Lectures 7 & 8: Greedy Algorithms 1 & 2

CS 341: Algorithms

Week 4
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Greedy Algorithms

- Algorithms that iteratively make
 - “short-sighted”, “locally optimum looking” decisions
 - hoping to output a good solution (hopefully optimum)
- Example: Coin Changing
<table>
<thead>
<tr>
<th>Greedy</th>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy to design</td>
<td>difficult to design</td>
</tr>
</tbody>
</table>
Greedy vs Divide-And-Conquer Algorithms

<table>
<thead>
<tr>
<th>Greedy</th>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy to design</td>
<td>difficult to design</td>
</tr>
<tr>
<td>easy to analyze run-time</td>
<td>difficult to analyze run-time</td>
</tr>
</tbody>
</table>

Greedy Algorithms
- Easy to design
- Easy to analyze run-time

Divide and Conquer Algorithms
- Difficult to design
- Difficult to analyze run-time
Greedy vs Divide-And-Conquer Algorithms

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy to design</td>
<td>easy to design</td>
<td>difficult to design</td>
</tr>
<tr>
<td>easy to analyze run-time</td>
<td>easy to analyze run-time</td>
<td>difficult to analyze run-time</td>
</tr>
<tr>
<td>difficult to prove correctness</td>
<td>difficult to prove correctness</td>
<td>easy to prove correctness</td>
</tr>
</tbody>
</table>
Two Common Correctness Proof Techniques

◆ Call greedy’s solution S_g, and let S be any other solution

1. “Greedy stays ahead”
 - Argue S_g is optimal/better than S at each step
 - Proof by induction

2. Exchange Arguments
 - Argue any S can be transformed into S_g step by step and without getting worse along the way

Warning: They’re common but not applicable to every greedy algorithm!
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Activity Selection

- **Input:** 1 resource (lecture room) & n requests (e.g. events)
 where each request i has a start time s(i) and finish time f(i).

- **Output:** accept a maximum # requests that don’t overlap each other

- **I.e:** Select a set S of requests s.t.

\[\forall (i, j) \text{ either } f(i) \leq s(j) \text{ or } f(j) \leq s(i) \]
Example (1)
Example (1)

- $S_1=\{r_1, r_5, r_7, r_9\}$ selects 4 activities and is maximal
Example (2)
Example (2)

$S_2=\{r_2, r_5, r_7, r_9\}$ also selects 4 activities and is maximal
Check: Other Non-overlapping Sets Contain ≤ 3 Requests
Possible Greedy Strategies (1)

- **Earliest-Starting-Request:** Pick the earliest starting request
- **Remove any overlapping request**
- **Repeat until no requests left**

![Graph showing time and requests](image_url)
Possible Greedy Strategies (1)

- **Earliest-Starting-Request:** Pick the earliest starting request
- **Remove any overlapping request**
- **Repeat until no requests left**

![Diagram showing possible greedy strategies](image-url)
Possible Greedy Strategies (1)

- Earliest-Starting-Request: Pick the earliest starting request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (1)

- Earliest-Starting-Request: Pick the earliest starting request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (1)

- Earliest-Starting-Request: Pick the earliest starting request
- Remove any overlapping request
- Repeat until no requests left

Earliest-Starting-Request:

- Pick the earliest starting request
- Remove any overlapping request
- Repeat until no requests left

Diagram:

- r_1
- r_3
- r_9

Time:

- 7
- 7:30
- 8:30
- 8:45
- ...
- ...
- ...
- ...
- ...
- 18:00
Possible Greedy Strategies (1)

- **Earliest-Starting-Request**: Pick the earliest starting request
- **Remove any overlapping request**
- **Repeat until no requests left**

- **Not optimal.**
- **Problem**: earliest starting request can be very long. Worst-case: as long as the entire timeline.
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left

![Diagram](image-url)
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left

Not optimal.
Problem: can intersect two non-overlapping jobs that could have been accepted
Possible Greedy Strategies (2)

◆ Shortest-Request: Pick the shortest request
◆ Remove any overlapping request
◆ Repeat until no requests left

