PROBLEM: MINIMUM LENGTH TRIANGULATION

Input: $\quad n$ points q_{1}, \ldots, q_{n} in 2D space that form a convex n-gon P Assume points are sorted clockwise around the center of P

CS 341: ALGORITHMS

Lecture 9: dynamic programming III
Readings: see website
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

HON/ HARN Iء THI尺 PROBLEM?

PROBLEM DECOMPOSITION

The edge $q_{n} q_{1}$ is in a triangle with a third vertex q_{k}, where $k \in\{2, \ldots, n-1\}$.
For a given k, we have:
the triangle $q_{1} q_{k} q_{n}$,

PROBLEM DECOMPOSITION

The edge $q_{n} q_{1}$ is in a triangle with a third vertex q_{k}, where $k \in\{2, \ldots, n-1\}$.

PROBLEM DECOMPOSITION

The edge $q_{n} q_{1}$ is in a triangle with a third vertex q_{k}, where $k \in\{2, \ldots, n-1\}$
For a given k, we have
the triangle $q_{1} q_{k} q_{n}$. (1)
the polygon with vertices q_{1}, \ldots, q_{k}, (2)

PROBLEM DECOMPOSITION

The edge $q_{n} q_{1}$ is in a triangle with a third vertex q_{k}, where
$k \in\{2, \ldots, n-1\}$
For a given k, we have:
the triangle $q_{1} q_{k} q_{n}$,
the polygon with vertices q_{1}, \ldots, q_{k}, (2)
the polygon with vertices q_{k}, \ldots, q_{n}. (3)

PROBLEM DECOMPOSITION

The edge $q_{n} q_{1}$ is in a triangle with a third vertex q_{k}, where $k \in\{2, \ldots, n-1\}$.
For a given k, we have:
the triangle $q_{1} q_{k} q_{n}$,
the polygon with vertices q_{1}, \ldots, q_{k}, (2)
the polygon with vertices q_{k}, \ldots, q_{n}. (3)
The optimal solution will consist of optimal solutions to the two subproblems in (2) and (3), along with the triangle in (1).

RECURRENCE RELATION

But we don't know the optimal k
Minimize over all \boldsymbol{k} strictly between \boldsymbol{i} and \boldsymbol{j}

PROBLEM DECOMPOSITION

The edge $q_{n} q_{1}$ is in a triangle with a third vertex q_{k}, where $k \in\{2, \ldots, n-1\}$.
For a given k, we have:
the triangle $q_{1} q_{k} q_{n}$.
the polygon with vertices q_{1}, \ldots, q_{k}, (2)
the polygon with vertices q_{k}, \ldots, q_{n}. (3)
The optimal solution will consist of optimal solutions to the two subproblems in (2) and (3), along with the triangle in (1).

RECURRENCE RELATION

Let $S(i, j)=$ optimal solution to the subproblem consisting of the polygon with vertices $q_{i} \ldots q_{j}$ Let $\Delta_{i j k}$ denote perimeter $\left({ }_{i}^{q_{i}} \square_{q_{j}}^{q_{k}}\right.$)
If a given triangle $\boldsymbol{q}_{i}, \boldsymbol{q}_{j}, \boldsymbol{q}_{\boldsymbol{k}}$ is in the optimal solution, then $S(i, j)=S(i, k)+\Delta_{i j k}+S(k, j)$

FILLING IN THE TABLE

$$
S(i, j)= \begin{cases}\min _{i<k<j}\left\{\boldsymbol{S}(i, k)+\Delta_{i j k}+S(k, j)\right\} & \text { if } \mathrm{j} \geq \mathrm{i}+2 \\ 0 & \text { otherwise }\end{cases}
$$

Table $S[1 . . n, 1 . . n]$ of solutions to $S(i, j)$ for all $i, j \in\{1 . . n\}$

