Lecture 5: Divide & Conquer 1

2-D Maxima & Closest Pair

CS 341: Algorithms

Tuesday, May 26th 2020
Outline For Today

1. 2-D Maxima
2. Closest Pair
Outline For Today

1. 2-D Maxima

2. Closest Pair
2-D Maxima

◆ Input: Set P of n 2-D points

◆ Output: All maximal points

◆ Dfn 1: Point p dominates point q iff

 $p.x > q.x$ AND $p.y > q.y$

◆ Dfn 2: Point p is maximal if no point dominates it
Example

Diagram showing points labeled p_1, p_2, p_3, p_4, p_5, p_6, p_7, and p_8.
Q: Is p_4 maximal?
Example

Q: Is p_4 maximal?

A: No. p_2, p_3, and p_5 dominate p_4.
Q: Is p_2 maximal?
Q: Is p_2 maximal?

A: No. p_3 dominates p_4.
Q: Is p_5 maximal?

A: Yes
p_3, p_5, and p_7 are maximal

other points are not
Applications

- **Databases: Skyline queries**
 - Example “Skyline query”: *minima*
 - Find “minimal” hotels in a price & distance graph

- **Economics: Finding “Pareto Optimal” points**
procedure bruteForceMaxima(Set P of n points):
 M = {}
 for each p in P:
 for each q in P:
 check if p is dominated by q
 if p is not dominated:
 M.insert(p);
 return M

Runtime: O(n^2)
Can we Divide & Conquer?

◆ **Idea:** Let’s divide P vertically (on x-axis)

![Diagram showing points divided into L and R sides]
Can we Divide & Conquer?

◆ Idea: Let’s divide P vertically (on x-axis)

![Diagram of points p_1 to p_8 divided into L and R]

Q1: What can you say about a maximal point p in R?

A1: It is maximal in P as well.
Q2: What can you say about a maximal point \(q \) in \(L \)?

A2: It’s maximal iff \(q.y \geq y \) value of every point in \(R \). In particular, let \(p^* \) be the point in \(R \) with \(\max y \).

Then \(q \) is maximal iff \(q.y \geq p^*.y \),
DC-Maxima

Procedure Algorithm(Set P of n points):
Sort P by x values; \(\rightarrow O(n\log(n)) \text{ work}\)
return DCMaxima(P)

Procedure DCMaxima (P sorted by x values):
if (P.size == 1) return P;
L = DCMaxima(P[1...n/2]);
R = DCMaxima(P[n/2+1...n]);
let p* be max y valued point in R; \(\rightarrow O(n) \text{ work}\)
let M = R;
for each q in L:
 if (q.y ≥ p*.y)
 M.insert(q);
return M;

Total: \(O(n) \text{ work} \) outside recursive calls
Runtime Analysis

Recursive part: $T(n) = 2T(n/2) + O(n)$

By Master Thm: $O(n \log(n))$

Total Work:

1. Initial Sorting: $O(n \log(n))$
2. Recursive part: $O(n \log(n))$

Total: $O(n \log(n))$
Exercise

After initial sorting by x-axis, design an O(n) time algorithm (not DC) that gives all of the maximal points.

Note: Total time still O(nlog(n)) b/c of sorting. But post-sorting work is linear instead of O(nlog(n)) of DCMaxima.

Fact: \(\Omega (n \log(n)) \) lower bound for comparison based algs.
Outline For Today

1. 2-D Maxima

2. Closest Pair
Closest Pair Problem

- **Input**: Set P of n 2-D points

- **Output**: pair p and q s.t. dist(p, q) minimum over all pairs

- Break ties arbitrarily

- **dist(p, q)**: Euclidean distance

\[
dist(p,q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}
\]
Example

$p_5 = (-5, 3)$

$p_2 = (1, 2)$

$p_4 = (0, 1)$

$p_3 = (6, 5)$

$p_1 = (4, -3)$
Example

\[p_5 = (-5, 3) \]

\[p_4 = (0, 1) \]

\[p_2 = (1, 2) \]

\[p_3 = (6, 5) \]

\[p_1 = (4, -3) \]

Closest pair: \((p_2, p_4)\); \(\text{dist}(p_2, p_4): \sqrt{1^2+1^2} = \sqrt{2} \)
Applications

