2023-10-04

PROBLEM: MINIMUM LENGTH TRIANGULATION
42 4

Input: n points qy, ..., g, in 2D space i

that form a convex n-gon P

Assume points are sorted clockwise
around the center of P

CS 34] . ALGORlTH MS Find: a friangulation of P such that the surq’r71_<;f tih::

Lecture 9: dynamic programming Ill perimeters of the n — 2 triangles is minimized
Readings: see website
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341 wanguaton treguadon
frevor.brown@uwaterioo.ca Output: the sum of the perimeters of the triangles in P
1 2

)
WRE

HEZW M A5TAS JHIE PROBLEM? PROBLEM DECOMPOSITION
V> ! % J\\‘ The edge q,q; is in a triangle with a third vertex qi., where
’ How many triangulations are there? ‘ ke{2,....,n—1} T a3

Number of triangulations of a convex
n-gon = the (n — 2)nd Catalan number

n-2

’ This is Cyp = =5 (45 ‘ Ll

It can be shown that
Ca-p € 0(4"/(n = 2)%/%)

n-1
an
3 4
PROBLEM DECOMPOSITION PROBLEM DECOMPOSITION
The edge g,q; is in a triangle with a third vertex g, where 4 The edge q,q; is in a triangle with a third vertex qi, where a
ke{2,...,n—-1} : 9 ke {2,...,n-1} ¢ s
For a given k, we have: a For a given k, we have: ax
the triangle q qrgn, (1) the triangle qigig,, (1)
@ the polygon with vertices ¢,..., QG () a1
qn-1 qn-1
n n
5 6

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

PROBLEM DECOMPOSITION

The edge g,q; is in a triangle with a third vertex g, where

ke{2....n—1}. o 4
For a given k, we have: ax
the triangle q1qrgn, (1)
the polygon with vertices g, ..., @ @ @
the polygon with vertices g, o)
Qn-1
n

PROBLEM DECOMPOSITION " o

The edge g,q; is in a triangle with a third vertex gi., where o

For a given k, we have:

@ [0
the triangle ¢1qxg,, (1)
the polygon with vertices gy, ...,) @
the polygon with vertices gg.. .., - (3) Tk
The optimal solution will consist of optimal solutions to the two
subproblems in (2) and (3), along with the triangle in (1). 2
n
n-1
n

RECURRENCE RELATION
But we don't know the optimal k
Minimize overall k s‘rric‘rly be‘rween iandj

E Al &

Sp= {J(nkm {SGI) + Ay + Sk} ifj=i+2
0

otherwise

2023-10-04

PROBLEM DECOMPOSITION
The edge g.q; is in a triangle with a third vertex g, where
ke{2,..., n—1}. s
For a given k, we have: aQ

the triangle q1grgn, (1)
the polygon with vertices ¢;) @
G- ()
The optimal solution will consist of optimal solutions to the two

subproblems in (2) and (3), along with the triangle in (1).) Tn-1

the polygon with vertices gy,

RECURRENCE RELATION

Let S(i,j) = optimal solution to the subproblem
consisting of the polygon with vertices g; ...q;

Gk
Let A;j denote perimeter(‘hv)
q

If a given friangle q;,q;.q; is in the optimal solution,
then S(i,j) = S(i, k) + Ay + Sk, j) vy

q

Tre+1

aj 10

S = F‘ggl{sa k) + Ay + Sk)} ifjzi+2

FILLING IN THE TABLE

Table S[1..n,1..n] of solutions to S(i,j) for all i,j € {1..n}

otherwise

Dependencies:
S[i, k] and S[k, j]
Fork=(i+1)..G—1)

S[i,i+1]...S[i,j — 1]

We depend on larger i
And same i but smaller j

Blindly taking zis bad.
How to decide whether
fo take or leave 22

S = [KTJ’Q,{S(‘")+ A+ Sk)} ifj=i+2
0

RUNTIME

WORD RAM MODEL

otherwise

Number of subproblems: n?
Time to solve subproblem S(i,j): 0(— i) € 0(n)
So total runtime is in 0(n3)

Some effort needed to show Q(n?), since so many
subproblems are base cases, which take (1) steps

Incidentally, this is polynomial time (in the input size)

But basic runtime analysis
does not require such an argument

EXAMPLES
X=aaaaa Y=bbbbb I=LCS(X.Y)=¢2
Z=e (empty sequence)
X=abcde Y=bcd I=LCS(X.Y)=¢2
I=bcd
X=abcde Y=labef I=LCS(X.Y)=¢2
I=abe

POSSIBLE GREEDY SOLUTIONS®?