Not optimal.
Problem: can intersect two non-overlapping jobs that could have been accepted
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left

Diagrams illustrating the ordering and timing of requests.
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left

Now: r_5, and r_7 overlap with 3 other requests
r_3, r_4, and r_6 overlap with 4 other requests
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left

Seems to work.
But it actually won’t always return the optimum one.
Counter Example For Strategy 3

- Method for designing a counter example:
 - Plant an optimal solution
 - Plant a bad request that strategy 3 will pick in the first selection.
 - Now: Make sure greedy picks the bad request
 - Bad request intersects with 2 other requests
 - Make sure every other request intersects with 3 or more.
Counter Example For Strategy 3
Now every remaining request intersects 3 other, so can pick any
Counter Example For Strategy 3

time
Similarly: every remaining request intersects 3 other
Counter Example For Strategy 3

Similarly: every remaining request intersects 3 other
Counter Example For Strategy 3

- Not optimal
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- **Earliest-Finishing-Request:** Pick the earliest finishing request
- **Remove any overlapping request**
- **Repeat until no requests left**

![Diagram showing Earliest-Finishing-Request strategy with requests r1, r2, r3, r4, r5, r6, r7, r8, r9 on a time axis from 7 to 1800.](image)
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- **Earliest-Finishing-Request**: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left

What's the intuition?
Q: What’s the earliest time at which 1 request can be “fulfilled”, i.e. accepted and executed?
Intuition

Q: What’s the earliest time at which 1 request can be “fulfilled”, i.e. accepted and executed?

A: Earliest finishing time of any job (e.g. 8:30am)
Q: What’s the earliest time at which 2 requests can be fulfilled?
Intuition

Q: What’s the earliest time at which 2 requests can be fulfilled?
Q2: Can we fulfill 2 requests by 8:30am?
A: No

![Diagram showing time intervals for requests and corresponding fulfillment times.]

- r1: From 7:00 to 7:30
- r2: From 8:00 to 8:30
- r3: From 9:00 to 9:30
- r4: From 10:00 to 10:30
- r5: From 11:00 to 11:30
- r6: From 12:00 to 12:30
- r7: From 1:00 to 1:30
- r8: From 2:00 to 2:30
- r9: From 3:00 to 3:30

Time intervals are marked as follows:
- 7:00-7:30
- 8:00-8:30
- 9:00-9:30
- 10:00-10:30
- 11:00-11:30
- 12:00-12:30
- 1:00-1:30
- 2:00-2:30
- 3:00-3:30

Fulfillment times:
- 7:30
- 8:45
- 8:30
- ...
Q: What’s the earliest time at which 2 requests can be fulfilled?
Q2: Can we accept 2 requests by 8:45am?
A: No
Q: What's the earliest time at which 2 requests can be fulfilled?
Q2: Can we accept 2 requests by r₅’s finishing time (say 11am)?
A: Yes: \{r₁, r₅\} or \{r₂, r₅\}
Q: What’s the earliest time at which 2 requests can be fulfilled?
Q2: Can we accept 2 requests by r₅’s finishing time (say 11am)?
A: Yes: \{r₁, r₅\} or \{r₂, r₅\}
Intuition

- Q: What’s the earliest time at which 2 requests can be fulfilled?
- Q2: Can we accept 2 requests by r_5’s finishing time (say 11am)?
- A: Yes: $\{r_1, r_5\}$ or $\{r_2, r_5\}$
Q: What’s the earliest time at which 3 requests can be fulfilled?
Q: What’s the earliest time at which 3 requests can be fulfilled?
Q2: Can we fulfill 3 requests by r_4 and r_6’s finishing time?
A: No
Intuition

Q: What’s the earliest time at which 3 requests can be fulfilled?
Q2: Can we fulfill 3 requests by r_3’s finishing time?
A: No

[Diagram showing time intervals for requests]
Q: What’s the earliest time at which 3 requests can be fulfilled?
Q2: Can we fulfill 3 requests by \(r_7 \)’s finishing time?
A: Yes = \{ r_1, r_5, r_7 \} or \{ r_2, r_5, r_7 \}
Intuition

