
Lecture 3: Divide and Conquer II

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 14, 2023

1 / 64



Overview

Polynomial Multiplication
Optional I: integer multiplication
Optional II: matrix multiplication

Median Finding & Selection problem

Acknowledgements

2 / 64



Polynomial Multiplication

Input: two univariate polynomials

p(x) =
n∑

i=0

pix
i and q(x) =

n∑
i=0

qix
i .

Output: the product a(x) := p(x) · q(x). Output given by a list of
coefficients (a0, . . . , a2n)

Assume we are in the unit cost model, or word RAM where
coefficients are integers in the range [−w ,w ]

Naive algorithm:
1 Note that ak =

∑k
i=0 piqk−i

2 Hence, can compute all products piqj , then compute the above sums

Runtime analysis: we compute O(n2) products, and perform O(n2)
additions, hence, total runtime is O(n2)

can we do better?

3 / 64



Polynomial Multiplication

Input: two univariate polynomials

p(x) =
n∑

i=0

pix
i and q(x) =

n∑
i=0

qix
i .

Output: the product a(x) := p(x) · q(x). Output given by a list of
coefficients (a0, . . . , a2n)

Naive algorithm:
1 Note that ak =

∑k
i=0 piqk−i

2 Hence, can compute all products piqj , then compute the above sums

Runtime analysis: we compute O(n2) products, and perform O(n2)
additions, hence, total runtime is O(n2)

can we do better?

4 / 64



Polynomial Multiplication

Input: two univariate polynomials

p(x) =
n∑

i=0

pix
i and q(x) =

n∑
i=0

qix
i .

Output: the product a(x) := p(x) · q(x). Output given by a list of
coefficients (a0, . . . , a2n)

Naive algorithm:
1 Note that ak =

∑k
i=0 piqk−i

2 Hence, can compute all products piqj , then compute the above sums

Runtime analysis: we compute O(n2) products, and perform O(n2)
additions, hence, total runtime is O(n2)

can we do better?

5 / 64



Polynomial Multiplication

Input: two univariate polynomials

p(x) =
n∑

i=0

pix
i and q(x) =

n∑
i=0

qix
i .

Output: the product a(x) := p(x) · q(x). Output given by a list of
coefficients (a0, . . . , a2n)

Naive algorithm:
1 Note that ak =

∑k
i=0 piqk−i

2 Hence, can compute all products piqj , then compute the above sums

Runtime analysis: we compute O(n2) products, and perform O(n2)
additions, hence, total runtime is O(n2)

can we do better?

6 / 64



Karatsuba’s algorithm

1 write p(x) = f1(x) · xn/2 + f2(x) and q(x) = g1(x) · xn/2 + g2(x),
where deg(fi ), deg(gi ) ≤ n/2

2 note that

p(x)·q(x) = f1(x)·g1(x)·xn+[f1(x)·g2(x)+f2(x)·g1(x)]·x
n
2+f2(x)·g2(x)

3 Divide and conquer for the rescue!

T (n) = 4 · T (n/2) + γ · n

4 Can we reduce the number of subproblems?

Need to reduce number of multiplications!

7 / 64



Karatsuba’s algorithm

1 write p(x) = f1(x) · xn/2 + f2(x) and q(x) = g1(x) · xn/2 + g2(x),
where deg(fi ), deg(gi ) ≤ n/2

2 note that

p(x)·q(x) = f1(x)·g1(x)·xn+[f1(x)·g2(x)+f2(x)·g1(x)]·x
n
2+f2(x)·g2(x)

3 Divide and conquer for the rescue!

T (n) = 4 · T (n/2) + γ · n

4 Can we reduce the number of subproblems?

Need to reduce number of multiplications!

8 / 64



Karatsuba’s algorithm

1 write p(x) = f1(x) · xn/2 + f2(x) and q(x) = g1(x) · xn/2 + g2(x),
where deg(fi ), deg(gi ) ≤ n/2

2 note that

p(x)·q(x) = f1(x)·g1(x)·xn+[f1(x)·g2(x)+f2(x)·g1(x)]·x
n
2+f2(x)·g2(x)

3 Divide and conquer for the rescue!

T (n) = 4 · T (n/2) + γ · n

4 Can we reduce the number of subproblems?

Need to reduce number of multiplications!

