
Lecture 1: Computational Models, Time Complexity
& An Example

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 7, 2023

1 / 43



Overview

Computational Models

Time Complexity & Efficiency

Examples: 2SUM & 3SUM

Acknowledgements

2 / 43



Computational Models
Main Idea: a computational model should take into account all
constraints of your machine, and account for the scarcest resource(s).

Word RAM:
1 Memory modeled as array (access any position “unit time”)
2 Each entry of the array is a word with pre-specified size.
3 Each word operation takes “unit time”

addition, multiplication, subtraction, division
read/write

Bit Complexity (with word RAM):
1 when working with numerical algorithms, numbers may grow and no

longer fit in one word - so need to account for that

Other models exist based on different resource constraints and
assumptions (CS 365, CS 466 onwards)

Turing Machines
Circuits
Parallel computation
Online, streaming
many more

3 / 43



Computational Models
Main Idea: a computational model should take into account all
constraints of your machine, and account for the scarcest resource(s).

Word RAM:
1 Memory modeled as array (access any position “unit time”)
2 Each entry of the array is a word with pre-specified size.
3 Each word operation takes “unit time”

addition, multiplication, subtraction, division
read/write

Total time ↔ # elementary operations

Bit Complexity (with word RAM):
1 when working with numerical algorithms, numbers may grow and no

longer fit in one word - so need to account for that
Other models exist based on different resource constraints and
assumptions (CS 365, CS 466 onwards)

Turing Machines
Circuits
Parallel computation
Online, streaming
many more

4 / 43



Computational Models
Main Idea: a computational model should take into account all
constraints of your machine, and account for the scarcest resource(s).

Word RAM:
1 Memory modeled as array (access any position “unit time”)
2 Each entry of the array is a word with pre-specified size.
3 Each word operation takes “unit time”

addition, multiplication, subtraction, division
read/write

Total time ↔ # elementary operations

Finer distinction: word RAM and unit cost models.
unit cost model ↔ one assumes that words have unbounded size
word RAM ↔ words have a pre-specified size

Bit Complexity (with word RAM):
1 when working with numerical algorithms, numbers may grow and no

longer fit in one word - so need to account for that
Other models exist based on different resource constraints and
assumptions (CS 365, CS 466 onwards)

Turing Machines
Circuits
Parallel computation
Online, streaming
many more

5 / 43



Computational Models
Main Idea: a computational model should take into account all
constraints of your machine, and account for the scarcest resource(s).

Word RAM:
1 Memory modeled as array (access any position “unit time”)
2 Each entry of the array is a word with pre-specified size.
3 Each word operation takes “unit time”

addition, multiplication, subtraction, division
read/write

Assumptions
1 Alphabet fits into one word
2 Input fits in memory
3 No huge numbers in middle of computation

Bit Complexity (with word RAM):
1 when working with numerical algorithms, numbers may grow and no

longer fit in one word - so need to account for that
Other models exist based on different resource constraints and
assumptions (CS 365, CS 466 onwards)

Turing Machines
Circuits
Parallel computation
Online, streaming
many more

6 / 43



Computational Models
Main Idea: a computational model should take into account all
constraints of your machine, and account for the scarcest resource(s).

Word RAM:
1 Memory modeled as array (access any position “unit time”)
2 Each entry of the array is a word with pre-specified size.
3 Each word operation takes “unit time”

addition, multiplication, subtraction, division
read/write

Assumptions
1 Alphabet fits into one word
2 Input fits in memory
3 No huge numbers in middle of computation

Example
1 Input: graph with n vertices
2 vertex labeled from set {1, · · · , n}, edge with pair from {1, · · · , n}2

2 log n bits to store vertex or edge (assume word size O(log n))

3 basic operations (vertex comparison, accessing vertex/edge, etc.)
constant time

Bit Complexity (with word RAM):
1 when working with numerical algorithms, numbers may grow and no

longer fit in one word - so need to account for that
Other models exist based on different resource constraints and
assumptions (CS 365, CS 466 onwards)

Turing Machines
Circuits
Parallel computation
Online, streaming
many more

7 / 43



Computational Models
Main Idea: a computational model should take into account all
constraints of your machine, and account for the scarcest resource(s).