- Very fundamental computational problem
 - Databases
 - Machine Learning
 - Image Processing
 - Computational Geometry
1-D Version

◆ \((x_1, x_2, ..., x_n) = (2.2, 5.8, 1.1, -3.0, 1.2, ...)\)

◆ Just sort and scan:
 ◆ compare each point with the next point in the sorted order
 ◆ b/c closest pair has to be a consecutive pair

◆ Sort: \(O(n\log(n))\) time

◆ Scan: \(O(n)\) time

◆ Total: \(O(n\log(n))\) time

Question: Can we do \((n\log(n))\) in 2-D?
Alg 1: Brute Force

procedure bruteForceCP(Set P of n points):
 minPair = {}
 minDist = +∞
 for each p in P:
 for each q in P:
 if (dist(p, q) < minDist)
 minPair.insert(p, q);
 minDist = dist(p, q)
 return minPair

Runtime: \(O(n^2)\)
Can we Divide & Conquer?

Same idea as maxima: Divide P on x-axis

Claim that doesn’t require a proof: closest pair \((p, q)\):

1. \((p, q)\) both in L;
2. \((p, q)\) both in R; or
3. \(p\) is in L and \(q\) is in R
procedure Algorithm(P of n points):
 sort P by x values
 DC-CP(P)

procedure DC-CP(P sorted by x values):
 if (P.size ≤ 3) compare all & return closest;
 \[\text{pair}_L = \text{DC-CP}(P[1,...,n/2])\]
 \[\text{pair}_R = \text{DC-CP}(P[n/2+1,...,n])\]
 \[\text{pair}_s = \text{findMinSpanningPair}(P)\]
 return min(\text{pair}_L, \text{pair}_R, \text{pair}_s)

Q: How can we find the spanning pair quickly?
Observation 1

Let $\delta = \min (\text{dist}(\text{pair}_L), \text{dist}(\text{pair}_R))$

Then pair s (if closest globally) lies in the above 2δ-wide green strip

Q: Why?
Q: Can p_5 be part of a globally closest pair s?
A: No. Any p in R is already has $\text{dist} > \delta$ to p_5.
Observation 2

- Say, \(p_7 \) (the lowest y valued point in strip) is in pairs.

- Then the other point can only lie in this \(\delta \times \delta \) square.

Q: Why?
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 this for the next lowest y-valued point
4. So on and so forth...

\[p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5 \quad p_6 \quad p_7 \quad p_8 \]
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 this for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 this for the next lowest y-valued point
4. So on and so forth…
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 this for the next lowest y-valued point
4. So on and so forth...
Don’t differentiate between same and opposite side
Just search the 2\(\delta x \delta\) above rectangle each time
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time
procedure Algorithm(P of n points):
 sort P by x values
 DC-CP1(P)

procedure DC-CP1(P sorted by x values):
 if (P.size ≤ 3) compare all & return closest;
 pair_L = DC-CP1(P[1,...,n/2])
 pair_R = DC-CP1(P[n/2+1,...,n])
 δ = min(dist(pair_L, pair_R))
 pair_S = findMinSpanningPair(δ, P)
 return min(pair_L, pair_R, pair_S)
procedure findMinSpanningPair (δ, P):
S = select each p in P s.t |p_{n/2}.x-p.x| ≤ δ → O(n)
sort(S by increasing y values) → O(nlog(n))
minDist = +∞
minPair = null;
for i = 1 to S.length: → O(n)
 j = i+1 (compare S[i] to only the points above S[i])
 while (|S[j].y - S[i].y| ≤ δ):
 if (dist(S[i], S[j]) < minDist):
 minPair = (S[i], S[j]);
 minDist = dist(S[i], S[j])
 j++;
return minPair

Q: How many times does the while loop execute?
Claim: O(1) times
For a point p, how many times does while loop execute?

Obs: as many times as there are points in the $2\delta \times \delta$ rectangle.

Q: How many points can be in a $2\delta \times \delta$ rectangle?
A: As many as in the left $\delta \times \delta$ square + right $\delta \times \delta$ square.
Points in a $\delta \times \delta$ Square

Recall: Each point in the square is at least at distance δ.

Q1: How many can fit the lower triangle?