9 / 64



Karatsuba’s algorithm

1 write p(x) = f1(x) · xn/2 + f2(x) and q(x) = g1(x) · xn/2 + g2(x),
where deg(fi ), deg(gi ) ≤ n/2

2 note that

p(x)·q(x) = f1(x)·g1(x)·xn+[f1(x)·g2(x)+f2(x)·g1(x)]·x
n
2+f2(x)·g2(x)

3 Divide and conquer for the rescue!

T (n) = 4 · T (n/2) + γ · n

Hmmmmm... this is giving me O(n2)

4 Can we reduce the number of subproblems?

Need to reduce number of multiplications!

10 / 64



Karatsuba’s algorithm

1 write p(x) = f1(x) · xn/2 + f2(x) and q(x) = g1(x) · xn/2 + g2(x),
where deg(fi ), deg(gi ) ≤ n/2

2 note that

p(x)·q(x) = f1(x)·g1(x)·xn+[f1(x)·g2(x)+f2(x)·g1(x)]·x
n
2+f2(x)·g2(x)

3 Divide and conquer for the rescue!

T (n) = 4 · T (n/2) + γ · n

4 Can we reduce the number of subproblems?

Need to reduce number of multiplications!

11 / 64



Reducing number of multiplications
Want to compute

p(x)·q(x) = f1(x)·g1(x)·xn+[f1(x)·g2(x)+f2(x)·g1(x)]·x
n
2+f2(x)·g2(x)

So need to compute the polynomials:

f1(x) · g1(x), f1(x) · g2(x) + f2(x) · g1(x), f2(x) · g2(x)

with less than 4 multiplications.

with the product

A(x) := (f1(x) + f2(x)) · (g1(x) + g2(x))

we are almost there!

Using the products

B(x) := f1(x) · g1(x), and C (x) := f2(x) · g2(x)

can compute the 3 above terms!

12 / 64



Reducing number of multiplications
Want to compute

p(x)·q(x) = f1(x)·g1(x)·xn+[f1(x)·g2(x)+f2(x)·g1(x)]·x
n
2+f2(x)·g2(x)

So need to compute the polynomials:

f1(x) · g1(x), f1(x) · g2(x) + f2(x) · g1(x), f2(x) · g2(x)

with less than 4 multiplications.

with the product

A(x) := (f1(x) + f2(x)) · (g1(x) + g2(x))

we are almost there!

Using the products

B(x) := f1(x) · g1(x), and C (x) := f2(x) · g2(x)

can compute the 3 above terms!

13 / 64



Reducing number of multiplications
Want to compute

p(x)·q(x) = f1(x)·g1(x)·xn+[f1(x)·g2(x)+f2(x)·g1(x)]·x
n
2+f2(x)·g2(x)

So need to compute the polynomials:

f1(x) · g1(x), f1(x) · g2(x) + f2(x) · g1(x), f2(x) · g2(x)

with less than 4 multiplications.

with the product

A(x) := (f1(x) + f2(x)) · (g1(x) + g2(x))

we are almost there!

Using the products

B(x) := f1(x) · g1(x), and C (x) := f2(x) · g2(x)

can compute the 3 above terms!
14 / 64



Recurrence

Thus, we have the following recurrence:

T (n) = 3T (n/2) + γn

which yields
T (n) = O(nlog 3) = o(n1.59).

15 / 64



Recurrence

Thus, we have the following recurrence:

T (n) = 3T (n/2) + γn

which yields
T (n) = O(nlog 3) = o(n1.59).

If you want to learn faster algorithms (and other cool symbolic
algorithms), consider taking CS 487.

