Lecture 3: Divide and Conquer II

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 14, 2023

イロン イロン イヨン イヨン 三日

1/64

Overview

• Polynomial Multiplication

- Optional I: integer multiplication
- Optional II: matrix multiplication
- Median Finding & Selection problem
- Acknowledgements

$$p(x) = \sum_{i=0}^{n} p_i x^i$$
 and $q(x) = \sum_{i=0}^{n} q_i x^i$.

- Output: the product a(x) := p(x) · q(x). Output given by a list of coefficients (a₀,..., a_{2n})
- Assume we are in the unit cost model, or word RAM where coefficients are integers in the range [-w, w]

$$p(x) = \sum_{i=0}^{n} p_i x^i$$
 and $q(x) = \sum_{i=0}^{n} q_i x^i$.

- Output: the product a(x) := p(x) · q(x). Output given by a list of coefficients (a₀,..., a_{2n})
- Naive algorithm:
 - 1 Note that $a_k = \sum_{i=0}^k p_i q_{k-i}$
 - 2 Hence, can compute all products $p_i q_j$, then compute the above sums

$$p(x) = \sum_{i=0}^{n} p_i x^i$$
 and $q(x) = \sum_{i=0}^{n} q_i x^i$.

- Output: the product a(x) := p(x) · q(x). Output given by a list of coefficients (a₀,..., a_{2n})
- Naive algorithm:
 - Note that $a_k = \sum_{i=0}^k p_i q_{k-i}$
 - 2 Hence, can compute all products $p_i q_j$, then compute the above sums
- Runtime analysis: we compute $O(n^2)$ products, and perform $O(n^2)$ additions, hence, total runtime is $O(n^2)$

$$p(x) = \sum_{i=0}^{n} p_i x^i$$
 and $q(x) = \sum_{i=0}^{n} q_i x^i$.

- Output: the product a(x) := p(x) · q(x). Output given by a list of coefficients (a₀,..., a_{2n})
- Naive algorithm:
 - 1 Note that $a_k = \sum_{i=0}^k p_i q_{k-i}$
 - 2 Hence, can compute all products $p_i q_j$, then compute the above sums
- Runtime analysis: we compute $O(n^2)$ products, and perform $O(n^2)$ additions, hence, total runtime is $O(n^2)$
- can we do better?

• write $p(x) = f_1(x) \cdot x^{n/2} + f_2(x)$ and $q(x) = g_1(x) \cdot x^{n/2} + g_2(x)$, where deg (f_i) , deg $(g_i) \le n/2$

- write $p(x) = f_1(x) \cdot x^{n/2} + f_2(x)$ and $q(x) = g_1(x) \cdot x^{n/2} + g_2(x)$, where deg (f_i) , deg $(g_i) \le n/2$
- Inote that

 $p(x) \cdot q(x) = f_1(x) \cdot g_1(x) \cdot x^n + [f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x)] \cdot x^{\frac{n}{2}} + f_2(x) \cdot g_2(x)$

- write $p(x) = f_1(x) \cdot x^{n/2} + f_2(x)$ and $q(x) = g_1(x) \cdot x^{n/2} + g_2(x)$, where $\deg(f_i), \deg(g_i) \le n/2$
- Inote that

 $p(x) \cdot q(x) = f_1(x) \cdot g_1(x) \cdot x^n + [f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x)] \cdot x^{\frac{n}{2}} + f_2(x) \cdot g_2(x)$

Oivide and conquer for the rescue!

$$T(n) = 4 \cdot T(n/2) + \gamma \cdot n$$

- write $p(x) = f_1(x) \cdot x^{n/2} + f_2(x)$ and $q(x) = g_1(x) \cdot x^{n/2} + g_2(x)$, where $\deg(f_i), \deg(g_i) \le n/2$
- Inote that

$$p(x) \cdot q(x) = f_1(x) \cdot g_1(x) \cdot x^n + [f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x)] \cdot x^{\frac{n}{2}} + f_2(x) \cdot g_2(x)$$

Oivide and conquer for the rescue!

$$T(n) = 4 \cdot T(n/2) + \gamma \cdot n$$

Hmmmmm... this is giving me $O(n^2)$

- write $p(x) = f_1(x) \cdot x^{n/2} + f_2(x)$ and $q(x) = g_1(x) \cdot x^{n/2} + g_2(x)$, where deg (f_i) , deg $(g_i) \le n/2$
- 2 note that

 $p(x) \cdot q(x) = f_1(x) \cdot g_1(x) \cdot x^n + [f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x)] \cdot x^{\frac{n}{2}} + f_2(x) \cdot g_2(x)$

Oivide and conquer for the rescue!

$$T(n) = 4 \cdot T(n/2) + \gamma \cdot n$$

Can we reduce the number of subproblems?
 Need to reduce number of multiplications!