RUNTIME
WORD RAM MODEL

$$
S(i, j)= \begin{cases}\min _{i<k<j}\left\{\boldsymbol{S}(\boldsymbol{i}, \boldsymbol{k})+\Delta_{i j k}+\boldsymbol{S}(\boldsymbol{k}, \boldsymbol{j})\right\} & \text { if } \mathrm{j} \geq \mathrm{i}+2 \\ 0 & \text { otherwise }\end{cases}
$$

Number of subproblems: n^{2}
Time to solve subproblem $S(i, j): O(j-i) \subseteq O(n)$ So total runtime is in $O\left(n^{3}\right)$

Some effort needed to show $\Omega\left(n^{3}\right)$, since so many subproblems are base cases, which take $\Theta(1)$ steps
Incidentally, this is polynomial time (in the input size)
But basic runtime analysis
does not require such an argument

PROBLEM: LONGEST COMMON
SUBSEQUENCE (LCS)

Problem 5.3
Longest Common Subsequence

Instance: Two sequences $X=\left(x_{1}, \ldots, x_{m}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ over
some finite alphabet Γ.
Find: A maximum length sequence Z that is a subsequence of both X
and Y.
$Z=\left(z_{1}, \ldots, z_{\ell}\right)$ is a subsequence of X if there exist indices $1 \leq i_{1}<\cdots<i_{\ell} \leq m$ such that $z_{j}=x_{i_{j}}, 1 \leq j \leq \ell$.
Similarly, Z is a subsequence of Y if there exist (possibly different) indices $1 \leq h_{1}<\cdots<h_{\ell} \leq n$ such that $z_{j}=y_{h_{j}}, 1 \leq j \leq \ell$.

Let's first solve for the length of the LCS

EXAMPLES

X=aaaaa	$Y=b b b b b$	$\mathrm{Z}=\mathrm{LCS}(\mathrm{X}, \mathrm{Y})=$?
$Z=\epsilon$ (empty sequence)		
X=abcde	$Y=b c d$	$\mathrm{Z}=\operatorname{LCS}(\mathrm{X}, \mathrm{Y})=$?
Z=bcd		
X=abcde	$Y=l a b e f$	$\mathrm{Z}=\mathrm{LCS}(\mathrm{X}, \mathrm{Y})=$?
Z=abe		

POSSIBLE GREEDY SOLUTIONS?

Alg: for each $x_{i} \in X$, try to choose a matching $y_{j} \in Y$ that is to the right of all previously chosen y_{j} values

POSSIBLE GREEDY SOLUTIONS?

Alg: for each $x_{i} \in X$, try to choose a matching $y_{j} \in Y$ that is to the right of all previously chosen y_{j} values

$X=\mathbf{a b c d e}$	$Y=$ labef
$X=\mathbf{a b}$ bede	$Y=$ labef
$X=\mathbf{a b} c d e$	$Y=$ labef [no suitable y_{j} found]
$X=\mathbf{a b c} \underline{d e}$	$Y=$ labef [no suitable y_{j} found]
$X=\mathbf{a b c d e}$	$Y=$ labef
$Z=$ abe	Optimal?

DEFINING SUBPROBLEMS

Full problem: $|\operatorname{LCS}(\boldsymbol{X}, \boldsymbol{Y})|$ (i.e., length of LCS)
Reduce size by taking prefixes of X or Y
Let $\boldsymbol{X}_{\boldsymbol{i}}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{i}}\right)$ and $\boldsymbol{Y}_{\boldsymbol{i}}=\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\boldsymbol{i}}\right)$

Note $X=X_{m}$ and $Y=Y_{n}$
Subproblem: $\left|\mathbf{L C S}\left(\boldsymbol{X}_{\boldsymbol{i}}, \boldsymbol{Y}_{\boldsymbol{j}}\right)\right|$
Shrinking the problem: remove the last letter of X or Y