Word RAM:
1 Memory modeled as array (access any position “unit time”)
2 Each entry of the array is a word with pre-specified size.
3 Each word operation takes “unit time”

addition, multiplication, subtraction, division
read/write

Bit Complexity (with word RAM):
1 when working with numerical algorithms, numbers may grow and no

longer fit in one word - so need to account for that
2 In this case, assume word is a bit (i.e. in {0, 1})

cost of operation ↔ # bit-operations

Other models exist based on different resource constraints and
assumptions (CS 365, CS 466 onwards)

Turing Machines
Circuits
Parallel computation
Online, streaming
many more

8 / 43



Computational Models
Main Idea: a computational model should take into account all
constraints of your machine, and account for the scarcest resource(s).

Word RAM:
1 Memory modeled as array (access any position “unit time”)
2 Each entry of the array is a word with pre-specified size.
3 Each word operation takes “unit time”

addition, multiplication, subtraction, division
read/write

Bit Complexity (with word RAM):
1 when working with numerical algorithms, numbers may grow and no

longer fit in one word - so need to account for that

Other models exist based on different resource constraints and
assumptions (CS 365, CS 466 onwards)

Turing Machines
Circuits
Parallel computation
Online, streaming
many more

9 / 43



Computational Models

Time Complexity & Efficiency

Examples: 2SUM & 3SUM

Acknowledgements

10 / 43



Asymptotics recap
Given two functions f , g : N → N

f (n) = O(g(n)) if there is a constant C s.t.

lim
n→∞

f (n)

g(n)
≤ C

Examples:
π · n3 = O(n3)
1010 · n2 log n = O(n3)
10n3 + 100n2 + n = O(n3)

f (n) = Ω(g(n)) if there is a constant c s.t.

lim
n→∞

f (n)

g(n)
≥ c

f (n) = Θ(g(n)) if f (n) = O(n) and f (n) = Ω(g(n)).
Equivalently, there is constant C such that:

lim
n→∞

f (n)

g(n)
= C

11 / 43



Asymptotics recap
Given two functions f , g : N → N

f (n) = O(g(n)) if there is a constant C s.t.

lim
n→∞

f (n)

g(n)
≤ C

f (n) = Ω(g(n)) if there is a constant c s.t.

lim
n→∞

f (n)

g(n)
≥ c

Examples:
π · n3 = Ω(n3)
1010 · n3 = Ω(n2 log n)
10n3 + 100n2 + n = Ω(n3)

f (n) = Θ(g(n)) if f (n) = O(n) and f (n) = Ω(g(n)).
Equivalently, there is constant C such that:

lim
n→∞

f (n)

g(n)
= C

12 / 43



Asymptotics recap
Given two functions f , g : N → N

f (n) = O(g(n)) if there is a constant C s.t.

lim
n→∞

f (n)

g(n)
≤ C

f (n) = Ω(g(n)) if there is a constant c s.t.

lim
n→∞

f (n)

g(n)
≥ c

f (n) = Θ(g(n)) if f (n) = O(n) and f (n) = Ω(g(n)).
Equivalently, there is constant C such that:

lim
n→∞

f (n)

g(n)
= C

Examples:
1010 · n3 = Θ(n3)
10n3 + 100n2 + n = Θ(n3)

13 / 43



Asymptotics recap

f (n) = o(g(n)) if

lim
n→∞

f (n)

g(n)
= 0

Examples:

1010 · n2 = o(n3)
10n3 + 100n2 + n = o(2n)
10n3 + 100n2 + n = o(n3 log n)

f (n) = ω(g(n)) if

lim
n→∞

f (n)

g(n)
= ∞

14 / 43



Asymptotics recap

f (n) = o(g(n)) if

lim
n→∞

f (n)

g(n)
= 0

f (n) = ω(g(n)) if

lim
n→∞

f (n)

g(n)
= ∞

Examples:

10−10 · n3 = ω(n2)
10n3 + 100n2 + n = ω(n)

15 / 43



Practice questions

Compare the following functions:

1 n5 vs n5/ log log n

2 2
√
n vs nlog n

3 n! vs 2n

4 nn vs 2n log n

16 / 43



Worst case complexity

An algorithm “runs in time” O(f (n)) if there is a constant C > 0 s.t.,
on inputs of size n, it requires at most C · f (n) elementary operations
to output a correct answer.