Reducing number of multiplications

• Want to compute

 $p(x) \cdot q(x) = f_1(x) \cdot g_1(x) \cdot x^n + [f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x)] \cdot x^{\frac{n}{2}} + f_2(x) \cdot g_2(x)$

So need to compute the polynomials:

 $f_1(x) \cdot g_1(x), \quad f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x), \quad f_2(x) \cdot g_2(x)$

with less than 4 multiplications.

Reducing number of multiplications

• Want to compute

 $p(x) \cdot q(x) = f_1(x) \cdot g_1(x) \cdot x^n + [f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x)] \cdot x^{\frac{n}{2}} + f_2(x) \cdot g_2(x)$

So need to compute the polynomials:

$$f_1(x) \cdot g_1(x), \quad f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x), \quad f_2(x) \cdot g_2(x)$$

with less than 4 multiplications.

with the product

$$A(x) := (f_1(x) + f_2(x)) \cdot (g_1(x) + g_2(x))$$

we are almost there!

Reducing number of multiplications

• Want to compute

 $p(x) \cdot q(x) = f_1(x) \cdot g_1(x) \cdot x^n + [f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x)] \cdot x^{\frac{n}{2}} + f_2(x) \cdot g_2(x)$

So need to compute the polynomials:

$$f_1(x) \cdot g_1(x), \quad f_1(x) \cdot g_2(x) + f_2(x) \cdot g_1(x), \quad f_2(x) \cdot g_2(x)$$

with less than 4 multiplications.

with the product

$$A(x) := (f_1(x) + f_2(x)) \cdot (g_1(x) + g_2(x))$$

we are almost there!

Using the products

$$B(x) := f_1(x) \cdot g_1(x)$$
, and $C(x) := f_2(x) \cdot g_2(x)$

can compute the 3 above terms!

Recurrence

• Thus, we have the following recurrence:

$$T(n) = 3T(n/2) + \gamma n$$

which yields

$$T(n) = O(n^{\log 3}) = o(n^{1.59}).$$

Recurrence

• Thus, we have the following recurrence:

$$T(n) = 3T(n/2) + \gamma n$$

which yields

$$T(n) = O(n^{\log 3}) = o(n^{1.59}).$$

If you want to learn faster algorithms (and other cool symbolic algorithms), consider taking CS 487.

- Polynomial Multiplication
 - Optional I: integer multiplication
 - Optional II: matrix multiplication

• Median Finding & Selection problem

Acknowledgements

- Input: two *n*-bit numbers $a := a_1 a_2 \cdots a_n$ and $b := b_1 b_2 \cdots b_n$
- Output: $a \cdot b$
- Bit complexity model!

- Input: two *n*-bit numbers $a := a_1 a_2 \cdots a_n$ and $b := b_1 b_2 \cdots b_n$
- Output: $a \cdot b$
- Naive algorithm:

similar to polynomial multiplication, takes $\Theta(n^2)$ time

- Input: two *n*-bit numbers $a := a_1 a_2 \cdots a_n$ and $b := b_1 b_2 \cdots b_n$
- Output: $a \cdot b$
- Naive algorithm:

similar to polynomial multiplication, takes $\Theta(n^2)$ time • Can we do better?