BUILDING SOLUTIONS FROM SUBPROBLEMS

$a<$ This might be the final \mathbf{a} in Z

DERIVING A RECURRENCE

Recall $Z=\operatorname{LCS}\left(X_{m}, Y_{n}\right)$
z_{ℓ} matches neither x_{m} nor $y_{n} \quad\left(x_{m} \neq y_{n}\right) \quad Z=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$
z_{ℓ} matches x_{m} but not $y_{n} \quad\left(x_{m} \neq y_{n}\right) \quad Z=\operatorname{LCS}\left(X_{m}, Y_{n-1}\right)$
z_{ℓ} matches y_{n} but not $x_{m} \quad\left(x_{m} \neq y_{n}\right) \quad Z=\operatorname{LCS}\left(X_{m-1}, Y_{n}\right)$
z_{ℓ} matches both
$\left(x_{m}=y_{n}\right) \quad Z=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)+z_{\ell}$
Let $c(i, j)=\left|L C S\left(X_{i}, Y_{j}\right)\right|$
Brainstorming sensible base cases

$$
i=0 \quad \text { one string is empty, so } c(0, j)=0 \text { (similarly for } j=0)
$$

General cases

$$
\begin{array}{|l|l|}
\hline c(i, j)=c(i-1, j-1)+1 & \text { if } x_{m}=y_{n} \\
\hline c(i, j)=\max \{c(i-1, j-1), c(i, j-1), c(i-1, j)\} & \text { if } x_{m} \neq y_{n} \\
\hline
\end{array}
$$

BUILDING SOLUTIONS FROM SUBPROBLEMS

SUMMARIZING CASES

$$
\begin{array}{ll}
z_{\ell} \text { matches neither } x_{m} \text { nor } y_{n} & Z=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right) \\
z_{\ell} \text { matches } x_{m} \text { but not } y_{n} & Z=\operatorname{LCS}\left(X_{m}, Y_{n-1}\right) \\
z_{\ell} \text { matches } y_{n} \text { but not } x_{m} & Z=\operatorname{LCS}\left(X_{m-1}, Y_{n}\right) \\
z_{\ell} \text { matches both } & Z=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)+z_{\ell}
\end{array}
$$

... but we don't know z_{ℓ}
Try all cases and maximize
Careful: last case is only valid if $x_{m}=\boldsymbol{y}_{n}$
Also note $\boldsymbol{x}_{\boldsymbol{m}}=\boldsymbol{y}_{\boldsymbol{n}}$ only holds in the last case
Cases 2\&3: trivial
Case 1: if $x_{m}=y_{n} \neq z_{\ell}$ then we can improve Z (contra)

RECURRENCE

Combining expressions
$c(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ c(i-1, j-1)+1 & \text { if } i, j \geq 1 \text { and } x_{i}=y_{j} \\ \max \{c(i, j-1), c(i-1, j), c(i-1, j-1)\} & \text { if } i, j \geq 1 \text { and } x_{i} \neq y_{j}\end{cases}$
Can simplify!
Observe $c(i-1, j-1) \leq c(i-1, j)$
(former is a subproblem of the latter)

$$
c(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ c(i-1, j-1)+1 & \text { if } i, j \geq 1 \text { and } x_{i}=y_{j} \\ \max \{\boldsymbol{c}(i, j-\mathbf{1}), \boldsymbol{c}(\boldsymbol{i}-\mathbf{1}, j)\} & \text { if } i, j \geq 1 \text { and } x_{i} \neq y_{j}\end{cases}
$$

25

Suppose $\boldsymbol{X}=$ gdve and $\boldsymbol{Y}=$ gvceks	gta t			$1, j$	$\begin{aligned} & +1 \\ & +, c(i \end{aligned}$		if $i=0$ or $j=0$ if $i, j \geq 1$ and $x_{i}=y_{j}$ if $i, j \geq 1$ and $x_{i} \neq y_{j}$	
X		g	d	v	e	g	t	a
Y	$i=0$	1	2	3	4	5	6	7
$j=0$	0	0	0	0	0	0	0	0
$\mathrm{g} \quad 1$	0	1	1	1	1	1	1	1
v 2	0	1	1	2	2	2	2	2
c 3	0	1	1	2	2	2	2	2
e 4	0	1	1	2	3	3	3	3
k 5	0	1	1	2	3	3	3	3
s 6	0	1	1	2	3	3	3	3
t $\quad 7$	0	1	1	2	3	3	4	4

26

COMPUTING THE LCS
NOT JUST ITS LENGTH
To make it easy to find the actual LCS (not just its length),

SAVING THE DIRECTION TO
 THE PREDECESSOR SUBPROBLEM $\boldsymbol{\pi}$

Suppose $X=$ gdvegta and $Y=$ gvcekst.
How to obtain LCS=gvet from this table?