“Mathematically:” given algorithm A and input x , let TA(x) be
running time of algorithm A on input x .

Worst-case running time is:

TA(n) = max
size(x)=n

TA(x)

Asymptotic notation allows us to focus on main growth of complexity

ignore leading constant
ignore lower order terms

For instance:

binary search runs in time O(log n)
sorting (using say merge-sort) runs in time O(n log n)

17 / 43



Worst case complexity

An algorithm “runs in time” O(f (n)) if there is a constant C > 0 s.t.,
on inputs of size n, it requires at most C · f (n) elementary operations
to output a correct answer.

“Mathematically:” given algorithm A and input x , let TA(x) be
running time of algorithm A on input x .

Worst-case running time is:

TA(n) = max
size(x)=n

TA(x)

Asymptotic notation allows us to focus on main growth of complexity

ignore leading constant
ignore lower order terms

For instance:

binary search runs in time O(log n)
sorting (using say merge-sort) runs in time O(n log n)

18 / 43



Worst case complexity

An algorithm “runs in time” O(f (n)) if there is a constant C > 0 s.t.,
on inputs of size n, it requires at most C · f (n) elementary operations
to output a correct answer.

“Mathematically:” given algorithm A and input x , let TA(x) be
running time of algorithm A on input x .

Worst-case running time is:

TA(n) = max
size(x)=n

TA(x)

Asymptotic notation allows us to focus on main growth of complexity

ignore leading constant
ignore lower order terms

For instance:

binary search runs in time O(log n)
sorting (using say merge-sort) runs in time O(n log n)

19 / 43



Worst case complexity

An algorithm “runs in time” O(f (n)) if there is a constant C > 0 s.t.,
on inputs of size n, it requires at most C · f (n) elementary operations
to output a correct answer.

“Mathematically:” given algorithm A and input x , let TA(x) be
running time of algorithm A on input x .

Worst-case running time is:

TA(n) = max
size(x)=n

TA(x)

Asymptotic notation allows us to focus on main growth of complexity

ignore leading constant
ignore lower order terms

For instance:

binary search runs in time O(log n)
sorting (using say merge-sort) runs in time O(n log n)

20 / 43



Efficient algorithms

with concept of asymptotic analysis, when will an algorithm be
“efficient”?

An algorithm is “efficient” when there is a constant γ > 0 such that
the algorithm runs in time O(nγ)

Polynomial time.

Of course, the smaller the constant γ, the more efficient our
algorithm will be.

Why care so much about polynomial time?

Composition (i.e. can use subroutines)
For many problems, “trivial” algorithms run in exponential time (i.e.

2n
O(1)

)

21 / 43



Efficient algorithms

with concept of asymptotic analysis, when will an algorithm be
“efficient”?

An algorithm is “efficient” when there is a constant γ > 0 such that
the algorithm runs in time O(nγ)

Polynomial time.

Of course, the smaller the constant γ, the more efficient our
algorithm will be.

Why care so much about polynomial time?

Composition (i.e. can use subroutines)
For many problems, “trivial” algorithms run in exponential time (i.e.

2n
O(1)

)

22 / 43



Efficient algorithms

with concept of asymptotic analysis, when will an algorithm be
“efficient”?

An algorithm is “efficient” when there is a constant γ > 0 such that
the algorithm runs in time O(nγ)

Polynomial time.

Of course, the smaller the constant γ, the more efficient our
algorithm will be.

Why care so much about polynomial time?

Composition (i.e. can use subroutines)
For many problems, “trivial” algorithms run in exponential time (i.e.

2n
O(1)

)

23 / 43



“Practical” algorithms

“Practice” depends on the setting that one is working on, thus it is
loosely defined

some settings this means nearly linear time (O(n logc n))
sometimes even sub-linear time! (CS 466)
other times fast for most inputs
other times for small enough inputs (leading constant matters)
etc.

24 / 43



“Practical” algorithms

“Practice” depends on the setting that one is working on, thus it is
loosely defined

some settings this means nearly linear time (O(n logc n))
sometimes even sub-linear time! (CS 466)
other times fast for most inputs
other times for small enough inputs (leading constant matters)
etc.

