Lecture 1: Computational Models, Time Complexity \& An Example

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

September 7, 2023

Overview

- Computational Models
- Time Complexity \& Efficiency
- Examples: 2SUM \& 3SUM
- Acknowledgements

Computational Models

Main Idea: a computational model should take into account all constraints of your machine, and account for the scarcest resource(s).

Computational Models

Main Idea: a computational model should take into account all constraints of your machine, and account for the scarcest resource(s).

- Word RAM:
(1) Memory modeled as array (access any position "unit time")
(2) Each entry of the array is a word with pre-specified size.
(3) Each word operation takes "unit time"
- addition, multiplication, subtraction, division
- read/write

Total time $\leftrightarrow \#$ elementary operations

Computational Models

Main Idea: a computational model should take into account all constraints of your machine, and account for the scarcest resource(s).

- Word RAM:
(1) Memory modeled as array (access any position "unit time")
(2) Each entry of the array is a word with pre-specified size.
(3) Each word operation takes "unit time"
- addition, multiplication, subtraction, division
- read/write

Total time $\leftrightarrow \#$ elementary operations

Finer distinction: word RAM and unit cost models.

- unit cost model \leftrightarrow one assumes that words have unbounded size
- word RAM \leftrightarrow words have a pre-specified size

Computational Models

Main Idea: a computational model should take into account all constraints of your machine, and account for the scarcest resource(s).

- Word RAM:
(1) Memory modeled as array (access any position "unit time")
(2) Each entry of the array is a word with pre-specified size.
(3) Each word operation takes "unit time"
- addition, multiplication, subtraction, division
- read/write
- Assumptions
(1) Alphabet fits into one word
(2) Input fits in memory
(3) No huge numbers in middle of computation

Computational Models

Main Idea: a computational model should take into account all constraints of your machine, and account for the scarcest resource(s).

- Word RAM:
(1) Memory modeled as array (access any position "unit time")
(2) Each entry of the array is a word with pre-specified size.
(3) Each word operation takes "unit time"
- addition, multiplication, subtraction, division
- read/write
- Assumptions
(1) Alphabet fits into one word
(2) Input fits in memory
(3) No huge numbers in middle of computation
- Example
(1) Input: graph with n vertices
(2) vertex labeled from set $\{1, \cdots, n\}$, edge with pair from $\{1, \cdots, n\}^{2}$
$2 \log n$ bits to store vertex or edge (assume word size $O(\log n)$)
(3) basic operations (vertex comparison, accessing vertex/edge, etc.) constant time

Computational Models

Main Idea: a computational model should take into account all constraints of your machine, and account for the scarcest resource(s).

- Word RAM:
(1) Memory modeled as array (access any position "unit time")
(2) Each entry of the array is a word with pre-specified size.
(3) Each word operation takes "unit time"
- addition, multiplication, subtraction, division
- read/write
- Bit Complexity (with word RAM):
(1) when working with numerical algorithms, numbers may grow and no longer fit in one word - so need to account for that
(2) In this case, assume word is a bit (i.e. in $\{0,1\}$)

$$
\text { cost of operation } \leftrightarrow \# \text { bit-operations }
$$

Computational Models

Main Idea: a computational model should take into account all constraints of your machine, and account for the scarcest resource(s).

- Word RAM:
(1) Memory modeled as array (access any position "unit time")
(2) Each entry of the array is a word with pre-specified size.
(3) Each word operation takes "unit time"
- addition, multiplication, subtraction, division
- read/write
- Bit Complexity (with word RAM):
(1) when working with numerical algorithms, numbers may grow and no longer fit in one word - so need to account for that
- Other models exist based on different resource constraints and assumptions
(CS 365, CS 466 onwards)
- Turing Machines
- Circuits
- Parallel computation
- Online, streaming
- many more
- Computational Models
- Time Complexity \& Efficiency
- Examples: 2SUM \& 3SUM
- Acknowledgements

Asymptotics recap

Given two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$

- $f(n)=O(g(n))$ if there is a constant C s.t.

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq C
$$

Examples:

- $\pi \cdot n^{3}=O\left(n^{3}\right)$
- $10^{10} \cdot n^{2} \log n=O\left(n^{3}\right)$
- $10 n^{3}+100 n^{2}+n=O\left(n^{3}\right)$

Asymptotics recap

Given two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$

- $f(n)=O(g(n))$ if there is a constant C s.t.

