
CS 341: ALGORITHMS
Lecture 9: dynamic programming III

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

• Input: 𝑛 points 𝑞1, … , 𝑞𝑛 in 2D space

that form a convex 𝑛-gon 𝑃

• Assume points are sorted clockwise

around the center of P

• Find: a triangulation of 𝑃 such that the sum of the

perimeters of the 𝑛 − 2 triangles is minimized

• Output: the sum of the perimeters of the triangles in 𝑃

PROBLEM: MINIMUM LENGTH TRIANGULATION

𝑞1

𝑞2 𝑞3

𝑞4

𝑞5

𝑞6𝑞7

2

HOW HARD IS THIS PROBLEM?

How many triangulations are there?

Number of triangulations of a convex
𝑛-gon = the 𝒏 − 𝟐 nd Catalan number

This is 𝐶𝑛−2 =
1

𝑛−1

2𝑛−4
𝑛−2

It can be shown that

𝐶𝑛−2 ∈ Θ(𝟒𝒏/ 𝑛 − 2 3/2)

3

PROBLEM DECOMPOSITION

𝒒𝟏

𝑞2 𝑞3

…

𝒒𝒏−𝟏
𝒒𝒏

4

PROBLEM DECOMPOSITION

𝒒𝟏

𝑞2 𝑞3

…

𝒒𝒏−𝟏
𝒒𝒏

(1)

𝒒𝒌

5

PROBLEM DECOMPOSITION

𝒒𝟏

𝑞2 𝑞3

…

𝒒𝒏−𝟏
𝒒𝒏

(1)

𝒒𝒌(2)

6

PROBLEM DECOMPOSITION

𝒒𝟏

𝑞2 𝑞3

…

𝒒𝒏−𝟏
𝒒𝒏

(1)

𝒒𝒌(2)

 (3)

7

PROBLEM DECOMPOSITION

𝒒𝟏

𝑞2 𝑞3

…

𝒒𝒏−𝟏
𝒒𝒏

(1)

𝒒𝒌(2)

 (3)

8

PROBLEM DECOMPOSITION

𝒒𝟏

𝑞2 𝑞3

…

𝒒𝒏−𝟏
𝒒𝒏

(1)

𝒒𝒌(2)

 (3)
𝒒𝒏

𝒒𝟏

𝒒𝒌

𝒒𝒌

9

RECURRENCE RELATION
• Let 𝑆(𝑖, 𝑗) = optimal solution to the subproblem

consisting of the polygon with vertices 𝑞𝑖 … 𝑞𝑗

• Let Δ𝑖𝑗𝑘 denote perimeter()

• If a given triangle 𝒒𝒊,𝒒𝒋,𝒒𝒌 is in the optimal solution,

then 𝑆(𝑖, 𝑗) = 𝑆(𝑖, 𝑘) + Δ𝑖𝑗𝑘 + 𝑆(𝑘, 𝑗)

𝒒𝒋

𝒒𝒊

𝒒𝒌

𝒒𝒊

𝑞𝑖+1
…

𝑞𝑘+1

…
𝒒𝒋

𝚫𝒊𝒋𝒌

𝒒𝒌𝑺(𝒊, 𝒌)

 𝑺(𝒌, 𝒋)

10

RECURRENCE RELATION
• But we don’t know the optimal 𝑘

• Minimize over all 𝒌 strictly between 𝒊 and 𝒋

𝑆(𝑖, 𝑗) = ൝
min

𝑖<𝒌<𝑗
𝑺(𝒊, 𝒌) + 𝚫𝒊𝒋𝒌 + 𝑺(𝒌, 𝒋) if j ≥ i + 2

0 otherwise

𝒒𝒊

𝒒𝒋

𝒌 = 𝒊 + 𝟏 𝒌 = 𝒊 + 𝟐

𝒌 = 𝒋 − 𝟏

𝑺(𝒊, 𝒌) = 𝟎

𝑺(𝒌, 𝒋) = 𝟎

𝑺(𝒌, 𝒋)
𝑺(𝒊, 𝒌)

𝑺(𝒊, 𝒌)

𝑺(𝒌, 𝒋)

