CS 341: ALGORITHMS

Lecture 8: dynamic programming Il
Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

DYNAMIC PROGRAMMING APPROACH

High level idea (can just think recursively to start)
Given arod of length n

Either make no cuts,
or make a cut and recurse on the remaining parts

T T T D)~ neomer,]
(D) (I T T T T~ reometet sncometugo |

Where should we cut?

RECURRENCE RELATION Z e e aeam)

Define M (k) = maximum income for rod of length k

If we do not cut the rod, maxincome is py,
Ifwe do cut arod at i

CIIID) QLTI

max income is M(i) + M(k — i)

Want to maximize this over all i
max{M@+Mk-D} (foro<i<k
M(k) = max{p;, max; -1 (M(©D) + M(k — D}

2023-09-29

ROD CUTTING
A “REAL" DYNAMIC PROGRAMMING EXAMPLE
Input:

n: length of rod E — -
P, -, Pn: p; = price of arod of length i
Output:

Max income possible by cutting the rod of length n
into any number of integer pieces (maybe no cuts)

arod of length 4
,

Example output: 10

DYNAMIC PROGRAMMING APPROACH

Try all ways of making that cut
l.e., try a cut at positions 1,2,...,n — 1
In each case, recurse on two rods [0, i] and [i, n]
Take the max income over all possibilities (each i / no cut)
=t QOOIIIIIIIT) [opimossce
=2 ()TN TITI0T) fock wishes{ andm
CIOTTIITIIIT)

i=3

... Ismax income we can
coe get from the rod size i

vnt (TN O [esneemenecan

get from the rod size n — i

4

COMPUTING SOLUTIONS BOTTOM-UP

Recurrence: M(k) = max{p;, max, ;<1 {M() + M(k — D)}

Compute table of solutions: M[1..n]
MOt i+ L LI L
1

n

Dependencies: entry k depends on -
MIi] > M[1..(k-1)]
Mlk—i] > M[1..(k—1)]
All of these dependencies are < k
So we can fillin the table entries in order 1..n

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

1
2
3
4
5
L]
7
8

9
10
n
12

optimal solution
O includes this

Then with the remaining

. 7kg - w, = 6kg, om_i Item 2 |
items 1-3, O must achieve . Recall: P[i,m] = maximum profit using
the best possible valve. Vi iooos any subset of fhe items 1...i, with weight imit m

Recall, semantically, M(k) = maximum income for rod of length k
Recurrence: M(k) = maX(Pk, maxy <1 {M() + M(k -)}

RodCutting(n, p[1..n])
= new array[1..n]

1" :umpute Each entry M[k]
for k =
M[k] = [k] // current best = no cuts

(k-1)

/7 try each cut in 1..
)

return M[n]

DP SOLUTION TO
0-1 KNAPSACK

Problem: output maximum value
ltem 4 one can get from taking € 7kg,
Welght: 1ig out of these four items.

Suppose the

This is a smaller
subproblem:
reduced weight
and # of items

Subproblem: output max
value for £ ékg out of
these three items

2023-09-29

MISCELLANEOUS TIPS

Building a table of results bottom-up
is what makes an algorithm DP

There is a similar concept called memoization

But, for the purposes of this course,
we want to see bottom-up table filling!

Base cases are critical

They often completely
determine the answer

Try setting f[0]=f[1]=0in FibDP...

e Problem: output maximum value
[supposethe L "Q(T_:_ one can get from taking € 7kg.
- - Weight: 1 ke out of these four items.
optimal solution Ve 10088 g
O does not L . I
include this Subproblem: output max This is a smaller

Item 3

W ahe value for £ 7kg out of subproblem
reduced

— > these three items et

T
Goal: create recurrence relation fo describe
optimal solution in terms of subproblems
Let P[i, m] = maximum profit using
any subset of the items 1.1, with weight limit m
Note: P[n, M] (= P[4, 7]) is the optimal profit

T

Then with the O
must achieve the
best possible value
using only items 1-3.