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq C
$$

- $f(n)=\Omega(g(n))$ if there is a constant c s.t.

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \geq c
$$

Examples:

- $\pi \cdot n^{3}=\Omega\left(n^{3}\right)$
- $10^{10} \cdot n^{3}=\Omega\left(n^{2} \log n\right)$
- $10 n^{3}+100 n^{2}+n=\Omega\left(n^{3}\right)$

Asymptotics recap

Given two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$

- $f(n)=O(g(n))$ if there is a constant C s.t.

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq C
$$

- $f(n)=\Omega(g(n))$ if there is a constant c s.t.

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \geq c
$$

- $f(n)=\Theta(g(n))$ if $f(n)=O(n)$ and $f(n)=\Omega(g(n))$.

Equivalently, there is constant C such that:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=C
$$

Examples:

- $10^{10} \cdot n^{3}=\Theta\left(n^{3}\right)$
- $10 n^{3}+100 n^{2}+n=\Theta\left(n^{3}\right)$

Asymptotics recap

- $f(n)=o(g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Examples:

- $10^{10} \cdot n^{2}=o\left(n^{3}\right)$
- $10 n^{3}+100 n^{2}+n=o\left(2^{n}\right)$
- $10 n^{3}+100 n^{2}+n=o\left(n^{3} \log n\right)$

Asymptotics recap

- $f(n)=o(g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

- $f(n)=\omega(g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

Examples:

- $10^{-10} \cdot n^{3}=\omega\left(n^{2}\right)$
- $10 n^{3}+100 n^{2}+n=\omega(n)$

Practice questions

Compare the following functions:
(1) n^{5} vs $n^{5} / \log \log n$
(2) $2^{\sqrt{n}}$ vs $n^{\log n}$
(3) $n!$ vs 2^{n}
(9) n^{n} vs $2^{n \log n}$

Worst case complexity

- An algorithm "runs in time" $O(f(n))$ if there is a constant $C>0$ s.t., on inputs of size n, it requires at most $C \cdot f(n)$ elementary operations to output a correct answer.

Worst case complexity

- An algorithm "runs in time" $O(f(n))$ if there is a constant $C>0$ s.t., on inputs of size n, it requires at most $C \cdot f(n)$ elementary operations to output a correct answer.
- "Mathematically:" given algorithm A and input x, let $T_{A}(x)$ be running time of algorithm A on input x.

Worst-case running time is:

$$
T_{A}(n)=\max _{\operatorname{size}(x)=n} T_{A}(x)
$$

Worst case complexity

- An algorithm "runs in time" $O(f(n))$ if there is a constant $C>0$ s.t., on inputs of size n, it requires at most $C \cdot f(n)$ elementary operations to output a correct answer.
- "Mathematically:" given algorithm A and input x, let $T_{A}(x)$ be running time of algorithm A on input x.

Worst-case running time is:

$$
T_{A}(n)=\max _{\operatorname{size}(x)=n} T_{A}(x)
$$

- Asymptotic notation allows us to focus on main growth of complexity
- ignore leading constant
- ignore lower order terms

Worst case complexity

- An algorithm "runs in time" $O(f(n))$ if there is a constant $C>0$ s.t., on inputs of size n, it requires at most $C \cdot f(n)$ elementary operations to output a correct answer.
- "Mathematically:" given algorithm A and input x, let $T_{A}(x)$ be running time of algorithm A on input x.

Worst-case running time is:

$$
T_{A}(n)=\max _{\operatorname{size}(x)=n} T_{A}(x)
$$

- Asymptotic notation allows us to focus on main growth of complexity
- ignore leading constant
- ignore lower order terms
- For instance:
- binary search runs in time $O(\log n)$
- sorting (using say merge-sort) runs in time $O(n \log n)$

Efficient algorithms

- with concept of asymptotic analysis, when will an algorithm be "efficient"?

An algorithm is "efficient" when there is a constant $\gamma>0$ such that the algorithm runs in time $O\left(n^{\gamma}\right)$

Polynomial time.

Efficient algorithms

- with concept of asymptotic analysis, when will an algorithm be "efficient"?