…

11

FILLING IN THE TABLE

• Table 𝑆 1. . 𝑛, 1. . 𝑛 of solutions to 𝑆(𝑖, 𝑗) for all 𝑖, 𝑗 ∈ {1. . 𝑛}

+𝒋

+𝒊

𝑆(𝑖, 𝑗) = ൝
min

𝑖<𝒌<𝑗
𝑺(𝒊, 𝒌) + 𝚫𝒊𝒋𝒌 + 𝑺(𝒌, 𝒋) if j ≥ i + 2

0 otherwise

𝒋 = 𝒊 + 𝟐

0 … 0 𝑗 ≥ 𝑖 + 2

𝑆[𝑖, 𝑗]

𝑆 𝒊, 𝒊 + 𝟏 … 𝑆[𝒊, 𝒋 − 𝟏]

𝒋 = 𝒊

𝑆[𝒊 + 𝟏, 𝒋] … 𝑆[𝒋 − 𝟏, 𝒋]

Dependencies:

𝑆[𝑖, 𝑘] and 𝑆[𝑘, 𝑗]
For 𝑘 = (𝑖 + 1) … (𝑗 − 1)

𝑆[𝑖, 𝑘]:

𝑆 𝑘, 𝑗 :

We depend on larger 𝒊
And same 𝒊 but smaller 𝒋

What’s a correct fill order?

for 𝒊 = 𝒏. . 𝟏, for 𝒋 = 𝟏. . 𝒏 12

RUNTIME
WORD RAM MODEL

• Number of subproblems: 𝑛2

• Time to solve subproblem 𝑆(𝑖, 𝑗): 𝑂 𝑗 − 𝑖 ⊆ 𝑂(𝑛)

• So total runtime is in 𝑂 𝑛3

• Some effort needed to show Ω 𝑛3 , since so many

subproblems are base cases, which take Θ(1) steps

• Incidentally, this is polynomial time (in the input size)

• But basic runtime analysis

does not require such an argument

𝑆(𝑖, 𝑗) = ൝
min

𝑖<𝒌<𝑗
𝑺(𝒊, 𝒌) + 𝚫𝒊𝒋𝒌 + 𝑺(𝒌, 𝒋) if j ≥ i + 2

0 otherwise

13

PROBLEM: LONGEST COMMON

SUBSEQUENCE (LCS)

Let’s first solve for the length of the LCS
14

EXAMPLES

• X=aaaaa Y=bbbbb Z=LCS(X,Y)=?

• Z=𝜖 (empty sequence)

• X=abcde Y=bcd Z=LCS(X,Y)=?

• Z=bcd

• X=abcde Y=labef Z=LCS(X,Y)=?

• Z=abe

15

POSSIBLE GREEDY SOLUTIONS?

• Alg: for each 𝑥𝑖 ∈ 𝑋, try to choose a matching 𝑦𝑗 ∈ 𝑌
that is to the right of all previously chosen 𝑦𝑗 values

• X=abcde Y=labef

• X=abcde Y=labef

• X=abcde Y=labef [no suitable 𝑦𝑗 found]

• X=abcde Y=labef [no suitable 𝑦𝑗 found]

• X=abcde Y=labef

• Z=abe Optimal?

16

POSSIBLE GREEDY SOLUTIONS?

• Alg: for each 𝑥𝑖 ∈ 𝑋, try to choose a matching 𝑦𝑗 ∈ 𝑌
that is to the right of all previously chosen 𝑦𝑗 values

• X=azbracadabra Y=abracadabraz

• X=azbracadabra Y=abracadabraz

• X=azbracadabra Y=abracadabraz [no 𝑦𝑗 after z]

• X=azbracadabra Y=abracadabraz [no 𝑦𝑗 after z]

• …

• Z=az Optimal?

Similar greedy alg that goes

right-to-left works for this input,

but fails for other inputs.

Blindly taking z is bad.

How to decide whether

to take or leave z?

Try both possibilities!