Q: What’s the earliest time at which 3 requests can be fulfilled?
Q2: Can we fulfill 3 requests by r_7’s finishing time?
A: Yes = \{r_1, r_5, r_7\} or \{r_2, r_5, r_7\}
Q: What’s the earliest time at which 3 requests can be fulfilled?
Q2: Can we fulfill 3 requests by r_7’s finishing time?
A: Yes = \{r_1, r_5, r_7\} or \{r_2, r_5, r_7\}

Possible Claim: Earliest time that we can fulfill \(i\) jobs is the finishing time of the \(i\)-th job that earliest-ft greedy picks.

Looks like “Greedy is Staying Ahead”.
Key Claim: Greedy Stays Ahead

Let \(rg_1, rg_2, ..., rg_k \) be the \(k \) request that earliest-ft-greedy picks.

Key Claim: Earliest time that we can fulfill \(i \) requests is the \(f(rg_i) \).
(i.e. finishing time of the \(i \)-th request that earliest-ft-greedy picks)

Claim of Optimality: If Key Claim is true, then earliest-ft-greedy is optimal!

Why?
Proof of Optimality

Suppose there is another selection that accepts ≥ k+1 requests.

Call those requests rh₁ ..., rhₖ₊₁, ... for “request-hypothetical”

\[
\begin{align*}
\text{time} \\
\hline
\text{rg₁} & \text{rg₂} & \text{rg₃} & \ldots & \text{rgₖ} \\
\hline
\hline
\text{rh₁} & \text{rh₂} & \text{rh₃} & \ldots & \text{rhₖ} & \text{rhₖ₊₁}
\end{align*}
\]

By Key Claim, \(f(\text{rhₖ}) \geq f(\text{rgₖ}) \).

Which means \(s(\text{rhₖ₊₁}) \) and \(f(\text{rhₖ₊₁}) \) are both \(\geq f(\text{rgₖ}) \).

But such a request \(k+1 \) cannot exist b/c earliest-ft-greedy would not have stopped at \(k \) and have picked it as \(k+1^{\text{st}} \) request as well.
Proof of Key Claim

Upshot: Just a repetition of the proof of optimality!

Let \(rg_1, rg_2, \ldots, rg_k \) be the \(k \) request that earliest-ft-greedy picks.

Key Claim: Earliest time that we can fulfill \(i \) requests is \(f(rg_i) \).

Proof by Induction on \(i \):

Base Case \(i=1 \): Holds b/c \(f(rg_1) \) is the earliest finishing time of all requests.

Inductive Hypothesis. Suppose claim holds for \(i=t \). (Now show holds for \(i=t+1 \)).

Suppose for purpose of contradiction another schedule \(rh_1, rh_2, \ldots, rh_t, rh_{t+1} \) is s.t.

\[
f(rh_{t+1}) < f(rg_{t+1}).\]

We know that \(f(rg_t) \leq f(rh_t) \leq s(rh_{t+1}) \leq f(rh_{t+1}) \leq f(rg_{t+1}) \).

This is a contradiction b/c then \(rh_{t+1} \) does not overlap with \(rg_1, \ldots, rg_t \) and by the greedy criterion earliest-ft-greedy would pick \(rh_{t+1} \) over \(rg_{t+1} \) but didn’t.
procedure earliestFTGreedy(Array R of size n):
 sort(R by finishing times)
 Sg = { R[0] }; // insert the first job
 for (i = 1; i < n; i++):
 if (R[i].start < Sg.last.finish) {
 i++;
 } else {
 Sg.insert(R[i]);
 }
 }
 return Sg

Runtime: O(nlog(n))
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Scheduling Problem 1