FOLLOWING PREDECESSORS TO COMPUTE THE LCS

UNLIKELY TO GET THIS FAR

So this is likely just an exercise for you.

COIN CHANGING

Let $N[i, t]$ denote the optimal solution to the subproblem consisting of the first i coin denominations d_{1}, \ldots, d_{i} and target sum t.

Exploring: some sensible base case(s)?
General case:
What are the different ways we could use coin denomination $\boldsymbol{d}_{\boldsymbol{i}}$? What subproblems / solutions should we use?

Let $N[i, t]$ denote the optimal solution to the subproblem consisting of the first i coin denominations d_{1}, \ldots, d_{i} and target sum t. Also $N[i, \mathbf{0}]=\mathbf{0}$ for a Since $d_{1}=1$, we immediately have $N[1, t]=t$ for all t.
For $i \geq 2$, the number of coins of denomination d_{i} is an integer j where $0 \leq j \leq\left\lfloor t / d_{i}\right\rfloor$.
If we use j coins of denomination d_{i}, then the target sum is reduced to $t-j d_{i}$, which we must achieve using the first $i-1$ coin denominations.
Thus we have the following recurrence relation:

$$
N[i, t]= \begin{cases}\min \left\{j+N\left[i-1, t-j d_{i}\right]: 0 \leq j \leq\left\lfloor t / d_{i}\right]\right\} & \text { if } i \geq 2 \\ t & \text { if } i=1 \text { OR } t=0\end{cases}
$$

FILLING THE ARRAY
$N[1 \ldots n, 0 \ldots T]$:

$N[i, t]=$| $\min \left\{j+N\left[i-1, t-j d_{i}\right]: 0 \leq j \leq\left\lfloor t / d_{i}\right\rfloor\right\}$ | if $i \geq 2$ |
| :--- | :--- |
| t | if $i=1$. |
| OR $t=0$ | |

OUTPUTTING OPTIMAL SET OF COINS

MEMOIZATION: AN ALTERNATIVE TO DP
Recall that the goal of dynamic programming is to eliminate solving subproblems more than once.

Memoization is another way to accomplish the same goal.
Memoization is a recursive algorithm based on same recurrence relation as would be used by a dynamic programming algorithm.
The idea is to remember which subproblems have been solved; if the same subproblem is encountered more than once during the recursion, the solution will be looked up in a table rather than being re-calculated.
This is easy to do if initialize a table of all possible subproblems having the value undefined in every entry.
Whenever a subproblem is solved, the table entry is updated.

EXAMPLE: USING MEMOIZATION TO COMPUTE FIBONACCI NUMBERS EFFICIENTLY

main	If $\mathbf{M [n]}$ is already computed, don't recurse!
	procedure $\operatorname{RecFib}(n) \quad \square$
$\begin{aligned} & \text { for } i \leftarrow 2 \text { to } n \\ & \text { do } M[i] \leftarrow-1 \\ & \text { return }(\operatorname{RecFib}(n)) \end{aligned}$	else if $n=1$ then $f \leftarrow 1$
	else if $M[n] \neq-1$ then $f \leftarrow M[n]$
	$\left(f_{1} \leftarrow \operatorname{RecFib}(n-1)\right.$
	$f_{2} \leftarrow \operatorname{RecFib}(n-2)$
	$f \leftarrow f_{1}+f_{2}$
	$M[n] \leftarrow f$
	return (f);

VISUALIZING MEMOIZATION