An algorithm is "efficient" when there is a constant $\gamma>0$ such that the algorithm runs in time $O\left(n^{\gamma}\right)$
Polynomial time.

- Of course, the smaller the constant γ, the more efficient our algorithm will be.

Efficient algorithms

- with concept of asymptotic analysis, when will an algorithm be "efficient"?

An algorithm is "efficient" when there is a constant $\gamma>0$ such that the algorithm runs in time $O\left(n^{\gamma}\right)$

Polynomial time.

- Of course, the smaller the constant γ, the more efficient our algorithm will be.
- Why care so much about polynomial time?
- Composition (i.e. can use subroutines)
- For many problems, "trivial" algorithms run in exponential time (i.e. $\left.2^{n^{0(1)}}\right)$

"Practical" algorithms

- "Practice" depends on the setting that one is working on, thus it is loosely defined
- some settings this means nearly linear time
- sometimes even sub-linear time!
- other times fast for most inputs
- other times for small enough inputs
(leading constant matters)
- etc.

"Practical" algorithms

- "Practice" depends on the setting that one is working on, thus it is loosely defined
- some settings this means nearly linear time
- sometimes even sub-linear time!
- other times fast for most inputs
- other times for small enough inputs
(leading constant matters)
- etc.

But in all the above, always taking care of the leading constants!

"Practical" algorithms

- "Practice" depends on the setting that one is working on, thus it is loosely defined
- some settings this means nearly linear time
- sometimes even sub-linear time!
(CS 466)
- other times fast for most inputs
- other times for small enough inputs
(leading constant matters)
- etc.

But in all the above, always taking care of the leading constants!
For instance, an algorithm running in time $100 n^{3}$ is much better (in practice) than one which runs in time $2^{1000} \cdot n$.

- Computational Models
- Time Complexity \& Efficiency
- Examples: 2SUM \& 3SUM
- Acknowledgements

3-SUM problem

- Input: Set of integers $\left\{a_{1}, \ldots, a_{n}\right\}$, integer c
- Output: $\left\{\begin{array}{l}Y E S, \text { if } \exists i, j, k \in[n] \text { such that } a_{i}+a_{j}+a_{k}=c\end{array}\right.$ NO, otherwise

3-SUM problem

- Input: Set of integers $\left\{a_{1}, \ldots, a_{n}\right\}$, integer c
- Output: $\left\{\begin{array}{l}Y E S, \text { if } \exists i, j, k \in[n] \text { such that } a_{i}+a_{j}+a_{k}=c \\ N O, \text { otherwise }\end{array}\right.$
- Naive algorithm: for each triple i, j, k, check whether $a_{i}+a_{j}+a_{k}=c$ Running time: $O\left(n^{3}\right)$ (4 ops to check each triple)

Can we do better?

3-SUM problem

- Input: Set of integers $\left\{a_{1}, \ldots, a_{n}\right\}$, integer c
- Output: $\left\{\begin{array}{l}Y E S, \text { if } \exists i, j, k \in[n] \text { such that } a_{i}+a_{j}+a_{k}=c \\ \text { NO, otherwise }\end{array}\right.$
- Naive algorithm: for each triple i, j, k, check whether $a_{i}+a_{j}+a_{k}=c$

Running time: $O\left(n^{3}\right)$
(4 ops to check each triple)
Can we do better?

- Less naive:
(1) Sort the set of numbers, so can assume we have $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
(2) For each pair i, j, let $b_{i, j}=c-a_{i}-a_{j}$
(3) Binary search to check if there is k such that $a_{k}=b_{i, j}$

Running time: $O\left(n^{2} \log n+n \log n\right)=O\left(n^{2} \log n\right)$
Can we do better?

Last attempt

- Sort the set of numbers, so can assume we have $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
- For each $k \in[n]$, let $b_{k}:=c-a_{k}$
- Decide if there are $i, j \in[n]$ such that $a_{i}+a_{j}=b_{k}$

Last attempt

- Sort the set of numbers, so can assume we have $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
- For each $k \in[n]$, let $b_{k}:=c-a_{k}$
- Decide if there are $i, j \in[n]$ such that $a_{i}+a_{j}=b_{k}$
- 2-SUM problem: given $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and b, are there $i, j \in[n]$ such that $a_{i}+a_{j}=b$?