16 / 64



Polynomial Multiplication
Optional I: integer multiplication
Optional II: matrix multiplication

Median Finding & Selection problem

Acknowledgements

17 / 64



Integer multiplication

Input: two n-bit numbers a := a1a2 · · · an and b := b1b2 · · · bn
Output: a · b
Bit complexity model!

Naive algorithm:

similar to polynomial multiplication, takes Θ(n2) time

Same strategy to Karatsuba’s algorithm!
Write a = x1x2 and b = y1y2. Note that

a · b = x1 · y1 · 2n + (x1 · y2 + x2 · y1) · 2n/2 + x2 · y2
Same recurrence as Karatsuba’s!

Thus T (n) = O(nlog 3).

[Harvey, van der Hoeven 2019] algorithm for integer multiplication
with O(n log n) runtime!

18 / 64



Integer multiplication

Input: two n-bit numbers a := a1a2 · · · an and b := b1b2 · · · bn
Output: a · b
Naive algorithm:

similar to polynomial multiplication, takes Θ(n2) time

Same strategy to Karatsuba’s algorithm!
Write a = x1x2 and b = y1y2. Note that

a · b = x1 · y1 · 2n + (x1 · y2 + x2 · y1) · 2n/2 + x2 · y2
Same recurrence as Karatsuba’s!

Thus T (n) = O(nlog 3).

[Harvey, van der Hoeven 2019] algorithm for integer multiplication
with O(n log n) runtime!

19 / 64



Integer multiplication

Input: two n-bit numbers a := a1a2 · · · an and b := b1b2 · · · bn
Output: a · b
Naive algorithm:

similar to polynomial multiplication, takes Θ(n2) time

Can we do better?

Same strategy to Karatsuba’s algorithm!
Write a = x1x2 and b = y1y2. Note that

a · b = x1 · y1 · 2n + (x1 · y2 + x2 · y1) · 2n/2 + x2 · y2
Same recurrence as Karatsuba’s!

Thus T (n) = O(nlog 3).

[Harvey, van der Hoeven 2019] algorithm for integer multiplication
with O(n log n) runtime!

20 / 64



Integer multiplication

Input: two n-bit numbers a := a1a2 · · · an and b := b1b2 · · · bn
Output: a · b
Naive algorithm:

similar to polynomial multiplication, takes Θ(n2) time

Same strategy to Karatsuba’s algorithm!
Write a = x1x2 and b = y1y2. Note that

a · b = x1 · y1 · 2n + (x1 · y2 + x2 · y1) · 2n/2 + x2 · y2

Same recurrence as Karatsuba’s!

Thus T (n) = O(nlog 3).

[Harvey, van der Hoeven 2019] algorithm for integer multiplication
with O(n log n) runtime!

21 / 64



Integer multiplication

Input: two n-bit numbers a := a1a2 · · · an and b := b1b2 · · · bn
Output: a · b
Naive algorithm:

similar to polynomial multiplication, takes Θ(n2) time

Same strategy to Karatsuba’s algorithm!
Write a = x1x2 and b = y1y2. Note that

a · b = x1 · y1 · 2n + (x1 · y2 + x2 · y1) · 2n/2 + x2 · y2
Same recurrence as Karatsuba’s!

Thus T (n) = O(nlog 3).

[Harvey, van der Hoeven 2019] algorithm for integer multiplication
with O(n log n) runtime!

22 / 64



Integer multiplication

Input: two n-bit numbers a := a1a2 · · · an and b := b1b2 · · · bn
Output: a · b
Naive algorithm:

similar to polynomial multiplication, takes Θ(n2) time

Same strategy to Karatsuba’s algorithm!
Write a = x1x2 and b = y1y2. Note that

a · b = x1 · y1 · 2n + (x1 · y2 + x2 · y1) · 2n/2 + x2 · y2
Same recurrence as Karatsuba’s!

Thus T (n) = O(nlog 3).

[Harvey, van der Hoeven 2019] algorithm for integer multiplication
with O(n log n) runtime!