(Brute force / dynamic

programming)

17

DEFINING SUBPROBLEMS

• Full problem: |𝐋𝐂𝐒 𝑿, 𝒀 | (i.e., length of LCS)

• Reduce size by taking prefixes of 𝑋 or 𝑌

• Let 𝑿𝒊 = (𝒙𝟏, … , 𝒙𝒊) and 𝒀𝒊 = (𝒚𝟏, … , 𝒚𝒊)

• Note 𝑋 = 𝑋𝑚 and 𝑌 = 𝑌𝑛

• Subproblem: 𝐋𝐂𝐒 𝑿𝒊, 𝒀𝒋

• Shrinking the problem: remove the last letter of 𝑋 or 𝑌

𝑿𝒎 𝑥1 𝑥2 𝑥3 𝑥4 … 𝑥𝑚−1 𝑥𝑚

𝑿𝟒 𝑥1 𝑥2 𝑥3 𝑥4

18

Neither of these is

part of 𝑍

𝒀 a z b r a c a d a b

𝒁 a b r a c a

BUILDING SOLUTIONS FROM SUBPROBLEMS
EXAMPLE #1 TO BUILD INTUITION

𝑿 a b r a c a z z

𝑥1 𝑥2 𝑥3 𝑥4 … 𝑥𝑚−1 𝑥𝑚

𝑦1 𝑦2 𝑦3 𝑦4 … 𝑦𝑛−1 𝑦𝑛

𝑿𝒎−𝟏

𝒀𝒏−𝟏

𝑧1 𝑧2 𝑧3 … 𝑧ℓ−1 𝑧ℓ

Consider optimal

solution 𝒁 = 𝐋𝐂𝐒(𝑿, 𝒀)

This cannot be

the final a in 𝑍

Since 𝑍 is a subsequence of 𝑋,

𝒛ℓ = a must appear in 𝑿𝒎−𝟏

This cannot be

the final a in 𝑍

𝒛ℓ = a must be in 𝒀𝒏−𝟏

Neither of these is

part of 𝑍

Since 𝑥𝑚, 𝑦𝑛 ∉ 𝑍 we know 𝒁 = 𝐋𝐂𝐒(𝑿𝒎−𝟏, 𝒀𝒏−𝟏)
19

𝒀 a z b r a c a d a b

𝒁 a b r a c a

BUILDING SOLUTIONS FROM SUBPROBLEMS
EXAMPLE #2

𝑿 a b r a c a z a

𝑥1 𝑥2 𝑥3 𝑥4 … 𝑥𝑚−1 𝑥𝑚

𝑦1 𝑦2 𝑦3 𝑦4 … 𝑦𝑛−1 𝑦𝑛

𝒀𝒏−𝟏

𝑧1 𝑧2 𝑧3 … 𝑧ℓ−1 𝑧ℓ

This might be the

final a in 𝑍

Since 𝑍 is a subsequence of 𝑌,

𝒛ℓ = a must appear in 𝒀𝒏−𝟏

But this certainly

is not :)

Since 𝑦𝑛 ∉ 𝑍 we know 𝒁 = 𝐋𝐂𝐒(𝑿, 𝒀𝒏−𝟏)

Or maybe this is

Case 𝒙𝒎 ∉ 𝒁, 𝒚𝒏 ∈ 𝒁

is symmetric

𝑍 = 𝐿𝐶𝑆(𝑿𝒎−𝟏, 𝑌)
20

𝑧1 𝑧2 𝑧3 𝑧4 … 𝑧ℓ−1 𝑧ℓ

𝒁 a b r a c a a

𝒀 a z b r a c a d a a

BUILDING SOLUTIONS FROM SUBPROBLEMS
EXAMPLE #3

𝑿 a b r a c a z a

𝑥1 𝑥2 𝑥3 𝑥4 … 𝑥𝑚−1 𝑥𝑚

𝑦1 𝑦2 𝑦3 𝑦4 … 𝑦𝑛−1 𝑦𝑛

This might be the

final a in 𝑍

This might be the

final a in 𝑍

Then we have 𝒁 = 𝐋𝐂𝐒 𝑿𝒎−𝟏, 𝒀𝒏−𝟏 + 𝒛ℓ

Or maybe this is…

Might as well match

 𝑥𝑚 and 𝑦𝑛 with 𝑧ℓ

21

SUMMARIZING CASES
• 𝑧ℓ matches neither 𝑥𝑚 nor 𝑦𝑛 𝑍 = LCS(𝑋𝑚−1, 𝑌𝑛−1)

