Lecture 2: Divide and Conquer &
Recurrences

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 12, 2023

1/34

Overview

Divide-and-Conquer Paradigm

Solving Recurrences

Optional: Maximum Subarray Sum

Acknowledgements

2/34

Divide-and-Conquer

@ Many problems can be efficiently solved by dividing them into smaller
subproblems, and then combining the subproblems to give solution to
original problem.

3/34

Divide-and-Conquer
@ Many problems can be efficiently solved by dividing them into smaller
subproblems, and then combining the subproblems to give solution to
original problem.

Examples:

@ Sorting: merge sort

© Searching: binary search

© Matrix Multiplication

© Polynomial Multiplication
many more, (see [CLRS 2009])

4/34

Divide-and-Conquer

@ Many problems can be efficiently solved by dividing them into smaller
subproblems, and then combining the subproblems to give solution to
original problem.

@ Structure of divide-and-conquer:

@ Divide: given instance /, construct smaller instances f,...,/,
(subproblems)
Ideally want |/;| small compared to |/| (say constant fraction)

5/34

Divide-and-Conquer

@ Many problems can be efficiently solved by dividing them into smaller
subproblems, and then combining the subproblems to give solution to
original problem.

@ Structure of divide-and-conquer:

@ Divide: given instance /, construct smaller instances f,...,/,
(subproblems)
Ideally want |/;| small compared to |/| (say constant fraction)
@ Conquer: recursively solve instances /1, ..., [,, obtaining solutions
S1,...,5;

6/34

Divide-and-Conquer

@ Many problems can be efficiently solved by dividing them into smaller
subproblems, and then combining the subproblems to give solution to
original problem.

@ Structure of divide-and-conquer:

@ Divide: given instance /, construct smaller instances f,...,/,
(subproblems)
Ideally want |/;| small compared to |/| (say constant fraction)

@ Conquer: recursively solve instances /1, ..., [,, obtaining solutions
S1,...,5;
© Combine: solutions S,..., S, + solution S to instance /

7/34

Divide-and-Conquer

@ Many problems can be efficiently solved by dividing them into smaller
subproblems, and then combining the subproblems to give solution to
original problem.

@ Structure of divide-and-conquer:

@ Divide: given instance /, construct smaller instances f,...,/,
(subproblems)
Ideally want |/;| small compared to |/| (say constant fraction)

@ Conquer: recursively solve instances /1, ..., [,, obtaining solutions

Si,..., S,
© Combine: solutions S,..., S, + solution S to instance /

@ “Recursion for running time:"

T(I)=T(h)+---+ T(/,) + time to combine

8/34

Example: Merge Sort

@ Input: array A with n elements

@ Output: sorted array A

9/34

Example: Merge Sort

@ Input: array A with n elements
@ Output: sorted array A
@ Divide and Conquer algorithm:
sort(Ale, 8]):
Q@ If 3 — a < 10, then trivially sort array and return.

Q B =sort(Ala, [(a + 5)/2]]), € = sort(A[|(a + 5)/2] + 1, A])
© return merge(B, C)

10/34

Example: Merge Sort

@ Input: array A with n elements
@ Output: sorted array A

@ Divide and Conquer algorithm:

sort(Ale, 8]):
Q@ If 3 — a < 10, then trivially sort array and return.

Q B =sort(Ala, [(a + 5)/2]]), € = sort(A[|(a + 5)/2] + 1, A])
© return merge(B, C)

@ Merging algorithm: (input arrays sorted in increasing order)

merge(B, C) :
@ Let D =[] be an empty array, and let i, j be two pointers, indexing
position on arrays B, C, initialized at 1.
@ Until we are done scanning both B, C:
e If B[i] < Cl[j], then D.append(B[i]) and i+ i+1
o Else, D.append(C[j]) and j < j+1

11/34

Analysis: Merge Sort

® Tmerge(n) = c - n, since we are doing a linear scan over the input

12/34

Analysis: Merge Sort

® Tmerge(n) = c - n, since we are doing a linear scan over the input

@ Letting T(n) be the running time of merge sort on inputs of size n,
we see:

T(n)=2-T(n/2)+c-n

13/34

Analysis: Merge Sort

® Tmerge(n) = c - n, since we are doing a linear scan over the input

@ Letting T(n) be the running time of merge sort on inputs of size n,

| T(n)=2-T(n/2) + c-n

@ Recursion tree (see board): T(n) = ©(n-logn)

14/34

Analysis: Merge Sort

® Tmerge(n) = c - n, since we are doing a linear scan over the input

@ Letting T(n) be the running time of merge sort on inputs of size n,
we see:

T(n)=2-T(n/2)+c-n

@ Recursion tree (see board): T(n) = ©(n-logn)

@ Can also “guess and check” the answer
T(n) =cnlogn (guess)

T(n)=2- (c . g Iog(n/2)) +cn

= cn(logn—1)+ cn=cnlogn

15/34

@ Solving Recurrences

16 /34

Recurrences
@ Divide-and-conquer leads naturally to the problem of solving
recurrences (to get runtime bounds)
@ Mergesort recurrence was easy to analyze.

What about in general?
How can we deal with more general recurrences?

17/34

Recurrences
@ Divide-and-conquer leads naturally to the problem of solving
recurrences (to get runtime bounds)
@ Mergesort recurrence was easy to analyze.