But in all the above, always taking care of the leading constants!

25 / 43



“Practical” algorithms

“Practice” depends on the setting that one is working on, thus it is
loosely defined

some settings this means nearly linear time (O(n logc n))
sometimes even sub-linear time! (CS 466)
other times fast for most inputs
other times for small enough inputs (leading constant matters)
etc.

But in all the above, always taking care of the leading constants!

For instance, an algorithm running in time 100n3 is much better
(in practice) than one which runs in time 21000 · n.

26 / 43



Computational Models

Time Complexity & Efficiency

Examples: 2SUM & 3SUM

Acknowledgements

27 / 43



3-SUM problem

Input: Set of integers {a1, . . . , an}, integer c

Output:

{
YES , if ∃ i , j , k ∈ [n] such that ai + aj + ak = c

NO, otherwise

Naive algorithm: for each triple i , j , k , check whether ai + aj + ak = c

Running time: O(n3) (4 ops to check each triple)

Can we do better?

Less naive:
1 Sort the set of numbers, so can assume we have a1 ≤ a2 ≤ · · · ≤ an
2 For each pair i , j , let bi,j = c − ai − aj
3 Binary search to check if there is k such that ak = bi,j

Running time: O(n2 log n + n log n) = O(n2 log n)

Can we do better?

28 / 43



3-SUM problem

Input: Set of integers {a1, . . . , an}, integer c

Output:

{
YES , if ∃ i , j , k ∈ [n] such that ai + aj + ak = c

NO, otherwise

Naive algorithm: for each triple i , j , k , check whether ai + aj + ak = c

Running time: O(n3) (4 ops to check each triple)

Can we do better?

Less naive:
1 Sort the set of numbers, so can assume we have a1 ≤ a2 ≤ · · · ≤ an
2 For each pair i , j , let bi,j = c − ai − aj
3 Binary search to check if there is k such that ak = bi,j

Running time: O(n2 log n + n log n) = O(n2 log n)

Can we do better?

29 / 43



3-SUM problem

Input: Set of integers {a1, . . . , an}, integer c

Output:

{
YES , if ∃ i , j , k ∈ [n] such that ai + aj + ak = c

NO, otherwise

Naive algorithm: for each triple i , j , k , check whether ai + aj + ak = c

Running time: O(n3) (4 ops to check each triple)

Can we do better?

Less naive:
1 Sort the set of numbers, so can assume we have a1 ≤ a2 ≤ · · · ≤ an
2 For each pair i , j , let bi,j = c − ai − aj
3 Binary search to check if there is k such that ak = bi,j

Running time: O(n2 log n + n log n) = O(n2 log n)

Can we do better?

30 / 43



Last attempt

Sort the set of numbers, so can assume we have a1 ≤ a2 ≤ · · · ≤ an

For each k ∈ [n], let bk := c − ak

Decide if there are i , j ∈ [n] such that ai + aj = bk

2-SUM problem: given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n]
such that ai + aj = b?

Running time = O(n × (running time for 2-SUM) + n log n)

31 / 43



Last attempt

Sort the set of numbers, so can assume we have a1 ≤ a2 ≤ · · · ≤ an

For each k ∈ [n], let bk := c − ak

Decide if there are i , j ∈ [n] such that ai + aj = bk

2-SUM problem: given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n]
such that ai + aj = b?

Running time = O(n × (running time for 2-SUM) + n log n)

32 / 43



Last attempt

Sort the set of numbers, so can assume we have a1 ≤ a2 ≤ · · · ≤ an

For each k ∈ [n], let bk := c − ak

Decide if there are i , j ∈ [n] such that ai + aj = bk

2-SUM problem: given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n]
such that ai + aj = b?

if we can solve the 2-SUM problem, then can solve 3-SUM by
“calling” 2-SUM for each k ∈ [n]

Reduction!

Running time = O(n × (running time for 2-SUM) + n log n)

33 / 43



Last attempt

Sort the set of numbers, so can assume we have a1 ≤ a2 ≤ · · · ≤ an

For each k ∈ [n], let bk := c − ak

Decide if there are i , j ∈ [n] such that ai + aj = bk

2-SUM problem: given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n]
such that ai + aj = b?

if we can solve the 2-SUM problem, then can solve 3-SUM by
“calling” 2-SUM for each k ∈ [n]

Reduction!

