Lecture 3: Divide and Conquer I

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 14, 2023

1/64



Overview

@ Polynomial Multiplication
o Optional I: integer multiplication
e Optional II: matrix multiplication

@ Median Finding & Selection problem

@ Acknowledgements

2/64



Polynomial Multiplication

@ Input: two univariate polynomials

n

p(x)=> pix' and q(x) = > gix'.
i=0 i=0
@ Output: the product a(x) := p(x) - g(x). Output given by a list of
coefficients (ao, . . ., a2n)

@ Assume we are in the unit cost model, or word RAM where
coefficients are integers in the range [—w, w]

3/64



Polynomial Multiplication

@ Input: two univariate polynomials

n n
p(x) = Zp,-x’ and g(x) = Z gix'.
i=0 i=0
@ Output: the product a(x) := p(x) - g(x). Output given by a list of
coefficients (ao, .. ., a2n)
@ Naive algorithm:

k
O Note that ax = >/ pigu—i
@ Hence, can compute all products p;q;, then compute the above sums

4/64



Polynomial Multiplication

@ Input: two univariate polynomials

n n
p(x) = Zp,-x’ and g(x) = Z gix'.
i=0 i=0
@ Output: the product a(x) := p(x) - g(x). Output given by a list of
coefficients (ao, .. ., a2n)
@ Naive algorithm:

k
O Note that ax = >/ pigu—i
@ Hence, can compute all products p;q;, then compute the above sums

@ Runtime analysis: we compute O(n?) products, and perform O(n?)
additions, hence, total runtime is O(n?)

5/64



Polynomial Multiplication

Input: two univariate polynomials

n

p() = 3" pix and 4(x) = 3 v
i=0

i=0

Output: the product a(x) := p(x) - g(x). Output given by a list of
coefficients (ao, .. ., a2n)
Naive algorithm:

k
O Note that ax = >/ pigu—i
@ Hence, can compute all products p;q;, then compute the above sums

@ Runtime analysis: we compute O(n?) products, and perform O(n?)
additions, hence, total runtime is O(n?)

@ can we do better?

6/64



Karatsuba's algorithm

Q write p(x) = fi(x) - x"/2 + f(x) and g(x) = g1(x) - x"/? + ga(),
where deg(£), deg(g;) < /2

7/64



Karatsuba's algorithm

Q write p(x) = fi(x) - x"/2 + f(x) and g(x) = g1(x) - x"/? + ga(),
where deg(£), deg(g;) < /2

@ note that

P(x)-q(x) = fi(x)-g1(x)x"+[fi(x)-g2(x)+F2(x)-81(x)]-x* +F2(x)-g2(x)

8/64



Karatsuba's algorithm

@ write p(x) = fi(x) - x"/? + fo(x) and q(x) = g1(x) - x> + g2(x),
where deg(£), deg(g;) < n/2
@ note that

P(x)-q(x) = fi(x)-g1(x)x"+[fi(x)-g2(x)+F2(x)-81(x)]-x* +F2(x)-g2(x)

© Divide and conquer for the rescue!

T(n)=4-T(n/2)+~-n

9/64



Karatsuba's algorithm

@ write p(x) = fi(x) - x"/? + fo(x) and q(x) = g1(x) - x" + g2(x),
where deg(f;), deg(gi) < n/2

@ note that
P(x)-q(x) = Fi(x)-81(x) X"+ (x)-g2)+ o(x)-81(x)]- x5 + () g2(x)
@ Divide and conquer for the rescue!
T(n) =4 T(n/2)+~-n

Hmmmmm... this is giving me O(n?)

10/64



Karatsuba's algorithm

Q write p(x) = fi(x) - x"? + f(x) and q(x) = g1(x) - x"/? + g»(x),
where deg(f), deg(g:) < n/2
@ note that

p(x)-q(x) = fi(x)-g1(x)-x"+[f(x)-g2(x)+Fa(x)-g1(x)] X2 +(x)-g2(x)
© Divide and conquer for the rescue!
T(n)=4-T(n/2)+~-n

@ Can we reduce the number of subproblems?