◆ **Input:** A set of n jobs J. Each job j_i has length l_i

- Job 1: l_1
- Job 2: l_2
- ...
- Job n: l_n

◆ **Output:** A schedule of the jobs on a processor

\[
\sum_{i=1}^{n} C_i \quad \text{s.t.:} \quad \sum_{i=1}^{n} C_i \quad \text{completion time of job } i
\]

is minimum over all possible $n!$ schedules.
Completion Time of Job i

Definition: time when job$_i$ finishes

i.e., sum of scheduled job lengths up to and including job$_i$

$S_1: J_3, J_2, J_1, J_4$

Total Cost of S_1: $1 + 6 + 9 + 10 = 26$
Another Example Schedule

<table>
<thead>
<tr>
<th></th>
<th>J₃</th>
<th>J₂</th>
<th>J₁</th>
<th>J₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Cost of **S₁**: 1 + 6 + 9 + 10 = 26

<table>
<thead>
<tr>
<th></th>
<th>J₃</th>
<th>J₁</th>
<th>J₄</th>
<th>J₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₂</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Cost of **S₂**: 1 + 4 + 5 + 10 = 20

Goal is to find the min cost schedule!
Let’s Start Simple

What are all possible schedules?

S1

- Time: 3
- Task: J1
- Time: 5
- Task: J2

S2

- Time: 5
- Task: J2
- Time: 3
- Task: J1

Total Cost:

- S1: 3 + 8 = 11
- S2: 5 + 8 = 13
Why Put One Job In Front of Another?

◆ Observation:

Shorter jobs have less impact on the completion times of future jobs
Greedy Scheduling Algorithm

Schedule jobs by increasing lengths

procedure greedySchedule(Array J of size n):
 return sort(J)

Run-time $O(n\log(n))$!
Greedy Algorithm 1

Ex:

\[
\begin{align*}
J_1 & : 3 \\
J_2 & : 5 \\
J_3 & : 1 \\
J_4 & : 1
\end{align*}
\]

Total Cost of \(S_g\):
\[
1 + 2 + 5 + 10 = 18
\]
Comparing S_g to Previous Schedules

S_1

$\begin{array}{cccc}
J_3 & J_2 & J_1 & J_4 \\
1 & 5 & 3 & 1 \\
\end{array}$

S_2

$\begin{array}{cccc}
J_3 & J_1 & J_4 & J_2 \\
1 & 3 & 1 & 5 \\
\end{array}$

S_g

$\begin{array}{cccc}
J_3 & J_4 & J_1 & J_2 \\
1 & 1 & 3 & 5 \\
\end{array}$

The time intervals are:

S_1: 26

S_2: 20

S_g: 18
“Greedy stays ahead” proof:
- Induct on the cost of the first k jobs executed
- Argue S_g beats everyone else at each step

Let $S[i]$: the ith job that a schedule S executes
- E.g., $S_g[1]$ is the first job S_g executes

Let $\text{Cost}(S, i)$: be the sum of the costs of the first i jobs that schedule S executes.
- E.g., $\text{Cost}(S_g, 3)$ is the sum of completion times
 \[S_g[1], S_g[2], S_g[3]: S_g[1] + (S_g[1]+S_g[2]) + (S_g[1]+S_g[2]+S_g[3]) \]

Goal: Argue $\forall S, \text{Cost}(S_g, n) \leq \text{Cost}(S, n)$ by inducting on i
Proof of Correctness (2)

- **Base Case:** \(\forall S, \text{Cost}(S_g, 1) = S_g[1] \leq \text{Cost}(S, 1) \) since \(S_g[1] \) is the shortest length job

- **Inductive Hypothesis:** \(\text{Cost}(S_g, k-1) \leq \text{Cost}(S, k-1) \)

\[
\text{Cost}(S_g, k) = \text{Cost}(S_g, k-1) + \sum_{i=1}^{k} \text{length}(S_g[i])
\]

\[
\leq \leq \leq
\]

\[
\text{Cost}(S, k) = \text{Cost}(S, k-1) + \sum_{i=1}^{k} \text{length}(S[i])
\]

By inductive hypothesis

By greedy criterion of \(S_g \)

QED
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Scheduling Problem 2

◆ **Input:** Now each job \(i \) has length \(l_i \) AND weight \(w_i \)

<table>
<thead>
<tr>
<th>Job 1</th>
<th>(l_1, w_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job 2</td>
<td>(l_2, w_2)</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Job n</td>
<td>(l_n, w_n)</td>
</tr>
</tbody>
</table>

◆ **Output:** A schedule of the jobs on a processor

\[
\sum_{i=1}^{n} w_i C_i \quad \text{weighted completion time of job } i
\]

is minimum over all possible n! schedules.
Example Schedule And Cost

Total Cost of S_1:
$3 \times 1 + 2 \times 6 + 1 \times 9 + 1 \times 10 = 34$
Q1: What To Do When Weights Are Same?