Running time = O(n × (running time for 2-SUM) + n log n)

34 / 43



Last attempt

Sort the set of numbers, so can assume we have a1 ≤ a2 ≤ · · · ≤ an

For each k ∈ [n], let bk := c − ak

Decide if there are i , j ∈ [n] such that ai + aj = bk

2-SUM problem: given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n]
such that ai + aj = b?

if we can solve the 2-SUM problem, then can solve 3-SUM by
“calling” 2-SUM for each k ∈ [n]

Reduction!

Running time = O(n × (running time for 2-SUM) + n log n)

Can we do 2-SUM with running time better than O(n log n)?

35 / 43



2-SUM
given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n] such that
ai + aj = b?

Idea: see board
Algorithm:

1 Write βi := b − ai for each i ∈ [n], and let j , t ∈ [n] be counters,
initially set to j = 1 and t = n.

2 While t > 0:
if βj > at , then j ← j + 1
if βj = at , then return YES
else (i.e. βj < at), then t ← t − 1

3 Return NO

Running time: n executions of the loop, each loop iteration takes at
most 2 operations.

Thus: O(n)

So the running time of our last 3-SUM algorithm is

O(n2 + n log n) = O(n2)

36 / 43



2-SUM
given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n] such that
ai + aj = b?

Idea: see board

Algorithm:
1 Write βi := b − ai for each i ∈ [n], and let j , t ∈ [n] be counters,

initially set to j = 1 and t = n.
2 While t > 0:

if βj > at , then j ← j + 1
if βj = at , then return YES
else (i.e. βj < at), then t ← t − 1

3 Return NO

Running time: n executions of the loop, each loop iteration takes at
most 2 operations.

Thus: O(n)

So the running time of our last 3-SUM algorithm is

O(n2 + n log n) = O(n2)

37 / 43



2-SUM
given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n] such that
ai + aj = b?

Idea: see board

Algorithm:
1 Write βi := b − ai for each i ∈ [n], and let j , t ∈ [n] be counters,

initially set to j = 1 and t = n.
2 While t > 0:

if βj > at , then j ← j + 1
if βj = at , then return YES
else (i.e. βj < at), then t ← t − 1

3 Return NO

Running time: n executions of the loop, each loop iteration takes at
most 2 operations.

Thus: O(n)

So the running time of our last 3-SUM algorithm is

O(n2 + n log n) = O(n2)

38 / 43



2-SUM
given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n] such that
ai + aj = b?

Idea: see board

Algorithm:
1 Write βi := b − ai for each i ∈ [n], and let j , t ∈ [n] be counters,

initially set to j = 1 and t = n.
2 While t > 0:

if βj > at , then j ← j + 1
if βj = at , then return YES
else (i.e. βj < at), then t ← t − 1

3 Return NO

Running time: n executions of the loop, each loop iteration takes at
most 2 operations.

Thus: O(n)

So the running time of our last 3-SUM algorithm is

O(n2 + n log n) = O(n2)

39 / 43



2-SUM
given a1 ≤ a2 ≤ · · · ≤ an and b, are there i , j ∈ [n] such that
ai + aj = b?

Idea: see board

Algorithm:
1 Write βi := b − ai for each i ∈ [n], and let j , t ∈ [n] be counters,

initially set to j = 1 and t = n.
2 While t > 0:

if βj > at , then j ← j + 1
if βj = at , then return YES
else (i.e. βj < at), then t ← t − 1

3 Return NO

Running time: n executions of the loop, each loop iteration takes at
most 2 operations.

Thus: O(n)

So the running time of our last 3-SUM algorithm is

O(n2 + n log n) = O(n2)

40 / 43



Conclusion

Computational models (basis for modeling computation)

Running time dependent on the model

Efficient algorithms (beating exhaustive search)

Reductions

flavour of course

41 / 43



Acknowledgement

Based on Lap Chi’s first lecture

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L01.pdf

42 / 43

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L01.pdf


References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

43 / 43


	Computational Models
	Time Complexity & Efficiency
	Examples: 2SUM & 3SUM
	Acknowledgements