- Input: two *n*-bit numbers $a := a_1 a_2 \cdots a_n$ and $b := b_1 b_2 \cdots b_n$
- Output: $a \cdot b$
- Naive algorithm:

similar to polynomial multiplication, takes $\Theta(n^2)$ time

• Same strategy to Karatsuba's algorithm! Write $a = x_1 x_2$ and $b = y_1 y_2$. Note that

$$a \cdot b = x_1 \cdot y_1 \cdot 2^n + (x_1 \cdot y_2 + x_2 \cdot y_1) \cdot 2^{n/2} + x_2 \cdot y_2$$

- Input: two *n*-bit numbers $a := a_1 a_2 \cdots a_n$ and $b := b_1 b_2 \cdots b_n$
- Output: $a \cdot b$
- Naive algorithm:

similar to polynomial multiplication, takes $\Theta(n^2)$ time

• Same strategy to Karatsuba's algorithm! Write $a = x_1x_2$ and $b = y_1y_2$. Note that $a \cdot b = x_1 \cdot y_1 \cdot 2^n + (x_1 \cdot y_2 + x_2 \cdot y_1) \cdot 2^{n/2} + x_2 \cdot y_2$

• Same recurrence as Karatsuba's!

Thus
$$T(n) = O(n^{\log 3})$$
.

- **Input:** two *n*-bit numbers $a := a_1 a_2 \cdots a_n$ and $b := b_1 b_2 \cdots b_n$
- Output: $a \cdot b$
- Naive algorithm:

similar to polynomial multiplication, takes $\Theta(n^2)$ time

• Same strategy to Karatsuba's algorithm! Write $a = x_1x_2$ and $b = y_1y_2$. Note that

$$a \cdot b = x_1 \cdot y_1 \cdot 2^n + (x_1 \cdot y_2 + x_2 \cdot y_1) \cdot 2^{n/2} + x_2 \cdot y_2$$

• Same recurrence as Karatsuba's!

Thus
$$T(n) = O(n^{\log 3})$$
.

 [Harvey, van der Hoeven 2019] algorithm for integer multiplication with O(n log n) runtime!

- Polynomial Multiplication
 - Optional I: integer multiplication
 - Optional II: matrix multiplication

• Median Finding & Selection problem

Acknowledgements

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- **Output:** product C = AB

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- **Output:** product C = AB
- Naive algorithm:

Compute *n* matrix vector multiplications.

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- **Output:** product C = AB
- Naive algorithm:

Compute *n* matrix vector multiplications.

• Running time: $O(n^3)$

Can we do better?

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- **Output:** product C = AB
- Naive algorithm:

Compute *n* matrix vector multiplications.

• Running time: $O(n^3)$

Can we do better?

- Strassen 1969: YES!
- Idea: divide matrix into blocks, and reduce number of multiplications needed!

Similar in spirit as Karatsuba's algorithm for polynomial multiplication!

- Suppose that $n = 2^k$
- Let A, B, C ∈ ℝ^{n×n} such that C = AB. Divide them into blocks of size n/2:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

- Suppose that $n = 2^k$
- Let A, B, C ∈ ℝ^{n×n} such that C = AB. Divide them into blocks of size n/2:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

• Define following matrices:

$$S_1 = A_{21} + A_{22}, S_2 = S_1 - A_{11}, S_3 = A_{11} - A_{21}, S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, T_2 = B_{22} - T_1, T_3 = B_{22} - B_{12}, T_4 = T_2 - B_{21}$

- Suppose that $n = 2^k$
- Let A, B, C ∈ ℝ^{n×n} such that C = AB. Divide them into blocks of size n/2:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Define following matrices:

$$S_1 = A_{21} + A_{22}, S_2 = S_1 - A_{11}, S_3 = A_{11} - A_{21}, S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, T_2 = B_{22} - T_1, T_3 = B_{22} - B_{12}, T_4 = T_2 - B_{21}$

• Compute the following 7 products:

$$P_1 = A_{11}B_{11}, P_2 = A_{12}B_{21}, P_3 = S_4B_{22}, P_4 = A_{22}T_4$$

 $P_5 = S_1T_1, P_6 = S_2T_2, P_7 = S_3T_3$

• Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

• Compute the following 7 products:

$$P_1 = A_{11}B_{11}, P_2 = A_{12}B_{21}, P_3 = S_4B_{22}, P_4 = A_{22}T_4$$

 $P_5 = S_1T_1, P_6 = S_2T_2, P_7 = S_3T_3$

• Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

• Compute the following 7 products:

 $P_1 = A_{11}B_{11}, P_2 = A_{12}B_{21}, P_3 = S_4B_{22}, P_4 = A_{22}T_4$ $P_5 = S_1T_1, P_6 = S_2T_2, P_7 = S_3T_3$ $\bullet \ C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_1 + P_2$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

Compute the following 7 products:

 $P_1 = A_{11}B_{11}, P_2 = A_{12}B_{21}, P_3 = S_4B_{22}, P_4 = A_{22}T_4$ $P_5 = S_1T_1, P_6 = S_2T_2, P_7 = S_3T_3$ $\bullet C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_1 + P_2$ $\bullet C_{12} = A_{11}B_{12} + A_{12}B_{22} = P_1 + P_3 + P_5 + P_6$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

• Compute the following 7 products:

 $P_{1} = A_{11}B_{11}, P_{2} = A_{12}B_{21}, P_{3} = S_{4}B_{22}, P_{4} = A_{22}T_{4}$ $P_{5} = S_{1}T_{1}, P_{6} = S_{2}T_{2}, P_{7} = S_{3}T_{3}$ • $C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_{1} + P_{2}$ • $C_{12} = A_{11}B_{12} + A_{12}B_{22} = P_{1} + P_{3} + P_{5} + P_{6}$ • $C_{21} = A_{21}B_{11} + A_{22}B_{21} = P_{1} - P_{4} + P_{6} + P_{7}$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

• Compute the following 7 products:

 $P_{1} = A_{11}B_{11}, P_{2} = A_{12}B_{21}, P_{3} = S_{4}B_{22}, P_{4} = A_{22}T_{4}$ $P_{5} = S_{1}T_{1}, P_{6} = S_{2}T_{2}, P_{7} = S_{3}T_{3}$ • $C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_{1} + P_{2}$ • $C_{12} = A_{11}B_{12} + A_{12}B_{22} = P_{1} + P_{3} + P_{5} + P_{6}$ • $C_{21} = A_{21}B_{11} + A_{22}B_{21} = P_{1} - P_{4} + P_{6} + P_{7}$ • $C_{22} = A_{21}B_{12} + A_{22}B_{22} = P_{1} + P_{5} + P_{6} + P_{7}$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくで

Strassen's Algorithm

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

Compute the following 7 products:

 $P_{1} = A_{11}B_{11}, P_{2} = A_{12}B_{21}, P_{3} = S_{4}B_{22}, P_{4} = A_{22}T_{4}$ $P_{5} = S_{1}T_{1}, P_{6} = S_{2}T_{2}, P_{7} = S_{3}T_{3}$ • $C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_{1} + P_{2}$ • $C_{12} = A_{11}B_{12} + A_{12}B_{22} = P_{1} + P_{3} + P_{5} + P_{6}$ • $C_{21} = A_{21}B_{11} + A_{22}B_{21} = P_{1} - P_{4} + P_{6} + P_{7}$ • $C_{22} = A_{21}B_{12} + A_{22}B_{22} = P_{1} + P_{5} + P_{6} + P_{7}$

Correctness follows from the computations

(ロ) (同) (ヨ) (ヨ) (ヨ) (000

Analysis of Strassen's Algorithm

• To compute AB = C we used:

8 additions

- 2 7 multiplications
- I0 additions

S_i, T_i's P_i's C_{ii}'s

Analysis of Strassen's Algorithm

- To compute AB = C we used:
 - 8 additions
 - 2 7 multiplications
 - I0 additions
- Recurrence:

$$MM(n) \leq 7 \cdot MM(n/2) + 18 \cdot c \cdot (n/2)^2$$

S_i, T_i's P_i's C_{ii}'s

Analysis of Strassen's Algorithm

- To compute AB = C we used:
 - 8 additions
 - 2 7 multiplications
 - I0 additions
- Recurrence:

$$MM(n) \leq 7 \cdot MM(n/2) + 18 \cdot c \cdot (n/2)^2$$

• Master theorem: $MM(n) = O(n^{\log 7}) \approx O(n^{2.807})$

S_i, T_i's P_i's C_{ii}'s

- There has been phenomenal progress in this question, spurred by work of Coppersmith and Vinograd.
- By following their approach, the current record for matrix multiplication is roughly $O(n^{2.37})$

Open problem: can you do better?