Last attempt

- Sort the set of numbers, so can assume we have $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
- For each $k \in[n]$, let $b_{k}:=c-a_{k}$
- Decide if there are $i, j \in[n]$ such that $a_{i}+a_{j}=b_{k}$
- 2-SUM problem: given $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and b, are there $i, j \in[n]$ such that $a_{i}+a_{j}=b$?
if we can solve the 2-SUM problem, then can solve 3-SUM by "calling" 2-SUM for each $k \in[n]$

Reduction!

Last attempt

- Sort the set of numbers, so can assume we have $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
- For each $k \in[n]$, let $b_{k}:=c-a_{k}$
- Decide if there are $i, j \in[n]$ such that $a_{i}+a_{j}=b_{k}$
- 2-SUM problem: given $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and b, are there $i, j \in[n]$ such that $a_{i}+a_{j}=b$?
if we can solve the 2-SUM problem, then can solve 3-SUM by "calling" 2-SUM for each $k \in[n]$

Reduction!

- Running time $=O(n \times($ running time for $2-S U M)+n \log n)$

Last attempt

- Sort the set of numbers, so can assume we have $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
- For each $k \in[n]$, let $b_{k}:=c-a_{k}$
- Decide if there are $i, j \in[n]$ such that $a_{i}+a_{j}=b_{k}$
- 2-SUM problem: given $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and b, are there $i, j \in[n]$ such that $a_{i}+a_{j}=b$?
if we can solve the 2-SUM problem, then can solve 3-SUM by "calling" 2-SUM for each $k \in[n]$ Reduction!
- Running time $=O(n \times($ running time for $2-S U M)+n \log n)$

Can we do 2-SUM with running time better than $O(n \log n)$?

2-SUM

- given $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and b, are there $i, j \in[n]$ such that $a_{i}+a_{j}=b$?

2-SUM

- given $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and b, are there $i, j \in[n]$ such that $a_{i}+a_{j}=b$?
- Idea: see board

2-SUM

- given $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and b, are there $i, j \in[n]$ such that $a_{i}+a_{j}=b$?
- Algorithm:
(1) Write $\beta_{i}:=b-a_{i}$ for each $i \in[n]$, and let $j, t \in[n]$ be counters, initially set to $j=1$ and $t=n$.
(2) While $t>0$:
- if $\beta_{j}>a_{t}$, then $j \leftarrow j+1$
- if $\beta_{j}=a_{t}$, then return YES
- else (i.e. $\beta_{j}<a_{t}$), then $t \leftarrow t-1$
(3) Return NO

2-SUM

- given $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and b, are there $i, j \in[n]$ such that $a_{i}+a_{j}=b$?
- Algorithm:
(1) Write $\beta_{i}:=b-a_{i}$ for each $i \in[n]$, and let $j, t \in[n]$ be counters, initially set to $j=1$ and $t=n$.
(2) While $t>0$:
- if $\beta_{j}>a_{t}$, then $j \leftarrow j+1$
- if $\beta_{j}=a_{t}$, then return YES
- else (i.e. $\beta_{j}<a_{t}$), then $t \leftarrow t-1$
(3) Return NO
- Running time: n executions of the loop, each loop iteration takes at most 2 operations.

Thus: $O(n)$

2-SUM

- given $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and b, are there $i, j \in[n]$ such that $a_{i}+a_{j}=b$?
- Algorithm:
(1) Write $\beta_{i}:=b-a_{i}$ for each $i \in[n]$, and let $j, t \in[n]$ be counters, initially set to $j=1$ and $t=n$.
(2) While $t>0$:
- if $\beta_{j}>a_{t}$, then $j \leftarrow j+1$
- if $\beta_{j}=a_{t}$, then return YES
- else (i.e. $\beta_{j}<a_{t}$), then $t \leftarrow t-1$
(3) Return NO
- Running time: n executions of the loop, each loop iteration takes at most 2 operations.

Thus: $O(n)$

- So the running time of our last 3-SUM algorithm is

$$
O\left(n^{2}+n \log n\right)=O\left(n^{2}\right)
$$

Conclusion

- Computational models (basis for modeling computation)
- Running time dependent on the model
- Efficient algorithms (beating exhaustive search)
- Reductions
- flavour of course

Acknowledgement

- Based on Lap Chi's first lecture
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L01.pdf

References I

回
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press