23 / 64



Polynomial Multiplication
Optional I: integer multiplication
Optional II: matrix multiplication

Median Finding & Selection problem

Acknowledgements

24 / 64



Matrix Multiplication

Input: matrices A,B ∈ Fn×n

Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.

Running time: O(n3)

Can we do better?

Strassen 1969: YES!

Idea: divide matrix into blocks, and reduce number of multiplications
needed!

Similar in spirit as Karatsuba’s algorithm for polynomial
multiplication!

25 / 64



Matrix Multiplication

Input: matrices A,B ∈ Fn×n

Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.

Running time: O(n3)

Can we do better?

Strassen 1969: YES!

Idea: divide matrix into blocks, and reduce number of multiplications
needed!

Similar in spirit as Karatsuba’s algorithm for polynomial
multiplication!

26 / 64



Matrix Multiplication

Input: matrices A,B ∈ Fn×n

Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.

Running time: O(n3)

Can we do better?

Strassen 1969: YES!

Idea: divide matrix into blocks, and reduce number of multiplications
needed!

Similar in spirit as Karatsuba’s algorithm for polynomial
multiplication!

27 / 64



Matrix Multiplication

Input: matrices A,B ∈ Fn×n

Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.

Running time: O(n3)

Can we do better?

Strassen 1969: YES!

Idea: divide matrix into blocks, and reduce number of multiplications
needed!

Similar in spirit as Karatsuba’s algorithm for polynomial
multiplication!

28 / 64



Strassen’s Algorithm
Suppose that n = 2k

Let A,B,C ∈ Fn×n such that C = AB. Divide them into blocks of
size n/2:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

29 / 64



Strassen’s Algorithm
Suppose that n = 2k

Let A,B,C ∈ Fn×n such that C = AB. Divide them into blocks of
size n/2:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

30 / 64



Strassen’s Algorithm
Suppose that n = 2k

Let A,B,C ∈ Fn×n such that C = AB. Divide them into blocks of
size n/2:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

31 / 64



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

32 / 64



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

33 / 64



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

34 / 64



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

35 / 64



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

36 / 64



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

37 / 64



Analysis of Strassen’s Algorithm

To compute AB = C we used:
1 8 additions Si ,Ti ’s
2 7 multiplications Pi ’s
3 10 additions Cij ’s

Recurrence:

MM(n) ≤ 7 ·MM(n/2) + 18 · c · (n/2)2

Master theorem: MM(n) = O(nlog 7) ≈ O(n2.807)

38 / 64



Analysis of Strassen’s Algorithm

To compute AB = C we used:
1 8 additions Si ,Ti ’s
2 7 multiplications Pi ’s
3 10 additions Cij ’s

Recurrence:

MM(n) ≤ 7 ·MM(n/2) + 18 · c · (n/2)2

Master theorem: MM(n) = O(nlog 7) ≈ O(n2.807)

39 / 64



Analysis of Strassen’s Algorithm

To compute AB = C we used:
1 8 additions Si ,Ti ’s
2 7 multiplications Pi ’s
3 10 additions Cij ’s

Recurrence:

MM(n) ≤ 7 ·MM(n/2) + 18 · c · (n/2)2

Master theorem: MM(n) = O(nlog 7) ≈ O(n2.807)

40 / 64



Can we do better?

There has been phenomenal progress in this question, spurred by work
of Coppersmith and Vinograd.

By following their approach, the current record for matrix
multiplication is roughly O(n2.37)

Open problem: can you do better?

41 / 64



Polynomial Multiplication
Optional I: integer multiplication
Optional II: matrix multiplication

Median Finding & Selection problem

Acknowledgements

42 / 64



Median Finding

Input: array with distinct integers A = [a1, . . . , an]

Output: median of these numbers

Word RAM model!

Naive algorithm: sort the numbers, then output the middle element.

Running time: O(n log n).

Can we do better?

Turns out we can solve this problem in Θ(n) time!

Divide and conquer!

hmmmmm... but how can we divide?

Subproblem will not be the median problem!

Idea: generalize our problem a little bit, to make it more flexible.