What about in general?
How can we deal with more general recurrences?

Theorem (Master Theorem (simple))

Given recurrence
T(n)=aT(n/b)+ ©(n°)
with T(1), a>1,b>1,¢c > 0 (constants), then
©(n¢), ifc>logya

T(n) = ¢ ©(nlogn), ifc=logya
O(n'°8s2), if c < log, a

18/34

Proof of Master Theorem

@ Remark: it is more important to remember the method than the result
- Prof. Lau

Proof method works more generally.

19/34

Proof of Master Theorem

@ Remark: it is more important to remember the method than the result
- Prof. Lau

Proof method works more generally.
@ Recursion tree: (see board)

O If ¢ > log, a, then top level dominates
decreasing geometric sequence, ratio a/b¢ < 1

20/34

Proof of Master Theorem

@ Remark: it is more important to remember the method than the result
- Prof. Lau

Proof method works more generally.
@ Recursion tree: (see board)
O If ¢ > log, a, then top level dominates

decreasing geometric sequence, ratio a/b¢ < 1
Q If c =log, a, then every layer same, and 6(log n) layers

21/34

Proof of Master Theorem

@ Remark: it is more important to remember the method than the result
- Prof. Lau

Proof method works more generally.

@ Recursion tree: (see board)
O If ¢ > log, a, then top level dominates
decreasing geometric sequence, ratio a/b¢ < 1

Q If c =log, a, then every layer same, and 6(log n) layers
© If c < log, a, then bottom level dominates

increasing geometric sequence, ratio a/b® > 1

22/34

General Master Theorem

Theorem (Master Theorem)

Given recurrence

T(n) =aT(n/b) + f(n)
with T(1),f(1), a>1,b > 1 (constants), then

O(n°8s3), if f(n) = O(n°Es2=), for some & > 0
oy] O 2logn), i 7(a) = (nes)
Y=Y e(f(n)), iff(n

) = Q(n'°8s2+¢) | for some ¢ > 0
and if af (n/b) < cf (

n) for some 0 < ¢ <1

@ Same proof

23/34

More recurrences

o Imbalanced trees:
o T(n)=T(n/3)+ T(2n/3)+c-n T(n) =©(nlogn)

24 /34

More recurrences

@ Imbalanced trees:
o T(n)=T(n/3)+ T(2n/3)+c-n T(n) =©(nlogn)
o T(n)=T(n/2)+1 T(n) = O(log n)

25/34

More recurrences

o Imbalanced trees:
o T(n)=T(n/3)+ T(2n/3)+c-n T(n) = ©(nlogn)
e T(n)=T(n/2)+1 T(n) = O(log n)
e T(n)=T(n/2)+n T(n) = O(n)

26/34

More recurrences

@ Imbalanced trees:

o T(n)=T(n/3)+ T(2n/3)+c-n T(n) = ©(nlogn)
e T(n)=T(n/2)+1 T(n) = O(log n)
e T(n)=T(n/2)+n T(n) = O(n)
o T(n)=T(v/n)+1 T(n) = O(loglog n)

at level i, subproblem of size n?>"

27 /34

More recurrences

@ Imbalanced trees:

o T(n)=T(n/3)+ T(2n/3)+c-n T(n) = ©(nlogn)
o T(n)=T(n/2)+1 T(n) = O(log n)
e T(n)=T(n/2)+n T(n) = O(n)
o T(n)=T(Vn)+1 T(n) = O(loglog n)

at level i, subproblem of size n?"
@ Exponential time recurrences:
e T(n)=n-T(n—-1)+1 T(n) = .
o Fibonacci: T(n)=T(n—1)+ T(n—2) T(n) = O(¢")

1++5
2

o=

28/34

@ Optional: Maximum Subarray Sum

29/34

Maximum Subarray Sum

o Input: array A= (a1,...,a,) where each a; is an integer
@ Output: indices 1 </ <j < nand s such that

B
s=aj+---+aj, and s:maxE ak
aéﬁk
=«

30/34

Maximum Subarray Sum

o Input: array A= (a1,...,a,) where each a; is an integer
@ Output: indices 1 </ <j < nand s such that

B
s=aj+---+aj, and s:maxE ak
aéﬁk
=«

@ Divide and conquer approach:

@ divide array in the middle

@ largest sum either on left subarray, right subarray, or crossing the
middle

© recurse on left subarray and on the right subarray

© compute max sum that crosses the middle

© output the max of items 3 and 4

31/34

Maximum Subarray Sum

Input: array A = (a1, ..., a,) where each a; is an integer
Output: indices 1 </ <j < nand s such that

B
s=aj+---+aj, and s:maxE ak
aéﬁk
=«

Divide and conquer approach:

@ divide array in the middle

@ largest sum either on left subarray, right subarray, or crossing the
middle

© recurse on left subarray and on the right subarray

© compute max sum that crosses the middle

© output the max of items 3 and 4

e for more details, see [CLRS 2009, Chapter 4.1]

32/34

Acknowledgement

@ Based on Prof Lau's lecture
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L02.pdf

33/34

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L02.pdf

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

34/34

	Divide-and-Conquer Paradigm
	Solving Recurrences
	Optional: Maximum Subarray Sum
	Acknowledgements