• Polynomial Multiplication

- Optional I: integer multiplication
- Optional II: matrix multiplication

• Median Finding & Selection problem

Acknowledgements

- Input: array with distinct integers $A = [a_1, \dots, a_n]$
- Output: median of these numbers
- Word RAM model!

- Input: array with distinct integers $A = [a_1, \dots, a_n]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.
 Running time: O(n log n).

- Input: array with distinct integers $A = [a_1, \dots, a_n]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.
 Running time: O(n log n).
- Can we do better?

- Input: array with distinct integers $A = [a_1, \ldots, a_n]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.
 Running time: O(n log n).
- Can we do better?
- Turns out we can solve this problem in $\Theta(n)$ time!

Divide and conquer!

- Input: array with distinct integers $A = [a_1, \ldots, a_n]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.
 Running time: O(n log n).
- Can we do better?
- Turns out we can solve this problem in $\Theta(n)$ time!

Divide and conquer!

• hmmmmm... but how can we divide?

Subproblem will not be the median problem!

- Input: array with distinct integers $A = [a_1, \ldots, a_n]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.
 Running time: O(n log n).
- Can we do better?
- Turns out we can solve this problem in $\Theta(n)$ time!

Divide and conquer!

• hmmmmm... but how can we divide?

Subproblem will not be the median problem!

• Idea: generalize our problem a little bit, to make it more flexible.

- Input: array with distinct integers $A = [a_1, \ldots, a_n]$, integer $k \in [n]$
- **Output:** k^{th} smallest element of A
- (Still) Word RAM model!

- Input: array with distinct integers $A = [a_1, \ldots, a_n]$, integer $k \in [n]$
- **Output:** k^{th} smallest element of A

- **Input:** array with distinct integers $A = [a_1, \ldots, a_n]$, integer $k \in [n]$
- **Output:** k^{th} smallest element of A
- To divide-and-conquer, can select an element α of the array (the pivot), and with a linear scan break A into A_L, A_R , where $\begin{cases} a_i \in A_L \text{ iff } a_i < \alpha \\ a_i \in A_R \text{ iff } a_i > \alpha \end{cases}$

• Question: how to find a good pivot? If rank(α) = r (i.e. α is the rth smallest element), then subproblems of size: r-1 and n-r

To make progress on subproblem sizes, need $r = \Theta(n)$.

- Input: array with distinct integers $A = [a_1, \ldots, a_n]$, integer $k \in [n]$
- **Output:** k^{th} smallest element of A

$$a_i \in A_R$$
 iff $a_i > \alpha$

• Question: how to find a good pivot? If rank(α) = r (i.e. α is the r^{th} smallest element), then subproblems of size: r - 1 and n - r

To make progress on subproblem sizes, need $r = \Theta(n)$.

• For instance, if $n/4 \le r \le 3n/4$, we have:

$$T(n) \leq T(3n/4) + P(n) + \gamma \cdot n$$

where $P(n) = \text{time to find a good pivot and } T(n) = \text{time to find } k^{th}$ element

- **Input:** array with distinct integers $A = [a_1, \ldots, a_n]$, integer $k \in [n]$
- **Output:** k^{th} smallest element of A
- To divide-and-conquer, can select an element α of the array (the pivot), and with a linear scan break A into A_L, A_R , where $\begin{cases} a_i \in A_L \text{ iff } a_i < \alpha \\ a_i \in A_R \text{ iff } a_i > \alpha \end{cases}$

• Question: how to find a good pivot? If rank(α) = r (i.e. α is the rth smallest element), then subproblems of size: r-1 and n-r

To make progress on subproblem sizes, need $r = \Theta(n)$.

• For instance, if n/4 < r < 3n/4, we have:

$$T(n) \leq T(3n/4) + P(n) + \gamma \cdot n$$

where P(n) = time to find a good pivot and T(n) = time to find k^{th} element

• So if we could show that P(n) = O(n) we would be done.