43 / 64



Median Finding

Input: array with distinct integers A = [a1, . . . , an]

Output: median of these numbers

Naive algorithm: sort the numbers, then output the middle element.

Running time: O(n log n).

Can we do better?

Turns out we can solve this problem in Θ(n) time!

Divide and conquer!

hmmmmm... but how can we divide?

Subproblem will not be the median problem!

Idea: generalize our problem a little bit, to make it more flexible.

44 / 64



Median Finding

Input: array with distinct integers A = [a1, . . . , an]

Output: median of these numbers

Naive algorithm: sort the numbers, then output the middle element.

Running time: O(n log n).

Can we do better?

Turns out we can solve this problem in Θ(n) time!

Divide and conquer!

hmmmmm... but how can we divide?

Subproblem will not be the median problem!

Idea: generalize our problem a little bit, to make it more flexible.

45 / 64



Median Finding

Input: array with distinct integers A = [a1, . . . , an]

Output: median of these numbers

Naive algorithm: sort the numbers, then output the middle element.

Running time: O(n log n).

Can we do better?

Turns out we can solve this problem in Θ(n) time!

Divide and conquer!

hmmmmm... but how can we divide?

Subproblem will not be the median problem!

Idea: generalize our problem a little bit, to make it more flexible.

46 / 64



Median Finding

Input: array with distinct integers A = [a1, . . . , an]

Output: median of these numbers

Naive algorithm: sort the numbers, then output the middle element.

Running time: O(n log n).

Can we do better?

Turns out we can solve this problem in Θ(n) time!

Divide and conquer!

hmmmmm... but how can we divide?

Subproblem will not be the median problem!

Idea: generalize our problem a little bit, to make it more flexible.

47 / 64



Median Finding

Input: array with distinct integers A = [a1, . . . , an]

Output: median of these numbers

Naive algorithm: sort the numbers, then output the middle element.

Running time: O(n log n).

Can we do better?

Turns out we can solve this problem in Θ(n) time!

Divide and conquer!

hmmmmm... but how can we divide?

Subproblem will not be the median problem!

Idea: generalize our problem a little bit, to make it more flexible.

48 / 64



Selection Problem
Input: array with distinct integers A = [a1, . . . , an], integer k ∈ [n]
Output: kth smallest element of A
(Still) Word RAM model!

To divide-and-conquer, can select an element α of the array (the
pivot), and with a linear scan break A into AL,AR , where{
ai ∈ AL iff ai < α

ai ∈ AR iff ai > α

Question: how to find a good pivot?
If rank(α) = r (i.e. α is the r th smallest element), then subproblems
of size: r − 1 and n − r

To make progress on subproblem sizes, need r = Θ(n).

For instance, if n/4 ≤ r ≤ 3n/4, we have:

T (n) ≤ T (3n/4) + P(n) + γ · n

where P(n) = time to find a good pivot and T (n) = time to find kth

element
So if we could show that P(n) = O(n) we would be done.

49 / 64



Selection Problem
Input: array with distinct integers A = [a1, . . . , an], integer k ∈ [n]

Output: kth smallest element of A

To divide-and-conquer, can select an element α of the array (the
pivot), and with a linear scan break A into AL,AR , where{
ai ∈ AL iff ai < α

ai ∈ AR iff ai > α

Question: how to find a good pivot?
If rank(α) = r (i.e. α is the r th smallest element), then subproblems
of size: r − 1 and n − r

To make progress on subproblem sizes, need r = Θ(n).

For instance, if n/4 ≤ r ≤ 3n/4, we have:

T (n) ≤ T (3n/4) + P(n) + γ · n

where P(n) = time to find a good pivot and T (n) = time to find kth

element

So if we could show that P(n) = O(n) we would be done.