A: 3

no other point can be inside the triangle except the other two corners
Points in a $\delta \times \delta$ Square

Recall: Each point in the square is at least at distance δ.

Q1: How many can fit the lower triangle?
 A: 3

Q2: How many can fit the square?
 A: 4
For a point p, how many times does while loop execute?

Obs: as many times as there are points in the $2\delta \times \delta$ rectangle.

$\# \text{ points in the } 2\delta \times \delta \text{ rectangle } \leq 4 + 4 = 8$
procedure findMinSpanningPair (δ, P):
S = select each p in P s.t |P[n/2].x-p.x| ≤ δ
sort(S by increasing y values)
minDist = +∞
minPair = null;
for i = 1 to S.length:
j = i+1
 while (|S[j].y - S[i].y| ≤ δ):
 if (dist(S[i], S[j]) < minDist)
 minPair = (S[i], S[j])
 j++;
return minPair

Total: \(O(n \log(n)) \)
DC-CP 1: Runtime Analysis (1)

procedure DC-CP1(P sorted by x values):
 if (P.size ≤ 3) compare all & return closest;
 pair_L = DC-CP1(P[1,...,n/2])
 pair_R = DC-CP1(P[n/2+1,...,n])
 δ = \min(\text{dist}(pair_L, pair_R))
 pair_S = \text{findMinSpanningPair}(δ, P)
 return \min(pair_L, pair_R, pair_S)

Recursive part: Outside Recursive Calls: n \log(n) work.

\[T(n) = 2T(n/2) + n \log(n) \]

Exercise: Show by induction or recursion tree that total work of recursive part is \(O(n \log^2(n)) \).

Total Alg Work: \(O(n \log(n)) + O(n \log^2(n)) = O(n \log^2(n)) \).

Can improve to \(O(n \log(n)) \) by pre-sorting \(P \) also by \(y \).
Shamos’ DC Algorithm (1975) (1)

procedure Algorithm(P of n points):
- \(P_x\) = sort \(P\) by \(x\) values in increasing order
- \(P_y\) = sort \(P\) by \(y\) values in increasing order
- DC-Shamos\((P_x, P_y)\)

procedure DC-Shamos\((P_x, P_y)\):

if \((P_x\).size \leq 3\) …;
- \(P_yL\) = select from \(P_y\) points with \(x \leq P_x[n/2].x\)
- \(P_yR\) = select from \(P_y\) points with \(x > P_x[n/2].x\)
- \(\text{pair}_L\) = DC-Shamos\((P_x[1,\ldots,n/2], P_yL)\)
- \(\text{pair}_R\) = DC-Shamos\((P_x[n/2+1,\ldots,n], P_yR)\)
- \(\delta = \min(\text{dist}(\text{pair}_L, \text{pair}_R))\)
- \(\text{pair}_s\) = findMinSpanningPairShamos\((\delta, P_x, P_y)\)

return \(\min(\text{pair}_L, \text{pair}_R, \text{pair}_s)\)
Shamos’ DC Algorithm (1975) (2)

Don’t need to sort by \(y \)!

procedure findMinSpanningPairShamos(\(\delta, P_x, P_y \)):

\[
S = \text{select each } p \text{ in } P_y \text{ s.t } |P_x[n/2].x - p.x| \leq \delta
\]

\(\text{minDist} = +\infty \)

\(\text{minPair} = \text{null} \);

for \(i = 1 \) to \(S \text{.length} \):

\[j = i + 1 \]

while (\(|S[j].y - S[i].y| \leq \delta \)):

\[\text{if } (\text{dist}(S[i], S[j]) < \text{minDist}) : \]

\[\quad \text{minPair} = (S[i], S[j]) \]

\[j++; \]

return \(\text{minPair} \)

\textbf{Total: } O(n)
Runtime Analysis of Shamos’ Algorithm

Key Idea of Shamos: Avoid sorting by y values in each recursive call by pre-sorting P by y values.

Recursive part: Outside Recursive Calls: $O(n)$ work.

$$T(n) = 2T(n/2) + O(n)$$

By Master Thm, total: $O(n \log(n))$

Total Work for Shamos

$$O(n \log(n)) + O(n \log(n)) = O(n \log(n)).$$