Need to reduce number of multiplications!

11/64



Reducing number of multiplications

e Want to compute

P(x)-q(x) = fi(x)-g1(x)x"+[fi(x)-g2(x)+Fa(x)-81(x)]-x* +F2(x)-g2(x)

So need to compute the polynomials:

A(x) - g1(x), filx) - g2(x) + fa(x) - g1(x), fa(x) - g2(x)

with less than 4 multiplications.

12/64



Reducing number of multiplications

o Want to compute
p(x)-q(x) = fi(x)-g1(x)x"+[A(x)-g2(x) +Fo(x)-g1(x)] X2 +Fo(x)-g2(x)
So need to compute the polynomials:
fi(x) - g1(x), f(x)- g(x) + f2(x) - g1(x), f(x) - g2(x)

with less than 4 multiplications.
@ with the product

A(x) = (A(x) + f2(x)) - (81(x) + g2(x))

we are almost there!

13/64



Reducing number of multiplications
o Want to compute
p(x)-a(x) = fi(x)-g1(x)-x"+[fi(x)-g2(x)+Fo(x)-g1(x)]-x2 +F(x)-g2(x)
So need to compute the polynomials:
A(x) - g1(x), f(x) - g2(x) + f(x) - g1(x), f2(x) - g2(x)

with less than 4 multiplications.
@ with the product

A(x) = (A(x) + f2(x)) - (81(x) + g2(x))

we are almost there!

o Using the products
B(x) := fi(x) - g1(x), and C(x) := fr(x) - g2(x)

can compute the 3 above terms!

14 /64



Recurrence

@ Thus, we have the following recurrence:
T(n)=3T(n/2) +~n

which yields
T(n) = O(n'°g3) = o(n1'59).

15/ 64



Recurrence

@ Thus, we have the following recurrence:
T(n)=3T(n/2)+~n

which yields
T(n) = O(n'°83) = o(n'%).

If you want to learn faster algorithms (and other cool symbolic
algorithms), consider taking CS 487.

16 /64



@ Polynomial Multiplication
e Optional I: integer multiplication

@ Median Finding & Selection problem

@ Acknowledgements

17/64



Integer multiplication
@ Input: two n-bit numbers a:= ajay---a, and b:= bib--- b,

@ Output: a-b
@ Bit complexity model!

18/64



Integer multiplication

@ Input: two n-bit numbers a:=ajar---a, and b:= biby--- b,
@ QOutput: a-b
@ Naive algorithm:

similar to polynomial multiplication, takes ©(n?) time

19/64



Integer multiplication

Input: two n-bit numbers a:= ajar---a, and b:= biby--- b,
Output: a- b

Naive algorithm:

similar to polynomial multiplication, takes @(n?) time

o Can we do better?

20/ 64



Integer multiplication

Input: two n-bit numbers a := ajay---a, and b:= biby--- b,
Output: a- b

Naive algorithm:

similar to polynomial multiplication, takes ©(n?) time

@ Same strategy to Karatsuba's algorithm!
Write a = x3x2 and b = y1y». Note that

a-b=x1-y1-2"+(x1-y2+xy1) 2" 4 x2- ¥

21/64



Integer multiplication

Input: two n-bit numbers a := ajay---a, and b:= biby--- b,
Output: a- b

Naive algorithm:

similar to polynomial multiplication, takes ©(n?) time

@ Same strategy to Karatsuba's algorithm!
Write a = x3x2 and b = y1y». Note that

a-b=x1-y1-2"+(xi 2+ x2y1) 22+ 30y
@ Same recurrence as Karatsuba's!
Thus T(n) = O(n'°83).