Same As Un-weighted Case → Shorter lengths first

Previous Greedy Algorithm is Optimal
Q2: What To Do When Lengths Are Same?

Higher weights first

\[J_1 \quad \text{l=3 w=2} \]
\[J_2 \quad \text{l=3 w=3} \]
\[J_3 \quad \text{l=3 w=1} \]
\[J_4 \quad \text{l=3 w=4} \]

minimize: \[\sum_{i=1}^{n} w_i C_i \]

Higher weights first
Q3: What To Do With Mixed L & W?

- Say J_1 is shorter and also has less weight than J_2?

<table>
<thead>
<tr>
<th>J_1</th>
<th>$l=3$</th>
<th>$w=1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_2</td>
<td>$l=5$</td>
<td>$w=2$</td>
</tr>
</tbody>
</table>

- Unclear:
 - Intuition for Q1 says J_1 should come first
 - Intuition for Q2 says J_2 should come first

Ideal Scenario: Combine l and w into a single score that combines both intuitions and we could order by that score

$$\text{minimize: } \sum_{i=1}^{n} w_i C_i$$
Possible Combined Scores?

- The combined score $f(l_i, w_i)$ should satisfy:
 1. If weights same \rightarrow shorter lengths get smaller scores
 2. If lengths same \rightarrow larger weights get smaller scores

- Guess 1: $f_1(l_i, w_i) = l_i - w_i$
- Guess 2: $f_2(l_i, w_i) = l_i / w_i$

*Is either one correct?
Let’s First Try To Eliminate One Guess

\(J_1 \)
\[l=3 \quad w=1 \]

\(J_2 \)
\[l=5 \quad w=2 \]

\[f_1 = l_i - w_i \quad f_2 = l_i/w_i \]

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_1) ((l=3), (w=1))</td>
<td></td>
</tr>
<tr>
<td>(J_2) ((l=5), (w=2))</td>
<td></td>
</tr>
</tbody>
</table>

SCHEDULE

TOTAL COST
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th></th>
<th>(l)</th>
<th>(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_1)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(J_2)</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

\[f_1 = l_i - w_i \]
\[f_2 = l_i / w_i \]

<table>
<thead>
<tr>
<th></th>
<th>(f_1)</th>
<th>(f_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_1) ((l=3, w=1))</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(J_2) ((l=5, w=2))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCHEDULE

TOTAL COST
Let’s First Try To Eliminate One Guess

Let’s first try to eliminate one guess. For the given tasks:

\[J_1 \quad l=3 \quad w=1 \]
\[J_2 \quad l=5 \quad w=2 \]

We can compute the following:

\[f_1 = l_i - w_i \]
\[f_2 = l_i / w_i \]

<table>
<thead>
<tr>
<th>Task</th>
<th>(f_1)</th>
<th>(f_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_1) ((l=3, w=1))</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(J_2) ((l=5, w=2))</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Schedule

Total Cost
Let’s First Try To Eliminate One Guess

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1</td>
<td>l=3</td>
<td>w=1</td>
</tr>
<tr>
<td>J_2</td>
<td>l=5</td>
<td>w=2</td>
</tr>
</tbody>
</table>

f₁ = $l_i - w_i$

f₂ = l_i/w_i

<table>
<thead>
<tr>
<th></th>
<th>f₁</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1 (l=3, w=1)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>J_2 (l=5, w=2)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

SCHEDULE

$J_1 :: J_2$

TOTAL COST
Let’s First Try To Eliminate One Guess

\[f_1 = l_i - w_i \]
\[f_2 = l_i / w_i \]