Item 1

Wehe: 3 ke If O does not include the camera, then

S P[4, 7] = best we can do with the
What if the camera IS first three items and weight limit 7kg

included in 0? Thatis, P[4, 7] =P[3, 7]

Recall: P[i,m] = maximum profit using
any subset of the items 1.. i, with weight limit m

In general:

P[4,7] = bestwe can do with the P[4,7) = P[3,7)

Pli,m] = P[i —1,m]
first three items and weight imit 7kg

’ If O does not include the camera, then ‘

If O includes the camera, then
7] = p, + best we can do with the

P[4, P[4,7] = p,+ P[3,7 —w,]
first three items and weight limit 7kg - w, = ékg

Pliym] = p+ Pli — 1,m —w,] ‘

\f O mc\udes the camera, then
4+ best we can do with the
first mree Ilems and weight limit 7kg - w, = 6kg

That s, P[4,7] = p, + P[3.6]

tom1 w
How to evaluate both l
L possibilities: in & notin 02

P[4,7] = max{ Pli,m] = max{
Try both and take the better result! (How?) P[3,7), [i—1,m],
PatP[3,7 - wil} pi+ Pli=1Lm—w]}

‘ Note that max{P[i — 1,m],p; + P[i —1,m —w,]}is only valid if i = 2 and m = w; ‘

| What fo do when i = 1 or m < w;2 These are special cases. |

Generalcase: i > 2.and m = w; Special case 1:i > 2 and m < w;

Since m > w;, we can carry item i.
P[i,m] = max{P[i — 1,m],p; + P[i — 1, m —w;]}

Since m < w;, we cannot carry item i.
So, P[i,m] = P[i —1,m].

Specialcase2:i =1andm=w; Specialcase 3:i =1 andm < w;

Since i < 1, we can only use item 1.
Since m < w;, we cannot carry item 1.
So, Pli,m] = 0.

Since i < 1, we can only use item 1.
Since m = w;, we can carry item 1.
so, Pli,m] = p;.

Recurrence Relation:

max{Pli — 1,m],pi + Pli—1,m—uwy|} ifi>2 m>w

Plim] = Pli—1,m] lh >2,m<wy
il ifi=1m=u
0 ifi=1,m<w.
n
(max{Pli — L, ml.pi + Pli — Lm—wi]} ifi>2 m>um
FILLING THE ARRAY: , [#i-im Fistmen
B ™ Fi=Tmsu
Supposem < w; 0 ifi=1m<m.

from here

UL O
EEEEEEEEEE

Data dependency:

L-axis o need cell above to be
(can use computed already
itemsin 1..i)

L
1
4
M-axis (remaining weight limit)

max{Pli — Lm|,pi + Pli — L,m —w]} ifi>2 m=>u

FILLNG THE ARRAY: . S
Wi=1,m>u

L-axis We only everlook at max{py,pz + 0} | max{p;,p, + 0}
(can use the previous row!
ifemsin 1..7) Depending how many zeros we have

in the top row, and how far back
we're looking, might start fo get cells
containing max(py,p, + p1}

To safisfy data dependencies,
we can fill entries in the order:
for (i = 1..n), for (m = 0..M)

Would the following fill-order work?

L
T
4

for (i = 1..n), for (m = M..0) M-axis (remaining weight limit)

2023-09-29

max{Pli — 1,m],pi + Pli—1,m—w]} fiz2 mzu
Pli—1,m] ifiz2m<u
ifi=1,

m>w

No data
dependencies

on any other
array cells.

. . Suppose item 1
L-axis o does not fit until this

(can use m value (m = wy)
itemsin 1..i)

M-axis (remaining weight limit)

"

|[nmxu=[,' —Lmlpi+ Pli— Lm—w]} ifi>2m>u

FILLING THE ARRAY: ifp_l.mj e
N m ifi=1,m>u
0 ifi=1,m<w

L-axis need this to be
(can use [computed already

itemsin 1.1
J So, what value should be
stored in this entry?2

M-axis (remaining weight limit)

max{Pli—1,m],p; + Pli—1,m—w} ifi>2 m>uwuy

EXERCISE ! ;

Suppose we have profits 1,2,3,5,7, 10, weights 2,3,5,8,13, 16, and
capacity 30.

=2, m<w;

The following table is computed: m-axis
(weight)
01234656789 101112 13 14 15 16 17 18 19 20 21 22 23 24 256 26 27 28 29 30
1 0011111111 11 1 11 11
. 2 0012233333333333,4
Y] 3| 001223345856 8 6 6 & & 6[7
L-axis }
T 5
(items) 2
P[3,16] =l 2 What do you think ?

max{Pli — 1,m],p; + Pli — Lm —w]} fi>2m>uw

EXERCISE

Pli—1,m] ifiz2, m<uy
Suppose we have profits 1,2,3,5,7, 10, weights 2,3, 5.8, 13, 16, and
capacity 30.

