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Divide-and-Conquer

Many problems can be efficiently solved by dividing them into smaller
subproblems, and then combining the subproblems to give solution to
original problem.

Structure of divide-and-conquer:
1 Divide: given instance I , construct smaller instances I1, . . . , Ia

(subproblems)

Ideally want |Ij | small compared to |I | (say constant fraction)

2 Conquer: recursively solve instances I1, . . . , Ia, obtaining solutions
S1, . . . ,Sa

3 Combine: solutions S1, . . . ,Sa 7→ solution S to instance I

“Recursion for running time:”

T (I ) = T (I1) + · · ·+ T (Ia) + time to combine
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3 Matrix Multiplication
4 Polynomial Multiplication

many more, (see [CLRS 2009])
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Example: Merge Sort

Input: array A with n elements

Output: sorted array A

Divide and Conquer algorithm:

sort(A[α, β]):
1 If β − α < 10, then trivially sort array and return.
2 B = sort(A[α, ⌊(α+ β)/2⌋]), C = sort(A[⌊(α+ β)/2⌋+ 1, β])
3 return merge(B,C )

Merging algorithm: (input arrays sorted in increasing order)

merge(B,C ) :
1 Let D = [] be an empty array, and let i , j be two pointers, indexing

position on arrays B,C , initialized at 1.
2 Until we are done scanning both B,C :

If B[i ] ≤ C [j ], then D.append(B[i ]) and i ← i + 1
Else, D.append(C [j ]) and j ← j + 1
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Analysis: Merge Sort

Tmerge(n) = c · n, since we are doing a linear scan over the input

Letting T (n) be the running time of merge sort on inputs of size n,
we see:

T (n) = 2 · T (n/2) + c · n

Recursion tree (see board): T (n) = Θ(n · log n)
Can also “guess and check” the answer

T (n) = cn log n (guess)

T (n) = 2 ·
(
c · n

2
log(n/2)

)
+ cn

= cn(log n − 1) + cn = cn log n
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Divide-and-Conquer Paradigm

Solving Recurrences

Optional: Maximum Subarray Sum

Acknowledgements
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Recurrences
Divide-and-conquer leads naturally to the problem of solving
recurrences (to get runtime bounds)

Mergesort recurrence was easy to analyze.

What about in general?
How can we deal with more general recurrences?

Theorem (Master Theorem (simple))

Given recurrence
T (n) = aT (n/b) + Θ(nc)

with T (1), a ≥ 1, b > 1, c ≥ 0 (constants), then

T (n) =


Θ(nc), if c > logb a

Θ(nc log n), if c = logb a

Θ(nlogb a), if c < logb a

17 / 34



Recurrences
Divide-and-conquer leads naturally to the problem of solving
recurrences (to get runtime bounds)

Mergesort recurrence was easy to analyze.

What about in general?
How can we deal with more general recurrences?

Theorem (Master Theorem (simple))

Given recurrence
T (n) = aT (n/b) + Θ(nc)

with T (1), a ≥ 1, b > 1, c ≥ 0 (constants), then

T (n) =


Θ(nc), if c > logb a

Θ(nc log n), if c = logb a

Θ(nlogb a), if c < logb a

18 / 34



Proof of Master Theorem

Remark: it is more important to remember the method than the result
- Prof. Lau

Proof method works more generally.

Recursion tree: (see board)
1 If c > logb a, then top level dominates

decreasing geometric sequence, ratio a/bc < 1

2 If c = logb a, then every layer same, and θ(log n) layers
3 If c < logb a, then bottom level dominates

increasing geometric sequence, ratio a/bc > 1
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General Master Theorem

Theorem (Master Theorem)

Given recurrence
T (n) = aT (n/b) + f (n)

with T (1), f (1), a ≥ 1, b > 1 (constants), then

T (n) =


Θ(nlogb a), if f (n) = O(nlogb a−ε), for some ε > 0

Θ(nlogb a log n), if f (n) = Θ(nlogb a)

Θ(f (n)), if f (n) = Ω(nlogb a+ε), for some ε > 0

and if af (n/b) ≤ cf (n) for some 0 < c < 1

Same proof
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More recurrences

Imbalanced trees:

T (n) = T (n/3) + T (2n/3) + c · n T (n) = Θ(n log n)

T (n) = T (n/2) + 1 T (n) = O(log n)
T (n) = T (n/2) + n T (n) = O(n)
T (n) = T (

√
n) + 1 T (n) = O(log log n)

at level i , subproblem of size n2
−i

Exponential time recurrences:

T (n) = n · T (n − 1) + 1 T (n) = O(n!)
Fibonacci: T (n) = T (n − 1) + T (n − 2) T (n) = O(ϕn)

ϕ =
1 +

√
5

2
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Divide-and-Conquer Paradigm
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Maximum Subarray Sum

Input: array A = (a1, . . . , an) where each ai is an integer

Output: indices 1 ≤ i ≤ j ≤ n and s such that

s = ai + · · ·+ aj , and s = max
α≤β

β∑
k=α

ak

Divide and conquer approach:
1 divide array in the middle
2 largest sum either on left subarray, right subarray, or crossing the

middle
3 recurse on left subarray and on the right subarray
4 compute max sum that crosses the middle
5 output the max of items 3 and 4

for more details, see [CLRS 2009, Chapter 4.1]
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