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_1) (l=3, w=1)</td>
<td>2</td>
</tr>
<tr>
<td>(J_2) (l=5, w=2)</td>
<td>3</td>
</tr>
</tbody>
</table>

Schedule: \(J_1::J_2 \)

Total Cost: \[1 \times 3 + 2 \times 8 = 19 \]
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th>Schedule</th>
<th>J₁ (l=3, w=1)</th>
<th>J₂ (l=5, w=2)</th>
<th>TOTAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f₁ = lᵢ - wᵢ</td>
<td>f₂ = lᵢ/wᵢ</td>
<td></td>
</tr>
<tr>
<td>J₁ (l=3, w=1)</td>
<td>2</td>
<td>3</td>
<td>13 + 28</td>
</tr>
<tr>
<td>J₂ (l=5, w=2)</td>
<td>3</td>
<td></td>
<td>= 19</td>
</tr>
</tbody>
</table>
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th></th>
<th>f₁ = lᵢ - wᵢ</th>
<th>f₂ = lᵢ/wᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>J₁ (l=3, w=1)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>J₂ (l=5, w=2)</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

SCHEDULE

J₁:::J₂

TOTAL COST

1*3 + 2*8 = 19
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th></th>
<th>$f_1 = l_i - w_i$</th>
<th>$f_2 = l_i/w_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1 (l=3, w=1)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>J_2 (l=5, w=2)</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

SCHEDULE

$J_1::J_2$
$J_2::J_1$

TOTAL COST

$1 \times 3 + 2 \times 8 = 19$
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th></th>
<th>J₁</th>
<th>J₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>w</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>f₁ = lᵢ - wᵢ</th>
<th>f₂ = lᵢ/wᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>J₁ (l=3, w=1)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>J₂ (l=5, w=2)</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

SCHEDULE

<table>
<thead>
<tr>
<th></th>
<th>J₁::J₂</th>
<th>J₂::J₁</th>
</tr>
</thead>
</table>

TOTAL COST

| | 1*3 + 2*8 = 19 | 2*5 + 1*8 = 18 |

Guess 1 is certainly not optimal.

Is Guess 2 optimal?
Greedy Weighted Scheduling Algorithm

Schedule jobs by increasing l_i/w_i scores

procedure greedySchedule(Array J of size n):
 return sort(J by l_i/w_i scores)

Run-time $O(n\log(n))$!
Greedy Weighted Scheduling Algorithm

Total Cost of S_g:
$3 \times 1 + 1 \times 2 + 2 \times 7 + 1 \times 10 = 29$
Proof of Correctness (1)

◆ By Exchange Argument:
 - Argue *any S can be transformed into S_g* step by step and *without getting worse along the way*

◆ Let’s rename jobs so that S_g schedules jobs in order:

 \[J_1, J_2, ..., J_n \]

 i.e., J_1 happens to be the job with smallest l/w ratio

◆ Therefore S_g = J_1::J_2::...::J_n
Proof of Correctness (2)

◆ Consider any other schedule $S \neq S_g$

◆ Claim: In $S = J_{s1}::J_{s2}::...::J_{sn}$ there is a job k, right after a job i where $k < i$.

$$S_g: J_1 \quad J_2 \quad J_3 \quad ... \quad J_n$$

$$l_1 w_1 \quad l_2 w_2 \quad l_3 w_3 \quad ... \quad l_n w_n$$

$$S: J_1 \quad J_9 \quad J_6 \quad ...$$

$$l_1 w_1 \quad ... \quad l_9 w_9 \quad l_6 w_6 \quad ...$$

Exchange J_9 with J_6
Proof of Correctness (3)

S'

Exchange J_{11} with J_8

Exchange J_8 with J_9

S''
Completing the Proof

- Recall Claim: In S=J_{s1}::J_{s2}::...::J_{sn} there is a job k, right after a job i where k < i.

- \textbf{Q: How does the cost of S change when we swap i and j?}

\[\sum_{i=1}^{n} w_i C_i \]

By renaming of jobs and k < i => \(l_k/w_k \leq l_i/w_i \) => \(w_i l_k \leq w_k l_i \)

QED