22/64



Integer multiplication

Input: two n-bit numbers a := ajay---a, and b:= biby--- b,
Output: a- b

Naive algorithm:

similar to polynomial multiplication, takes ©(n?) time

@ Same strategy to Karatsuba's algorithm!
Write a = x3x2 and b = y1y». Note that

a-b=x1-y1- 2"+ (x1-y2+xy1) 272+ x0 - yo
@ Same recurrence as Karatsuba's!
Thus T(n) = O(n'°83).
[Harvey, van der Hoeven 2019] algorithm for integer multiplication
with O(nlog n) runtime!

23 /64



@ Polynomial Multiplication

o Optional II: matrix multiplication

@ Median Finding & Selection problem

@ Acknowledgements

24 /64



Matrix Multiplication

@ Input: matrices A, B € F™"
o Output: product C = AB

25 /64



Matrix Multiplication

@ Input: matrices A, B € F™"
o Output: product C = AB
@ Naive algorithm:

Compute n matrix vector multiplications.

26 /64



Matrix Multiplication

Input: matrices A, B € F™*"
Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.
Running time: O(n®)

Can we do better?

27 /64



Matrix Multiplication

@ Input: matrices A, B € F™"
o Output: product C = AB
@ Naive algorithm:
Compute n matrix vector multiplications.
o Running time: O(n®)
Can we do better?
@ Strassen 1969: YES!

o ldea: divide matrix into blocks, and reduce number of multiplications
needed!

Similar in spirit as Karatsuba's algorithm for polynomial
multiplication!

28 /64



Strassen's Algorithm

@ Suppose that n = 2k

o Let A B, C € F™" such that C = AB. Divide them into blocks of
size n/2:

A1 A12> (Bn 312> <C11 C12)
A= . B= . C=
<A21 A2 Bx1 B 1

29 /64



Strassen's Algorithm

@ Suppose that n = 2k

o Let A B, C € F™" such that C = AB. Divide them into blocks of
size n/2:

A1 A12> (Bn 312> <C11 C12>
A= . B= . C=
<A21 A2 Bx1 B 1

@ Define following matrices:
S1=An+Axn, S5=5 A1, S3=A11 A, Si=An -5

T1=Bio—B11, To=Bx—T1, T3 =Bxn— B, T4 = Tr— B

30/64



Strassen's Algorithm

@ Suppose that n = 2k

o Let A B, C € F™" such that C = AB. Divide them into blocks of
size n/2:

A1 A12> (Bn B12> <C11 C12>
A= . B= . C=
<A21 A2 Bx1 B 1
@ Define following matrices:

S1=An+An, S5=5 —Au, S3=A11—Ax, S4=An—-5

T1=Bio—B11, To=Bx—T1, T3 =Bxn— B, T4 = Tr— B

@ Compute the following 7 products:
P1 = A11Bi1, Po=A12Bo1, P3=54B22, Ps = ATy

Ps =51T1, Po = 5T, Pr=25T3

31/64



Strassen's Algorithm
@ Define following matrices:
S51=Aon+ Axn, S2=5 — A1, S3=A11—An, Sa=An -5

Ty =B —B11, To=Bx—T1, T3 =Bxn— By, T4 =Tr— By

@ Compute the following 7 products:
P1 = A11B11, P> = A12Bo1, P3=54B22, Py = ATy

Ps =51T1, Po = 5T, Pr=53T3

32/64



Strassen's Algorithm
@ Define following matrices:
S51=Aon+ Axn, S2=5 — A1, S3=A11—An, Sa=An -5

Ty =B —B11, To=Bx—T1, T3 =Bxn— By, T4 =Tr— By

@ Compute the following 7 products:
P1 = A11B11, P> = A12Bo1, P3=54B22, Py = ATy

Ps =51T1, Po = 5T, Pr=53T3
e C11 = Au1Bi1 + A1eBoy = P+ P

33/64



Strassen's Algorithm

@ Define following matrices:

S1=An+Axn, S=5 —Au1, S3=A1n— A, S4=An—-5

Ty =B —B11, To=Bx—T1, T3 =Bxn— By, T4 =Tr— By

@ Compute the following 7 products:
P1 = A11B11, P> = A12Bo1, P3=54B22, Py = ATy

Ps =51T1, Po = 5T, Pr=53T3

e C11 = Au1Bi1 + A1eBoy = P+ P
@ Cip =A11Bi2 +A12Bx =P+ P33+ Ps+ Pe

34/64



Strassen's Algorithm
@ Define following matrices:
S51=Aon+ Axn, S2=5 — A1, S3=A11—An, Sa=An -5

Ty =B —B11, To=Bx—T1, T3 =Bxn— By, T4 =Tr— By

Compute the following 7 products:
P1 = A11B11, P> = A12Bo1, P3=54B22, Py = ATy

Ps =51T1, Ps = 5T, Pr=5T;
Ci1 = AuBi1 + ApBar = P1 + P
Ci2 = A11Bi2 + A12Boy = P14+ P34+ Ps + P
Co1 = A21Bi1 + AnByi = P1 — Pa+ Ps + P

35/64



Strassen's Algorithm

@ Define following matrices:
S1=An+An, S2=5 —An, S3=A1n—-Ax, S4=~An—-%

Ty =B —B11, To=Bx—T1, T3 =Bxn— By, T4 =Tr— By

Compute the following 7 products:
P1 = A11B11, P> = A12Bo1, P3=54B22, Py = ATy

Ps=5Ti, Po = 5T, Pr=25T3
Gi1 = AuBii+ AB =P+ P>
Ci2 = A11Bi2 + A12Boy = P14+ P34+ Ps + P
Co1 = A21Bi1 + AnByi = P1 — Pa+ Ps + P
Coo = A21Bio + AxBoy = P1+ Ps + P + P

36/64



Strassen's Algorithm

@ Define following matrices:
S1=An+An, S2=5 —An, S3=A1n—-Ax, S4=~An—-%

Ty =B —B11, To=Bx—T1, T3 =Bxn— By, T4 =Tr— By

Compute the following 7 products:
P1 = A11B11, P> = A12Bo1, P3=54B22, Py = ATy

Ps =51T1, Ps=5T,, Pr=5T;
Ci1 = AuBi1 + ApBar = P1 + P
Ci2 = A1 B2+ A12Bxx = P1 + P3 + Ps + Ps
Co1 = A1Bi1 + AxBo1 = Py — Py + Ps + P7
Co2 = A1B12 + AaBop = P1 + Ps + Ps + P7
Correctness follows from the computations

37/64



Analysis of Strassen's Algorithm

@ To compute AB = C we used:

Q 8 additions S
@ 7 multiplications
© 10 additions

H oA
nw onon

38/64



Analysis of Strassen's Algorithm

@ To compute AB = C we used:

© 8 additions S;
@ 7 multiplications
© 10 additions

@ Recurrence:

H A
nw on on

MM(n) <7-MM(n/2) +18 - c-(n/2)?

39/64



Analysis of Strassen's Algorithm

@ To compute AB = C we used:

© 8 additions S;
@ 7 multiplications
© 10 additions

@ Recurrence:

H A
nw on on

MM(n) <7-MM(n/2) +18 - c-(n/2)?

o Master theorem: MM(n) = O(n'°87) ~ O(n?807)

40/ 64



Can we do better?

@ There has been phenomenal progress in this question, spurred by work
of Coppersmith and Vinograd.

@ By following their approach, the current record for matrix
multiplication is roughly O(n?37)

Open problem: can you do better?

41/64



@ Median Finding & Selection problem

42/64



Median Finding

e Input: array with distinct integers A = [ay,. .., ap]
@ QOutput: median of these numbers
o Word RAM model!