The following table is computed: m-axis

(weight)

|0123456759|0111213141516[7l5192021n232425262729?930

1o011111111 111 1111111111111 11111

. 2|0012233333 3 33333333333 333333333

l_OxisSDBI’ZZSSQEEEEEEEEEE!EEGGGGSBEEEE

4 0012233455 6 7 7 8 8 910 10 11 11 11 11 11 11 11 11 14 11 11 11 14

(”’ems) 5 0012233466 6 7 7 B B 510 10 11 11 11 12 12 13 14 14 16 16 16 17 17
PO I A A i .

------ 18

[3,16] = max{P[2.16], P[2,11] + 3} = max{3,3 + 3} = 6.

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O
The optimal solution is computed by tracing back through the table.

For the previous example, consisting of profits 1,2,3,5,7, 10, weights
2,3,5,8,13,16, and capacity 30, the optimal solution i

weight limit remaining

0123456789 10111213 14 15 16 17 18 19 20 21 22 23 24
T[oottt11111 1 1 1 1 1 1111111111
fems 5 | 0012233333 33 3333333333333
youcan 5 | 0012233455 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
fake [4]| 00122334556 6 7_2-F 8 910 10 11 11 11 11 11 11 11
001223345658 2 T 8 910 10 11 11 11 12 12 13 14

ame profit using

items1..40r1.5.
So, there exists an
optimalssolution O
that does not use
item 5! Consider O.

8> 650 O must
fake item 4

Best profit for
remaining
items + weight

18 > 17, so any
optimalsolution
must fake item 6

profit

remaining weight = 14

Exercise: continue, and defermine
which other items are th O

2023-09-29

max(Pli — Lomlp + Pli - Lm =]} ifi>2m>w
Wiz 2m<

ifi=1m>=w

Recall: To satisfy data dependencies,
we canfill entries in the order:

. Pli—1,m]
Pliym)={ " !
for (i = 1..n), for (m = 0..M) n

0 ifi=1,m<w.

Knapsack01(p[1..n], W(1..n], M)
3

= new table[1..n][0..M]

// base cases where i=1
form =0
if m < w[1] then
P{11[m] = O
else
Pl11[m] = p[1]

/1 general cases where i>=2
for n

1=2.

if m < w[i] then
P[i][m] = P[i-1][m]

se
Pli][m] = max(P[i-1][m],

1

2

3

4

5

6

7

8

9

10

"

12

13 for m = 0.4

14

15

16

17 1
18 pli] + P[i-1][m-w[i]])
19

20

return P[n)[“l% Read & return optimal profit

How about the
optimal ifems?

OUTPUTTING CONTENTS OF THE OPTIMAL KNAPSACK O
The optimal solution is computed by tracing back through the table.

For the previous example, consisting of profits 1,2,3,5,7, 10, weights
2,3,5,8,13,16, and capacity 30, the optimal solution is [1,1,0,1,0,1].

weight limit remaining

| 0123456789 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 36 27 28 29 30
T[ooftii1111t1 1 1 1 1 1 1111311111311 11111
ems 5 [0012233333 3 3 33 33333333333333333
youcan 53 | 0012233455 6 6 6 6 6 6 6 6 6 6 6 6 6 6 66 666 6 6
fake 4 [0012233455 6 7 7 8 8 910 10 11 11 11 11 11 11 11 11 11 11 11 11 11
50012233455 6 7 7 8 8 91010 11 11 11 12 12 13 14 14 15 15 16 17 17

6| -----2--20 S Lo Lo oo LTTT

- -18

Complexity of the Algorithm
So the DP alg is faster when
there are many item types,

Suppose we assume the unit cost model, so additions / subtractions take but small weight limit

time O(1)
2 Z Huge n s fine, but M should
The complexity to construct the table is ©(nM) be in poly(n) fo get an

1 Knapsack01_Items(p[1..n], w[1..n], M, P)

2 x = new array[1..n]

3 i=n

4 m=MW

s
6 while i > 1

: R g e [o]
: R [oo]
‘: Elsei Sl Is this linear ime?
12 m=m - w[i]

13 i=1i-1

14

15 x[1] = (P[i][m] > 0) ? 1 : 0

16 return x

Is this a polynomial
problem instance?