Alg: for each x; € X, try to choose a matching y; € Y
that is to the right of all previously chosen y; values

X=azbracadabra Y=abracadabraz
X=azbracadabra Y=abracadabraz
zbracadabra Y=abracadabroz [no y; after z]
racadabra Y=abracadabraz [no y; after z]

Similar greedy alg that goes
ale right-to-left works for this input,
) but fails for other inputs.

Try both possibilities!

(Brute force / dynamic
programming)

2023-10-04

PROBLEM: LONGEST COMMON
SUBSEQUENCE (LCS)

Problem 5.3
Longest Common Subsequence

Instance: Two sequences X andY = (y1,...,yn) over

some finite alphabet T'.
Find: A maximum length sequence Z that is a subsequence of both X

andY

Z=(aygoey 2¢) is a subsequence of X if there exist indices
1<ip<---<fg<msuchthat z; =z;, 1< j<¢L

Similarly, Z is a subsequence of Y if there exist (possibly different) indices
1< hy<---<he<nsuchthat zj =y, 1<j<E

Let’s first solve for the length of the LCS

POSSIBLE GREEDY SOLUTIONS®?

Alg: for each x; € X, fry to choose a matching y; € Y
that is to the right of all previously chosen y; values

X=abcde Y=labef

X=abcde Y=labef

X=abcde Y=labef [no suitable y; found]
X=abcde Y=labef [no suitable y; found]
X=abcde Y=labef

Z=abe Optimal?

DEFINING SUBPROBLEMS

Full problem: |LCS(X,Y)| (i.e., length of LCS)
Reduce size by taking prefixes of X or Y
Let X; = (x4, .., X)) and ¥y = (¥4, ., Vi)

P P S O N P P

Note X =X, andY =Y,
Subproblem: [LCS(X;, Y;)|

Shrinking the problem: remove the last letter of X or Y

BUILDING SOLUTIONS FROM SUBPROBLEMS

EXAMPLE #1 TO BUILD INTUITION

[« o b | lalc ol

This cannot be
the finalain z

Neither of these is

X’HﬁW partolz
z, = amust appearin X,,_;

This cannot be
L v ol ol o lcloldlal the final@in 2

AT EEEEEE
solution Z = LCS(X,Y)

l Since X, yn & Z We know Z = LCS(Xp-1, Yn-1) l

19

BUILDING SOLUTIONS FROM SUBPROBLEMS
EXAMPLE #3 Ormaybe fhists...

This might be the
I T T T T A a final ain z
This might be the
L vl o] o]]l olclaldl o final ain

[zl o b | ol c | o

Might as well match
X and y, with z,

Then we have Z = LCS(Xm-1,Yn-1) + Z¢

DERIVING A RECURRENCE
z, matches neither x,,, nory, (% # ¥) Z = LCS(X -1, Yn-1)
z, matches x,,, but not y, (m # Yn) Z = LCS(Xm) Yn—1)
z, matches y, but not x,, (Xm # Yn) Z =LCS(X -1, Yn)
z, matches both (Xm =) Z=LCSKpm-1,Yno1) + 2¢

Let c(i,j) = |LCS(X,, Y;)|
Brainstorming sensible base cases

i=0 one string is empty, so ¢(0,) = 0 (similarly for j = 0)
General cases

[cip) =cli—1,j-D+1 [if 2 = |
[cCi) = max{eli =1,j = D,c(ij = D,cG= 1)} | if xm # v |

2

2023-10-04

BUILDING SOLUTIONS FROM SUBPROBLEMS
EXAMPLE #2 —()rmaybevmsis —
I 0 P P P M AR B

Yot Since Z is a subsequence of Y,
z, = amustappearin¥,_;

| zlalb | ool c U

Case xpy € Z,y, €Z
is symmetric

l Since y, € Z we know Z = LCS(X,Y,_1) Z=LCS(Xm-1,Y)