• 𝑧ℓ matches 𝑥𝑚 but not 𝑦𝑛 𝑍 = LCS(𝑋𝑚, 𝑌𝑛−1)

• 𝑧ℓ matches 𝑦𝑛 but not 𝑥𝑚 𝑍 = LCS(𝑋𝑚−1, 𝑌𝑛)

• 𝑧ℓ matches both 𝑍 = LCS(𝑋𝑚−1, 𝑌𝑛−1) + 𝒛ℓ

• … but we don’t know 𝒛ℓ

• Try all cases and maximize

• Careful: last case is only valid if 𝒙𝒎 = 𝒚𝒏

• Also note 𝒙𝒎 = 𝒚𝒏 only holds in the last case

• Cases 2&3: trivial

• Case 1: if 𝑥𝑚 = 𝑦𝑛 ≠ 𝑧ℓ then we can improve 𝑍 (contra) 22

DERIVING A RECURRENCE
• 𝑧ℓ matches neither 𝑥𝑚 nor 𝑦𝑛 (𝑥𝑚 ≠ 𝑦𝑛) 𝑍 = LCS(𝑋𝑚−1, 𝑌𝑛−1)

• 𝑧ℓ matches 𝑥𝑚 but not 𝑦𝑛 (𝑥𝑚 ≠ 𝑦𝑛) 𝑍 = LCS(𝑋𝑚, 𝑌𝑛−1)

• 𝑧ℓ matches 𝑦𝑛 but not 𝑥𝑚 (𝑥𝑚 ≠ 𝑦𝑛) 𝑍 = LCS(𝑋𝑚−1, 𝑌𝑛)

• 𝑧ℓ matches both (𝑥𝑚 = 𝑦𝑛) 𝑍 = LCS(𝑋𝑚−1, 𝑌𝑛−1) + 𝑧ℓ

• Let 𝒄 𝒊, 𝒋 = 𝑳𝑪𝑺 𝑿𝒊, 𝒀𝒋

• Brainstorming sensible base cases

• 𝑖 = 0 one string is empty, so 𝑐 0, 𝑗 = 0 (similarly for 𝑗 = 0)

• General cases

Recall 𝑍 = LCS 𝑋𝑚, 𝑌𝑛

𝑐(𝑖, 𝑗) = 𝑐 𝑖 − 1, 𝑗 − 1 + 1

𝑐(𝑖, 𝑗) = max{𝑐 𝑖 − 1, 𝑗 − 1 , 𝑐 𝑖, 𝑗 − 1 , 𝑐 𝑖 − 1, 𝑗 }

if 𝑥𝑚 = 𝑦𝑛

if 𝑥𝑚 ≠ 𝑦𝑛 23

• Combining expressions

𝑐(𝑖, 𝑗) = ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1 if 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 = 𝑦𝑗

max 𝑐 𝑖, 𝑗 − 1 , 𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖 − 1, 𝑗 − 1 if 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 ≠ 𝑦𝑗

• Can simplify!

• Observe 𝑐 𝑖 − 1, 𝑗 − 1 ≤ 𝑐 𝑖 − 1, 𝑗
(former is a subproblem of the latter)

𝑐(𝑖, 𝑗) = ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1 if 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 = 𝑦𝑗

𝐦𝐚𝐱 𝒄 𝒊, 𝒋 − 𝟏 , 𝒄 𝒊 − 𝟏, 𝒋 if 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 ≠ 𝑦𝑗

RECURRENCE

24

𝑐(𝑖, 𝑗) = ൞

0 𝑖𝑓 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1 𝑖𝑓 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 = 𝑦𝑗

max 𝑐 𝑖, 𝑗 − 1 , 𝑐 𝑖 − 1, 𝑗 𝑖𝑓 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 ≠ 𝑦𝑗Suppose 𝑿 = gdvegta

and 𝒀 = gvcekst

Question 1

Q3

Q4

Q5

Q2

…
…

Q6

Q7

…

…

25

𝑐(𝑖, 𝑗) = ൞

0 𝑖𝑓 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1 𝑖𝑓 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 = 𝑦𝑗

max 𝑐 𝑖, 𝑗 − 1 , 𝑐 𝑖 − 1, 𝑗 𝑖𝑓 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 ≠ 𝑦𝑗Suppose 𝑿 = gdvegta

and 𝒀 = gvcekst

26

PSEUDOCODE

Complexity:

Space? Time?