50 / 64



Selection Problem
Input: array with distinct integers A = [a1, . . . , an], integer k ∈ [n]

Output: kth smallest element of A

To divide-and-conquer, can select an element α of the array (the
pivot), and with a linear scan break A into AL,AR , where{
ai ∈ AL iff ai < α

ai ∈ AR iff ai > α

Question: how to find a good pivot?
If rank(α) = r (i.e. α is the r th smallest element), then subproblems
of size: r − 1 and n − r

To make progress on subproblem sizes, need r = Θ(n).

For instance, if n/4 ≤ r ≤ 3n/4, we have:

T (n) ≤ T (3n/4) + P(n) + γ · n

where P(n) = time to find a good pivot and T (n) = time to find kth

element

So if we could show that P(n) = O(n) we would be done.

51 / 64



Selection Problem
Input: array with distinct integers A = [a1, . . . , an], integer k ∈ [n]

Output: kth smallest element of A

To divide-and-conquer, can select an element α of the array (the
pivot), and with a linear scan break A into AL,AR , where{
ai ∈ AL iff ai < α

ai ∈ AR iff ai > α

Question: how to find a good pivot?
If rank(α) = r (i.e. α is the r th smallest element), then subproblems
of size: r − 1 and n − r

To make progress on subproblem sizes, need r = Θ(n).

For instance, if n/4 ≤ r ≤ 3n/4, we have:

T (n) ≤ T (3n/4) + P(n) + γ · n

where P(n) = time to find a good pivot and T (n) = time to find kth

element

So if we could show that P(n) = O(n) we would be done.

52 / 64



Selection Problem
Input: array with distinct integers A = [a1, . . . , an], integer k ∈ [n]

Output: kth smallest element of A

To divide-and-conquer, can select an element α of the array (the
pivot), and with a linear scan break A into AL,AR , where{
ai ∈ AL iff ai < α

ai ∈ AR iff ai > α

Question: how to find a good pivot?
If rank(α) = r (i.e. α is the r th smallest element), then subproblems
of size: r − 1 and n − r

To make progress on subproblem sizes, need r = Θ(n).

For instance, if n/4 ≤ r ≤ 3n/4, we have:

T (n) ≤ T (3n/4) + P(n) + γ · n

where P(n) = time to find a good pivot and T (n) = time to find kth

element

So if we could show that P(n) = O(n) we would be done.
53 / 64



Finding good pivot: median of medians
Input: array with distinct integers A = [a1, . . . , an]

Output: element ai such that 3n/10 ≤ rank(ai ) ≤ 7n/10

Median of medians algorithm:
1 divide A into n/5 arrays A1, . . . ,An/5 each of size 5
2 let α1, α2, . . . , αn/5 be the medians of A1, . . . ,An/5, respectively
3 return α := median(α1, . . . , αn/5)

Running time based on recurrence:

P(n) = T (n/5) + δ · n

Master theorem: O(n)

Rank of output: note that

3 · n

10
≤ rank(α) ≤ 7 · n

10

as α larger than median of n/10 of the arrays, and smaller than
median of n/10 of the arrays

54 / 64



Finding good pivot: median of medians
Input: array with distinct integers A = [a1, . . . , an]

Output: element ai such that 3n/10 ≤ rank(ai ) ≤ 7n/10

Median of medians algorithm:
1 divide A into n/5 arrays A1, . . . ,An/5 each of size 5
2 let α1, α2, . . . , αn/5 be the medians of A1, . . . ,An/5, respectively
3 return α := median(α1, . . . , αn/5)

Running time based on recurrence:

P(n) = T (n/5) + δ · n

Master theorem: O(n)

Rank of output: note that

3 · n

10
≤ rank(α) ≤ 7 · n

10

as α larger than median of n/10 of the arrays, and smaller than
median of n/10 of the arrays

55 / 64



Finding good pivot: median of medians
Input: array with distinct integers A = [a1, . . . , an]

Output: element ai such that 3n/10 ≤ rank(ai ) ≤ 7n/10

Median of medians algorithm:
1 divide A into n/5 arrays A1, . . . ,An/5 each of size 5
2 let α1, α2, . . . , αn/5 be the medians of A1, . . . ,An/5, respectively
3 return α := median(α1, . . . , αn/5)