SUMMARIZING CASES
z, matches neither x,, nor y, Z = LCS(Xm—-1, Yn-1)
Z = LCS(Xm, Yn-1)
Z = LCS(Xm-1,Yy)
7 = LCS(Xm-1,Yn_1) + 2

z, matches x,,, but not y,
z, matches y, but not x,,
z, matches both
... but we don't know z,
Try all cases and maximize
Careful: last case is only valid if x,,, = y,
Also note x,, = y, only holds in the last case
Cases 2&3: trivial
Case 1:if xp, = y, # 2z, then we canimprove Z (contra) ,,

RECURRENCE
Combining expressions
0 ifi=00rj=0
c@p={ci-1j-D+1 ifi,j = 1andx; = y;
max{c(i,j = 1,c(i = 1,/),ci = 1,j =1} ifi,j>1andx; #y;
Can simplify!
Observe c(i—1,j—1) <c(i—1,))
(former is a subproblem of the latter)
0 ifi=00rj=0
c(i,j)={ci-1j-1D+1 ifi,j = 1andx; = y;
max{c(i,j — 1),c(i—1,j)} ifi,j=1andx; #y;

Suppose X = gdvegta
and Y = gvcekst

1

0
ci-1j-1D+1
max{c(i,j — 1), ¢ — 1)}

ifi=0orj=0
ifi,j=z1andx; =y;
ifi,j>1andx; #y;

Suppose X = gdvegta

and Y = gvcekst

0
‘ c@i)=4ci—-1j-D+1

X

max{c(i,j — 1),c(i — L)}

2023-10-04

ifi=0orj=0
ifi,jzlandx; =y;
ifi,j>1andx; #;

g d v e £ t a
Y i=0 1 2 3 4 5 6 7
3i=0 0 0 0 0 0 0 0 0
£ 1 0 1 1 1 1 1 1 1
v 2 0 1 1 2 2 2 2 2
< 3 0 1 1 2 2 2 2 2
e 4 0 1 1 2 3 3 3 3
k 5 0 1 1 2 3 3 3 3
s 6 0 1 1 2 3 3 3 3
t 7 0 1 1 2 3 3 4 4
26
COMPUTING THE LCS
NOT JUST ITS LENGTH
To make it easy to find the actual LCS (not just its length),
0 ifi=0orj=0

c(i-1,j-1)+1
max{c(i,j — 1),c(i — 1))}

entry was used fo

Consider which table
calculate cfi, j]

ifi,j=1andx =y,
ifi,j=1andx; #y;

We store the direction to that entry in an array [i, j]

X £ d v e g t a
Y i=0 1 2 3 4 5 6 7
=0/ Question 1]
g L[fee] 1 [ad]
voo2 lasf 1
c 3 | G5 |
e 4| @2
k 5
s 6
t 7
2
0 ifi=0o0rj=0
PSEUDOCODE i ={ci-1j-D+1 ifi,j = 1andx; = y;
max{c(i,j = D,c(i—1,)} ifij=1andx; #y;
Algorithm: LCSI(X = (z1,...,20). Y = (1. 4n))
for i + 0 tom
cfi, 0] ¢ 0 -
for j « Oton sg:ggﬁlnhg?
el0, j]l 0 (word RAM model)
for i+ 1tom o(nm) for both
for j« 1ton
ifz; =y

then cfi.j] « e[i—1,j—1]+1
else cfi, j] + max{e[i, j — 1], ei — 1, j]}
return (c[m,n]);

SAVING THE DIRECTION TO
THE PREDECESSOR SUBPROBLEM &

1

LCS2(X[1, Y(1..n])
c = new array[0..n][0..n]
n = new array[0..n][0..n]

Case: c(i,j) =c(i—1,j-1)+1
for i = 0..m do c[i][0] = 0 -
for j = 0..n do c[0][§] = O We store “IJ" in n[i, j] to indicate

decrementing both i and j
for i =1 - =
for § = . Recallin this case, x; = y;
if X(i1 = (31 so we include x; in the LCS
:{i”j} :Ei-‘][j- I
nilfj ™ > ‘7
else if c[i][j-1] > c[i-1](§]) Case: c(i,j) =c(i,j—1)
K::”J] i103-11 We store “J"in z[i, j] to indicate
n ing j i
else // clil[3-1] <= cli-11(4] decrementing j (to geti,j —1)
-1l Case: c(i,j) = c(i—1,j)

