒊 cannot be used at all,
and should be omitted from the input)

• Then we have log2 𝑑𝑖 ∈ 𝑂(log 𝑇)

• So, 𝑺 ∈ 𝑶(𝒏 𝐥𝐨𝐠 𝑻)

40

COMPARING 𝑇(𝐼) TO 𝑆

• Recall 𝑹 𝑰 ∈ 𝑶(𝒏𝑻𝟐) and 𝑺 ∈ 𝑶 𝒏 𝐥𝐨𝐠 𝑻

• As an example, if 𝑛 is fixed at 10 and 𝑇 is allowed to vary,

then 𝑺 ∈ 𝐎 𝐥𝐨𝐠 𝑻 and 𝑹 𝑰 ∈ 𝑶 𝑻𝟐

• In this case, 𝑅(𝐼) is exponential in 𝑺

• However, if 𝑇 is fixed at 10 and 𝑛 is allowed to vary,
then 𝑺 ∈ 𝑶(𝒏) and 𝑹 𝑰 ∈ 𝑶(𝒏)

• In this case, 𝑅(𝐼) is linear in 𝑺

• So, large 𝒏 and small 𝑻 is where this DP solution shines!

41

A BIT MORE ANALYSIS

• Recall 𝑹 𝑰 ∈ 𝑶(𝒏𝑻𝟐) and 𝑺 ∈ 𝑶 𝒏 𝐥𝐨𝐠 𝑻

• If 𝑻 ∈ 𝑶(𝒏), then 𝑆 ∈ O(𝑛 log 𝑛) and 𝑅 𝐼 ∈ 𝑂(𝑛3)

• Note 𝑂(𝑛3) is a smaller runtime than 𝑂 𝑺𝟑 = 𝑂(𝑛3 log 𝑛)

• And 𝑆3 is polynomial in 𝑺, so 𝑂 𝑛3 is a polynomial runtime

• So, for some inputs with relatively small T,
we can get polynomial runtimes!

• In particular, for 𝑻 ∈ 𝑶(𝒏𝒌) where 𝒌 is constant,

𝑅 𝐼 ∈ 𝑂 𝑛 𝑛𝑘 2
= 𝑂(𝑛2𝑘+1) and 𝑆 ∈ 𝑂 𝑛 log 𝑛𝑘 = 𝑂 𝑛 log 𝑛

• And 𝑅 𝐼 ∈ 𝑂 𝑛2𝑘+1 ⊆ 𝑂 𝑛 log 𝑛 2𝑘+1 = 𝑂(𝑆2𝑘+1)

42