(word RAM model)

Θ 𝑛𝑚 for both

𝑐(𝑖, 𝑗) = ൞

0 𝑖𝑓 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1 𝑖𝑓 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 = 𝑦𝑗

max 𝑐 𝑖, 𝑗 − 1 , 𝑐 𝑖 − 1, 𝑗 𝑖𝑓 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 ≠ 𝑦𝑗

27

In our example table we just

draw an arrow to the entry…

COMPUTING THE LCS
NOT JUST ITS LENGTH

𝑐(𝑖, 𝑗) = ൞

0 𝑖𝑓 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1 𝑖𝑓 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 = 𝑦𝑗

max 𝑐 𝑖, 𝑗 − 1 , 𝑐 𝑖 − 1, 𝑗 𝑖𝑓 𝑖, 𝑗 ≥ 1 and 𝑥𝑖 ≠ 𝑦𝑗

Case 1: 𝒄 𝒊, 𝒋 = 𝒄 𝒊, 𝒋 − 𝟏

We store “J” in 𝜋[𝑖, 𝑗] to indicate

decrementing 𝒋 (to get 𝑖, 𝑗 − 1)

Consider which table

entry was used to

calculate 𝑐[𝑖, 𝑗]

We store the direction to that entry in an array 𝜋[𝑖, 𝑗]

Case 2: 𝒄 𝒊, 𝒋 = 𝒄 𝒊 − 𝟏, 𝒋

We store “I” in 𝜋[𝑖, 𝑗] to indicate

decrementing 𝑖 (to get 𝑖 − 1, 𝑗)

Case 3: 𝒄 𝒊, 𝒋 = 𝒄 𝒊 − 𝟏, 𝒋 − 𝟏 + 𝟏

We store “IJ” in 𝜋[𝑖, 𝑗] to indicate

decrementing both 𝑖 and 𝑗

Recall in this case, 𝑥𝑖 = 𝑦𝑗

so we include 𝒙𝒊 in the LCS

28

SAVING THE DIRECTION TO

THE PREDECESSOR SUBPROBLEM 𝝅

hidden

hidden

hidden

Case: 𝒄 𝒊, 𝒋 = 𝒄 𝒊, 𝒋 − 𝟏

We store “J” in 𝜋[𝑖, 𝑗] to indicate

decrementing 𝒋 (to get 𝑖, 𝑗 − 1)

Case: 𝒄 𝒊, 𝒋 = 𝒄 𝒊 − 𝟏, 𝒋

We store “I” in 𝜋[𝑖, 𝑗] to indicate

decrementing 𝑖 (to get 𝑖 − 1, 𝑗)

Case: 𝒄 𝒊, 𝒋 = 𝒄 𝒊 − 𝟏, 𝒋 − 𝟏 + 𝟏

We store “IJ” in 𝜋[𝑖, 𝑗] to indicate

decrementing both 𝑖 and 𝑗

Recall in this case, 𝑥𝑖 = 𝑦𝑗

so we include 𝒙𝒊 in the LCS

29

Example

LCS = ?LCS = gvet

this “a”

is not in

this is.

seq=t

seq=et

seq=vet

seq=gvet

Done:

seq=gvet

How to obtain LCS=gvet

from this table?

30

FOLLOWING PREDECESSORS TO COMPUTE THE LCS

Complexities of this

trace-back algo:

Space? Time?

(word RAM model)

space: O(n+m) words

time: O(n+m)

31

UNLIKELY TO GET THIS FAR
So this is likely just an exercise for you…

32

COIN CHANGING

33

There is a

denomination

with unit value!

In 0-1 knapsack, we only considered

two subproblems in our recurrence:

taking an item, or not.

Here we can do more than

use a coin denomination or not.

34

Exploring: some sensible base case(s)?

General case:

What are the different ways we could use coin denomination 𝒅𝒊?

What subproblems / solutions should we use?

OR 𝑡 = 0

Final recurrence relation

35

General case:

What are the different ways we could use coin denomination 𝒅𝒊?

What subproblems / solutions should we use?