We store "I in n[i, j] fo indicate

return.c, ® decrementingi (fo geti—1,j)

Case 1: c(i,j) = c(i,j — 1)

Case 2: c(i,j) = c(i—1,j)

Case 3:c(i,j) =c(i—1,j-1)+1

We store “J"in n[i, j] to indicate
ling j (to geti,j—1)

We store “I" in n[i, j] to indicate
decrementingi (to geti—1,j)

Suppose X = gdvegta and Y = gvcekst.

In our example table we just
draw an arrow fo the entry...

We store “IJ" in n[i, j] fo indicate
decrementing both i and j

Recallin this case, x; = y;
50 we include x; in the LCS

How to obtain LCS=gvet
from this table?

Example X
Y
Done:
seg=gvet 1
v 2

FOLLOWING PREDECESSORS TO COMPUTE THE LCS

1

2
3
4
5
6
7
8

FindLCS(c[0..m][0..n], m[0..m][0..n], X[O..m])

lcs = new string
i=m
j=n Complexities of this
while §>0 and =0 frace-back algo:
if mi1[] == "1J" Space? Time?
les.append(X[i]) (word RAM model)
i
j,,
else if m[il[j] == "J"
j-- space: O(n+m) words
else // m[il[]j] == "I"
i-- time: O(n+m)

return reverse(lcs)

COIN CHANGING

Let N[, t] denote the optimal solution to the subproblem consisting of
the first i coin denominations d;...., d; and target sum .

Exploring: some sensible base case(s)2

General case:
What are the different ways we could use coin denomination d;2
What subproblems / solutions should we use?

Final recurrence relation

2023-10-04

UNLIKELY TO GET THIS FAR

So thisis likely just an exercise for you...

Coin Changing Thereis a
denomination
with unit value!

Problem 5.2
Coin Changing
Instance: A list of coin denominations, 1 = d;, . dy, and a

positive integer T', which is called the target sum.
Find: An n-tuple of non-negative integers, say A = |ay.... a4}, such
that T' = y @id; and such that N = 77, a; is minimized.

In 0-1 knapsack, we only considered
What subproblems should be considered? two subproblems in our recurrence:

taking anitem, or not.

Here we can do more than
use a coin denomination or nof.

What table of values should we fill in?

Let N|i,t] denote the optimal solution to the subproblem consisting of

the first i coin denominations d,...,d; and target sum .
Since d; = 1, we immediately have N[1,t] =t for all t.

General case:
What are the different ways we could use coin denomination d;2
What subproblems / solutions should we use?

Final recurrence relation

Let N|[i,t] denote the optimal solution to the subpi consisting of

the first i coin denominations dy,...,d; and target sum . " N
Since d; = 1, we immediately have N([1,t] =t for all t. —
For i > 2, the number of coins of denomination d; is an integer j where
0<j< [t/di).

If we use j coins of denomination d;, then the target sum is reduced to
t — jd;, which we must achieve using the first i — 1 coin denominations.

Thus we have the following recurrence relation:

Nii g — dmin{j + Nli =1t —jdi] :0<j < |t/di]} fi=2
fit] = t ifi=1O0Rt=0

FILLING THE ARRAY N = {min[j+N[i— Lt —jdi] 10 << [tfdi]} fi=2
N[1..n,0..T]: ' ! ifi=1

No data
dependencies
on any other
array cells.

i-axis

(coin type)

(recall: N[i, t]
uses coin
types 1..i)

—
t-axis (target sum remaining)

oinChangingDP(d(1. n], T}
N = new table[l .n]l0. T]

Nt = {znin{j +N[i—1,t—jdi] : 0 j < [t/ei]}

3 = new table[1 .n][0..T]

far t=0.T // buse cases where 11

NOIJ[t] = ¢
J:)i}(: -t % Jli,t] = # of coins of type d, used in N[i, t] ‘

fori=2.n // general cases using other coin types

fort=0..T
// initially best solution is 0 of dli!
N{i)[t] = N[i-111t]
AL =0

// try §>0 coins of type dli]
for j = 1._floor(t / d[il)
if § + NEE-1][t-57dl3]] < NId(t]
N[i][t] = j + N[i-1][t-j*d[i]]
J(4][t] = § // best is currently j of dli]

return N[nl[T] // can also return N, J

2023-10-04

FILLING THE ARRAY
N[1..n,0..T]:

No data
dependencies
onany ofher T O A Y A A A B

array cells.