Running time based on recurrence:

P(n) = T (n/5) + δ · n

Master theorem: O(n)

Rank of output: note that

3 · n

10
≤ rank(α) ≤ 7 · n

10

as α larger than median of n/10 of the arrays, and smaller than
median of n/10 of the arrays

56 / 64



Finding good pivot: median of medians
Input: array with distinct integers A = [a1, . . . , an]

Output: element ai such that 3n/10 ≤ rank(ai ) ≤ 7n/10

Median of medians algorithm:
1 divide A into n/5 arrays A1, . . . ,An/5 each of size 5
2 let α1, α2, . . . , αn/5 be the medians of A1, . . . ,An/5, respectively
3 return α := median(α1, . . . , αn/5)

Running time based on recurrence:

P(n) = T (n/5) + δ · n

Master theorem: O(n)

Rank of output: note that

3 · n

10
≤ rank(α) ≤ 7 · n

10

as α larger than median of n/10 of the arrays, and smaller than
median of n/10 of the arrays

57 / 64



Back to selection problem

Now we can find an element α ∈ A with 3n/10 ≤ rank(α) ≤ 7n/10 in
time δ · n

Our recursion for selection problem is then:

T (n) ≤ T (7n/10) + P(n) + γ · n

But we saw that
P(n) ≤ T (n/5) + δ · n

Thus, we have:

T (n) ≤ T (7n/10) + T (n/5) + (γ + δ) · n

Same analysis as recurrence from previous lecture, yields

T (n) = Θ(n).

58 / 64



Back to selection problem

Now we can find an element α ∈ A with 3n/10 ≤ rank(α) ≤ 7n/10 in
time δ · n
Our recursion for selection problem is then:

T (n) ≤ T (7n/10) + P(n) + γ · n

But we saw that
P(n) ≤ T (n/5) + δ · n

Thus, we have:

T (n) ≤ T (7n/10) + T (n/5) + (γ + δ) · n

Same analysis as recurrence from previous lecture, yields

T (n) = Θ(n).

59 / 64



Back to selection problem

Now we can find an element α ∈ A with 3n/10 ≤ rank(α) ≤ 7n/10 in
time δ · n
Our recursion for selection problem is then:

T (n) ≤ T (7n/10) + P(n) + γ · n

But we saw that
P(n) ≤ T (n/5) + δ · n

Thus, we have:

T (n) ≤ T (7n/10) + T (n/5) + (γ + δ) · n

Same analysis as recurrence from previous lecture, yields

T (n) = Θ(n).

60 / 64



Back to selection problem

Now we can find an element α ∈ A with 3n/10 ≤ rank(α) ≤ 7n/10 in
time δ · n
Our recursion for selection problem is then:

T (n) ≤ T (7n/10) + P(n) + γ · n

But we saw that
P(n) ≤ T (n/5) + δ · n

Thus, we have:

T (n) ≤ T (7n/10) + T (n/5) + (γ + δ) · n

Same analysis as recurrence from previous lecture, yields

T (n) = Θ(n).

61 / 64



Back to selection problem

Now we can find an element α ∈ A with 3n/10 ≤ rank(α) ≤ 7n/10 in
time δ · n
Our recursion for selection problem is then:

T (n) ≤ T (7n/10) + P(n) + γ · n

But we saw that
P(n) ≤ T (n/5) + δ · n

Thus, we have:

T (n) ≤ T (7n/10) + T (n/5) + (γ + δ) · n

Same analysis as recurrence from previous lecture, yields

T (n) = Θ(n).

62 / 64



Acknowledgement

Based on Prof. Lau’s lectures 3 and 4

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L03.pdf

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf

63 / 64

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L03.pdf
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf


References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Harvey, David and van der Hoeven, Joris (2019)

Integer multiplication in time O(n log n)

Annals of Mathematics

64 / 64


	Polynomial Multiplication
	Optional I: integer multiplication
	Optional II: matrix multiplication

	Median Finding & Selection problem
	Acknowledgements