43/64



Median Finding

@ Input: array with distinct integers A = [a1, ..., ap]
@ Output: median of these numbers
o Naive algorithm: sort the numbers, then output the middle element.

Running time: O(nlog n).

44 /64



Median Finding

Input: array with distinct integers A = [a1,. .., an]

Output: median of these numbers

Naive algorithm: sort the numbers, then output the middle element.
Running time: O(nlog n).

Can we do better?

45 /64



Median Finding

Input: array with distinct integers A = [a1,. .., an]

Output: median of these numbers

Naive algorithm: sort the numbers, then output the middle element.
Running time: O(nlog n).

Can we do better?

Turns out we can solve this problem in ©(n) time!

Divide and conquer!

46 /64



Median Finding

Input: array with distinct integers A = [a1,. .., an]

Output: median of these numbers

Naive algorithm: sort the numbers, then output the middle element.
Running time: O(nlog n).

Can we do better?

Turns out we can solve this problem in ©(n) time!
Divide and conquer!
© hmmmmm... but how can we divide?

Subproblem will not be the median problem!

47 /64



Median Finding

Input: array with distinct integers A = [a1,. .., an]

Output: median of these numbers

Naive algorithm: sort the numbers, then output the middle element.
Running time: O(nlog n).

Can we do better?

Turns out we can solve this problem in ©(n) time!
Divide and conquer!

@ hmmmmm... but how can we divide?

Subproblem will not be the median problem!

o ldea: generalize our problem a little bit, to make it more flexible.

48 /64



Selection Problem
e Input: array with distinct integers A = [ay, ..., a,], integer k € [n]

o Output: k" smallest element of A
o (Still) Word RAM model!

49 /64



Selection Problem
o Input: array with distinct integers A = [a1, ..., an|, integer k € [n]
o Output: k" smallest element of A
e To divide-and-conquer, can select an element « of the array (the
pivot), and with a linear scan break A into A;, Ag, where

aj € Al iff a; < «
aj € Ag iff a; > «

50 /64



Selection Problem
o Input: array with distinct integers A = [a1, ..., an|, integer k € [n]
o Output: k" smallest element of A

To divide-and-conquer, can select an element « of the array (the
pivot), and with a linear scan break A into A;, Ag, where

{a,-eAL iff a; < a

aj € Ag iff a; > «
Question: how to find a good pivot?
If rank(a) = r (i.e. « is the r# smallest element), then subproblems
of sizez r—1land n—r

To make progress on subproblem sizes, need r = ©(n).

51/64



Selection Problem
o Input: array with distinct integers A = [a1, ..., an|, integer k € [n]
o Output: k" smallest element of A

e To divide-and-conquer, can select an element « of the array (the
pivot), and with a linear scan break A into A;, Ag, where

a, € ALiffa; < a
aj € Ag iff a; > «
@ Question: how to find a good pivot?

If rank(a) = r (i.e. « is the r# smallest element), then subproblems
of sizez r—1and n—r

To make progress on subproblem sizes, need r = ©(n).
@ For instance, if n/4 < r < 3n/4, we have:

T(n) < T@Bn/4)+ P(n)+~-n

where P(n) = time to find a good pivot and T(n) = time to find k"
element

52 /64



Selection Problem
o Input: array with distinct integers A = [a1, ..., an|, integer k € [n]
o Output: k" smallest element of A

e To divide-and-conquer, can select an element « of the array (the
pivot), and with a linear scan break A into A;, Ag, where
aj € Al iff a; < «
aj € Ag iff a; > «
@ Question: how to find a good pivot?
If rank(a) = r (i.e. « is the r# smallest element), then subproblems
of sizez r—1land n—r
To make progress on subproblem sizes, need r = ©(n).
@ For instance, if n/4 < r < 3n/4, we have:

T(n) < T@Bn/4)+ P(n)+~-n

where P(n) = time to find a good pivot and T(n) = time to find k"
element

@ So if we could show that P(n) = O(n) we would be done.
53 /64



Finding good pivot: median of medians
e Input: array with distinct integers A = [ay,. .., ap)
@ Output: element a; such that 3n/10 < rank(a;) < 7n/10

54 /64



Finding good pivot: median of medians
e Input: array with distinct integers A = [ay,. .., ap)
@ Output: element a; such that 3n/10 < rank(a;) < 7n/10
@ Median of medians algorithm:
© divide A into n/5 arrays Ay, ..., A,/s each of size 5

Q let a1, 0. .., 5 be the medians of Ay,. .., A, /s, respectively
@ return o := median(az, ..., a,/s)

55 /64



Finding good pivot: median of medians

e Input: array with distinct integers A = [ay,. .., ap)
Output: element a; such that 3n/10 < rank(a;) < 7n/10

@ Median of medians algorithm:
© divide A into n/5 arrays Ay, ..., A,/s each of size 5
Q let a1, 0. .., 5 be the medians of Ay,. .., A, /s, respectively
@ return o := median(az, ..., a,/s)

Running time based on recurrence:
P(n) = T(n/5) +6-n

Master theorem: O(n)

56 /64



Finding good pivot: median of medians
e Input: array with distinct integers A = [ay,. .., ap)
@ Output: element a; such that 3n/10 < rank(a;) < 7n/10
@ Median of medians algorithm:
© divide A into n/5 arrays Ay, ..., A,/s each of size 5

Q let a1, 0. .., 5 be the medians of Ay,. .., A, /s, respectively
@ return o := median(az, ..., a,/s)

@ Running time based on recurrence:
P(n) = T(n/5) +6-n

Master theorem: O(n)
@ Rank of output: note that

n n
< <7.__
3 10 = rank(a) <7 10

as « larger than median of n/10 of the arrays, and smaller than

median of n/10 of the arrays

57 /64



Back to selection problem

@ Now we can find an element o € A with 3n/10 < rank(a) < 7n/10 in
time d - n

58 /64



Back to selection problem

@ Now we can find an element o € A with 3n/10 < rank(a) < 7n/10 in
time d - n

@ Our recursion for selection problem is then:

T(n) < T(7n/10)+ P(n)+~-n

59 /64



Back to selection problem

@ Now we can find an element o € A with 3n/10 < rank(a) < 7n/10 in
time d - n

@ Our recursion for selection problem is then:
T(n) < T(7n/10) + P(n)+~-n

@ But we saw that
P(n) < T(n/5)+4d-n

60 /64



Back to selection problem

@ Now we can find an element o € A with 3n/10 < rank(a) < 7n/10 in
time d - n

@ Our recursion for selection problem is then:
T(n) < T(7n/10) + P(n)+~-n

@ But we saw that
P(n) < T(n/5)+4d-n

@ Thus, we have:

T(n) < T(7n/10)+ T(n/5)+ (y+ ) -n

61/64



Back to selection problem

@ Now we can find an element o € A with 3n/10 < rank(a) < 7n/10 in
time d - n
@ Our recursion for selection problem is then:

T(n) < T(7n/10)+ P(n)+~-n

@ But we saw that
P(n) < T(n/5)+4d-n

Thus, we have:

T(n) < T(7n/10)+ T(n/5)+ (y+ ) -n

Same analysis as recurrence from previous lecture, yields

T(n) = ©(n).

62/64



Acknowledgement

@ Based on Prof. Lau's lectures 3 and 4

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L03.pdf
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf

63/64


https://cs.uwaterloo.ca/~lapchi/cs341/notes/L03.pdf
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

@ Harvey, David and van der Hoeven, Joris (2019)
Integer multiplication in time O(nlog n)

Annals of Mathematics

64/64



	Polynomial Multiplication
	Optional I: integer multiplication
	Optional II: matrix multiplication

	Median Finding & Selection problem
	Acknowledgements