We have

size(l) = logy M + Y logy wi + Y logy pi-
i=1 i=1

Note in particular that M is exponentially large compared to log, M. So
constructing the table is not a polynomial-time algorithm, even in the unit

cost model

What would the complexity of a recursive algorithm be?

me algorithm, as a function of the size of the

asymptotic improvement

DP takes ©(nM) time,
which could be
0(n2") for huge M

n must be

very small

A recursive algorithm
would take ~0(2") time

SIMPLIFYING BASE CASES ,,U,m]:{?{;‘S"{‘,;f»'"“'“’“*1»'"*%” fiztmzw
0 0

max{Pli - Lom],ps 4 Pli - Lm—wi} ifi>2m>w

Pli,m) =
n
o

Pli—1,m iz meuy

W= Llomzw

ifi=1m<uw

°
~
L-axis Iy
(can use
i i i Fori=1mz=w;
itemsin 1..1) we have p;+Pli — 1,m — w;]
s which is p; +0
L L L L L L
T | S — >
4 M 0 2 4 - M
M-axis (remaining weight limit) P

47 Knapsack01(p[1..n], w[1..n], M)
SAVlNG SPACE z P = new table[0..n][0..M] containing zeros

3

4 for L =1..n

5 for m = 0.8

6 if m < wi] then

7 PLiI(m] = PLi-1](m]

]

0 PLi1(m] = max(P[i-1][m],

o pLil + PLL-11[m-w[11])

7

Knapsack01(p[1..n]1, w[1..n]

We never look at P[i-2][...].
Just keep two arrays
representing P[i] and P[i-1]

Pprev = new array[0. ‘M]'contalning zeros
P = new array[0..M] containing zeros

for i = 1.

.n
swap P and Pprev
for m = 0..M
if m < w[i] then
P[m] = Pprev[m]

Space complexity changes
from 0(mn) to 0(m)

else
P[m] = max(Pprev[m], p[i] + Pprev[m-w[i]])

return P[M]

Thereis a
denomination
with unit value!

Coin Changing

Problem 5.2
Coin Changing
Instance: A list of coin denominations, 1

dyyidy, ... dy, and a

positive integer T', which is called the target sum
Find: An n-tuple of non-negative integers, say A = [ay....,a.}, such
that T = Y7, a;d; and such that N = 37", a; is minimized.

In 0-1 knapsack, we only considered
What subproblems should be considered? two subproblems in our recurrence:
taking an item, or not.

What table of values should we fill in?
Here we can do more than

use a coin denomination or not.

1
2
3
4
B
6
7
8

9
10
"
12

Knapsack01(p[1..n1, w[1..n], M)
P = new table[0..n][0..V] containing zeras

for i =1..n
for m= 0.4
if m o< Wi

1 then

:

else
Pri][m] = max(P[i-1][m],
Pl + PLi-11[m-w(i]])

return P(n][M]

Knapsacko(pl| n1, WLl a1
e 100..41

e table(} r)(0

11 base casas whacs =1
forme o

< wii] then
Pr1)in] = 0

else
Pr1im] = pL1T

14 gemeral cazes where i1
I

'
H
3
H
5
i
7
0
5
0
bl
f feri-
n
u
1
18
"
"
"

Feturn Pin] (4]

COIN CHANGING

Pli)(m) = maxPli-1

2023-09-29

Pli-1](n-w(4)))

2

Let N|i,t] denote the optimal solution to the subproblem consisting of

the first i coin denominations d,...,d; and target sum t.

Exploring: some sensible base case(s)2

General case:

What subproblems / solutions should we use?

What are the different ways we could use coin denomination d;2

Final recurrence relation

2023-09-29

Let N[i,t] denote the optimal solution to the subproblem consisting of Let N[i,t] denote the optimal solution to the subproblem consisting of

the first i coin denominations dy,...,d; and target sum . " - the first i coin denominations dj,...,d; and target sum t. N N
Since d; = 1, we immediately have N([1,t] =t for all t. Since dy = 1, we immediately have N[1,¢] =t for all t.
For i > 2, the number of coins of denomination d; is an integer j where
General case: 0<j<|t/di).
What are the different ways we could use coin denomination d,;2 g i o i
What subproblems / solutions should we use? If we use j coins of denomination d;, then the target sum is reduced to
t — jd;, which we must achieve using the first i — 1 coin denominations.

Thus we have the following recurrence relation:
Final recurrence relation —— min{j + N[i — 1,t — jdi] :0< j < |t/di]} ifi>2
[i,4] = ¢ ifi=1ORt=0
2

FILLING THE ARRAY
N[1..7,0..T]:

No data
dependencies
on any other
array cells.