1:0<j< |t/di]} ifiz=2

min{j + N[i —1

Niyt] =

i-axis Cr Tttt

(coin type)

(recall: N[i, t]
uses coin
types 1..i)

!
t-axis (target sum remaining)

FILLING THE ARRAY N[it]=rmm{]+N[n—Lt—jdi]‘l]sjs[t,‘d.-j} Wizz |
N[1..n,0..T]: r ORend

i-axis
(coin type)
(recall: N[i, t]
uses coin s suffici T
R Itis sufficient to fill:
types 1..i) i=1 (base case), then

...T)

We only look at the
previou:

OUTPUTTING OPTIMAL SET OF COINS

inChangingDP_coins(d[1..n], J[1..n][0..T])
counts = new array[1..n]
t=T
=n..1
Lelr iounrt‘s[i] = JIilrt] 4 Recall J[i,t] = # of coins of type d; used in N[i,t]
t =t - counts[i]*d[1i] We start at J[n][T] = # of coins of
type d, used in the optimal solution

return counts

Exercise for later: |

compute the correct output
without using J[i, t]

(i.e..usingonly N, d, T) |

—_—

1
2
3
4
5
6
7
8
9

10

GRERE

ity?

CoinChangingDP(d[1. n], T) Time complexity?
N = new table[1 .n][0. T]

3 = new table[1..n][0..T]

Unit cost computational
model is reasonable here

for t // base cases where i=1
N1J[t] = ¢t

JL(t] - ¢

Considerinstance I = (d,T)

Runtime R(I) € o(L5, Iﬂ)

re n<j%j,>

==

for i =2 .r
for t = 0
// initially best solution is @ of dfi]
N{i)[t] = N[i-1]0t]
ML) =0

/1 general cases

// try 320 coins of type dli]
for j = 1..floor(t / d[il)
if j + N[L-1][t-3°dI3]] < N[i](t]

woeo($15(752)
=zt

R(I) € 0(DT?)
where D = ZT:zdl <n.

NEZI[E] = § + N[3-1)[t-j+d[4]]
JM4T[R] = § /7 best i3 currently § of dli]

return N[nl(T] // can also return N, J - —
If T is small, this is much

better than brute force

EXAMPLE: USING MEMOIZATION TO
COMPUTE FIBONACCI NUMBERS EFFICIENTLY

If M[n] is already
computed, don't
recurse!

main procedure RecFib(n)
. ifn=0 then f+ 0
fDrl(i?ton elseif n=1 then f « 1
do M[i] + —1 else if M[n] # —1 then f « M]n]

f1 + RecFib(n — 1)
f2 + RecFib(n — 2)
feh+f

Min] « f

return (f);

return (RecFib(n))
else

procedure Reckib(n)

=0 then f 0
elseifn—1 then 1
alse if M[n] # ~1 then f + Afln]

2023-10-04

MEMOIZATION: AN ALTERNATIVE TO DP

Recall that the goal of dynamic programming is to eliminate solving
subproblems more than once.

Memoization is another way to accomplish the same goal.

Memoization is a recursive algorithm based on same recurrence relation as
would be used by a dynamic programming algorithm

The idea is to remember which subproblems have been solved; if the same

subproblem is encountered more than once during the recursion, the
solution will be looked up in a table rather than being re-calculated.

This is easy to do if initialize a table of all possible subproblems having the
value undefined in every entry.
Whenever a subproblem is solved, the table entry is updated.

VISUALIZING MEMOIZATION

If M[n] is already
computed, don't
recurse!

Arready done!

i RecFibln — 1)

else Ja + RecFibln — 2)
fefith [Done!]'(ﬂ =2] [Aready done!]
Min] e f
veturn (1) ot Fom AN