- **Input:** array with distinct integers $A = [a_1, \ldots, a_n]$
- **Output:** element a_i such that $3n/10 \le \operatorname{rank}(a_i) \le 7n/10$

- Input: array with distinct integers $A = [a_1, \ldots, a_n]$
- **Output:** element a_i such that $3n/10 \le \operatorname{rank}(a_i) \le 7n/10$
- Median of medians algorithm:
 - divide A into n/5 arrays $A_1, \ldots, A_{n/5}$ each of size 5
 - 2 let $\alpha_1, \alpha_2, \ldots, \alpha_{n/5}$ be the medians of $A_1, \ldots, A_{n/5}$, respectively
 - 3 return $\alpha := median(\alpha_1, \ldots, \alpha_{n/5})$

- Input: array with distinct integers $A = [a_1, \ldots, a_n]$
- **Output:** element a_i such that $3n/10 \le \operatorname{rank}(a_i) \le 7n/10$
- Median of medians algorithm:
 - divide A into n/5 arrays $A_1, \ldots, A_{n/5}$ each of size 5
 - 2 let $\alpha_1, \alpha_2, \ldots, \alpha_{n/5}$ be the medians of $A_1, \ldots, A_{n/5}$, respectively
 - 3 return $\alpha := median(\alpha_1, \dots, \alpha_{n/5})$
- Running time based on recurrence:

$$P(n) = T(n/5) + \delta \cdot n$$

Master theorem: O(n)

- Input: array with distinct integers $A = [a_1, \ldots, a_n]$
- **Output:** element a_i such that $3n/10 \le \operatorname{rank}(a_i) \le 7n/10$
- Median of medians algorithm:
 - divide A into n/5 arrays $A_1, \ldots, A_{n/5}$ each of size 5
 - 2 let $\alpha_1, \alpha_2, \ldots, \alpha_{n/5}$ be the medians of $A_1, \ldots, A_{n/5}$, respectively
 - **3** return $\alpha := \text{median}(\alpha_1, \ldots, \alpha_{n/5})$
- Running time based on recurrence:

$$P(n) = T(n/5) + \delta \cdot n$$

Master theorem: O(n)

• Rank of output: note that

$$3 \cdot \frac{n}{10} \leq \operatorname{rank}(\alpha) \leq 7 \cdot \frac{n}{10}$$

as α larger than median of n/10 of the arrays, and smaller than median of n/10 of the arrays

• Now we can find an element $\alpha \in A$ with $3n/10 \leq \operatorname{rank}(\alpha) \leq 7n/10$ in time $\delta \cdot n$

- Now we can find an element $\alpha \in A$ with $3n/10 \le \operatorname{rank}(\alpha) \le 7n/10$ in time $\delta \cdot n$
- Our recursion for selection problem is then:

 $T(n) \leq T(7n/10) + P(n) + \gamma \cdot n$

- Now we can find an element $\alpha \in A$ with $3n/10 \le \operatorname{rank}(\alpha) \le 7n/10$ in time $\delta \cdot n$
- Our recursion for selection problem is then:

$$T(n) \leq T(7n/10) + P(n) + \gamma \cdot n$$

But we saw that

 $P(n) \leq T(n/5) + \delta \cdot n$

- Now we can find an element α ∈ A with 3n/10 ≤ rank(α) ≤ 7n/10 in time δ ⋅ n
- Our recursion for selection problem is then:

$$T(n) \leq T(7n/10) + P(n) + \gamma \cdot n$$

But we saw that

$$P(n) \leq T(n/5) + \delta \cdot n$$

• Thus, we have:

$$T(n) \leq T(7n/10) + T(n/5) + (\gamma + \delta) \cdot n$$

- Now we can find an element α ∈ A with 3n/10 ≤ rank(α) ≤ 7n/10 in time δ ⋅ n
- Our recursion for selection problem is then:

$$T(n) \leq T(7n/10) + P(n) + \gamma \cdot n$$

But we saw that

$$P(n) \leq T(n/5) + \delta \cdot n$$

• Thus, we have:

$$T(n) \leq T(7n/10) + T(n/5) + (\gamma + \delta) \cdot n$$

• Same analysis as recurrence from previous lecture, yields

$$T(n) = \Theta(n).$$

Acknowledgement

Based on Prof. Lau's lectures 3 and 4
 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L03.pdf
 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf

References I

 Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)
 Introduction to Algorithms, third edition. *MIT Press* Harvey, David and van der Hoeven, Joris (2019)
 Integer multiplication in time O(n log n)

Annals of Mathematics