Also 𝑵[𝒊, 𝟎] = 𝟎 for all 𝑖

OR 𝑡 = 0

Final recurrence relation

36

Also 𝑵[𝒊, 𝟎] = 𝟎 for all 𝑖

OR 𝑡 = 0

37

FILLING THE ARRAY

𝑁[1 … 𝑛, 0 … 𝑇]:

𝒕-axis (target sum remaining)
0 2 4 … T

𝒊-axis

(coin type)

(recall: 𝑁[𝑖, 𝑡]
uses coin

types 1. . 𝑖)

1
3

5
…

n

No data

dependencies

on any other

array cells.

OR 𝑡 = 0

38

FILLING THE ARRAY

𝑁[1 … 𝑛, 0 … 𝑇]:

0 1 2 3 4 5 6 … T

0

0

0

0

…

0

𝒕-axis (target sum remaining)
0 2 4 … T

𝒊-axis

(coin type)

(recall: 𝑁[𝑖, 𝑡]
uses coin

types 1. . 𝑖)

1
3

5
…

n

No data

dependencies

on any other

array cells.

OR 𝑡 = 0

39

FILLING THE ARRAY

𝑁[1 … 𝑛, 0 … 𝑇]:

0 1 2 3 4 5 6 … T

0

0

0

0

…

0

𝒕-axis (target sum remaining)
0 2 4 … T

𝒊-axis

(coin type)

(recall: 𝑁[𝑖, 𝑡]
uses coin

types 1. . 𝑖)

1
3

5
…

n

Consider cell 𝑵[𝒊, 𝒕]

𝒅𝒊

𝑵[𝒊 − 𝟏, 𝒕 − 𝟎 ⋅ 𝒅𝒊]
𝑵[𝒊 − 𝟏, 𝒕 − 𝟏 ⋅ 𝒅𝒊]𝑵[𝒊 − 𝟏, 𝒕 − 𝟐 ⋅ 𝒅𝒊]

…

We only look at the

previous 𝒊-row!

It is sufficient to fill:

row i=1 (base case), then

for (𝒊 = 𝟐 … 𝒏), for (𝒕 = 𝟎 … 𝑻)

OR 𝑡 = 0

40

using other coin types

𝑱 𝒊, 𝒕 = # of coins of type 𝒅𝒊 used in 𝑁[𝑖, 𝑡]

i.e., using coin 𝑑1 = 1

Compute min{…} over
𝒋 = 𝟎 … 𝒕/𝒅𝒊

41

Exercise for later:
compute the correct output

without using 𝐽 𝑖, 𝑡
(i.e., using only 𝑁, 𝑑, 𝑇)

OUTPUTTING OPTIMAL SET OF COINS

Recall 𝑱 𝒊, 𝒕 = # of coins of type 𝒅𝒊 used in 𝑁[𝑖, 𝑡]

We start at 𝐽 𝑛 𝑇 = # of coins of

type 𝑑𝑛 used in the optimal solution

42

Time complexity?

Unit cost computational

model is reasonable here

Runtime 𝑹 𝑰 ∈ 𝑂 σ𝑖=2
𝑛 σ𝑡=0

𝑇 𝑡

𝑑𝑖

Consider instance 𝐼 = (𝑑, 𝑇)

𝑅 𝐼 ∈ 𝑂

𝑖=2

𝑛
1

𝑑𝑖

𝑡=0

𝑇

𝑡

𝑅 𝐼 ∈ 𝑂

𝑖=2

𝑛
1

𝑑𝑖

𝑇 𝑇 + 1

2

𝑹 𝑰 ∈ 𝑶 𝑫𝑻𝟐

where 𝐷 = σ𝑖=2
𝑛 1

𝑑𝑖
< 𝑛.

43

If T is small, this is much
better than brute force

MEMOIZATION: AN ALTERNATIVE TO DP

44

EXAMPLE: USING MEMOIZATION TO

COMPUTE FIBONACCI NUMBERS EFFICIENTLY

If M[n] is already

computed, don’t

recurse!

45

VISUALIZING MEMOIZATION

If M[n] is already

computed, don’t

recurse!

Done! Done!

Done!
Already
done!

Done! Already done!

Done! Already done!

Done!

46