FILLING THE ARRAY N[it]={m\n{]-l—N[l—Lt—jdi]‘DSjSlz,id.-” ifiz2
N[1..n,0..T]: ol i1,

ORt=0
No data
dependencies
on any other
array cells.

i-axis i-axis

(coin type) (coin type)
(recall: N[i, t] (recall: N[i, t]
uses coin uses coin
types 1..i) types 1..i)
L L L L L L L
5 .!. T T T T 5
t-axis (target sum remaining) t-axis (target sum remaining)
= u
FlLLlNG THE ARRAY Nivt] = Imin[j + Nli— 1,8 —jdi] : 0 < j < [tfd;]} fi=2 | inChangingDP(d{1. n], T) N[it] = {iniu(i+N[x' —1,t—jdi]:0 < j < |t/di]} :::i T
N 1 0 T . " lc Ti=1. N ~ new table[l .n]l0..T] -
[..n 0.]. ORt=0 3 = new table[l..n][0..T]
Ntoer Do et
NE1)(t] = ¢

L] - ¢t % J1i, t] = # of coins of type d, used in N[i, t] ‘

fori=2.n // general cases using other coin types

i-axis fort=0..T
(coin type) // initially best solution is @ of d[i
N{EJ[t] = N(3-117t]
(recall: N[i, t] HELE)
uses coin 4/ t;y 320 ::an of t:;[‘: dti]
i Itis sufficient to fill: for j = 1..floor(t / 1)
types 1..i) if § + N[-1][t-§7d[i]] < N[il(t]

rowi=1 (base case), then
. N[i][t] = j + N[i-1][t-j*d[i]]

J(41[t] = § // best is currently j of d[i]

return N[n][T] // can also return N, J

t-axis (target sum remaining)

OUTPUTTING OPTIMAL SET OF COINS

f
2
3
4
5
(]
7
8

CoinChangingDP_coins(d[nl, JI n][0..T1)
counts = new array[1..n]

t=T

for i =n.. . N . .
counts[i] = J[i][t] Recall J[i,t] = # of coins of type d; used in N[i, t]

t =t - counts[i]*d[i] We start at J[n][T] = # of coins of

type d, used in the optimal solution

return counts

Exercise for later:
compute the correct output
without using J[i, t]
(i.e.,usingonly N, d, T)

POLYNOMIAL TIME

An algorithm runs in (worst case) polynomial time IFF
its runtime R(I) on every input is upper bounded by a
polynomialin the input size S

l.e., R(D) € 0(co + €15 + c35% + ¢38% + -+ + ¢,.S¥)
for constants k and cy, ..., ¢x

... s0is 0(nT?) polynomialin our input size S2

COMPARING T(I) TO §

Recall R(I) € 0(nT?) and S € 0(nlogT)
As an example, if n is fixed at 10 and T is allowed to vary,
then S € 0(log T) and R(I) € 0(T?)

In this case, R(I) is exponentialin §

However, if T is fixed at 10 and n is allowed to vary,
then S € 0(n) and R(I) € O(n)

In this case, R(I) is linearin §
So, large n and small T is where this DP solution shines!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

2023-09-29

. .
CoinChangingDP(d[1, T Time complexity?
N« new table[l n]0. T] ———————
3 = new table[l. .n][| Unit cost computational

model is reasonable here

for t = // base cases where i=1
NELI(t] < t Considerinstance I = (d, T)
L] - ¢ L
Runtime R(D € 0 (5,570)
for i // general cases N el 13 V8
for t T w7
ly best solution is 0 of d[i] R €O ZLZ:
] = N{i-1][t] Ldiky

d)e)

// try 3>0 coins of type dli]
for j = 1.1 (t / dl[i])
if § + N[i-1][t-j*d[3]] < N{i)(t]
Nil[t] = j + N[i-1]0t-j*d[i]]
J(41[t] = § // best is currently j of dli]

meo($3(752)
=

R(I) € 0(DT?)
where D = Zf‘:zi <n.

return N[nl[T] // can alsa return N, J
If Tis small, this is much

better than brute force

INPUT SIZE

S = bits(T) + bits(d,) + - + bits(d,)
It takes [log, T bits to store T
It takes [log, d;] bits to store each d;

Assume d; < T (otherwise d; cannot be used at all,
and should be omitted from the input)

Then we have [log, d;] € 0(log T)
So, S € 0(nlogT)

A BIT MORE ANALYSIS

Recall R(I) € 0(nT?) and S € O(nlogT)

IfT € 0(n), then S € O(nlogn) and R(I) € 0(n®)
Note 0(n?) is a smaller runtime than 0(8%) = 0(n®logn)
And $3 is polynomialin S, so 0(n®) is a polynomial runtime

So, for some inputs with relafively small T,
we can get polynomial runtimes!

In particular, fozr T € 0(n*) where k is constant,
R(DEO (n(n")) = 0(n?*1) and S € 0(nlogn*) = 0(nlogn)

And R(1) € 0(n?**1) € 0 ((nlogn)?*1) = 0(s2K+1)

