Lecture 3: Divide and Conquer II

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

September 14, 2023

Overview

- Polynomial Multiplication
- Optional I: integer multiplication
- Optional II: matrix multiplication
- Median Finding \& Selection problem
- Acknowledgements

Polynomial Multiplication

- Input: two univariate polynomials

$$
p(x)=\sum_{i=0}^{n} p_{i} x^{i} \text { and } q(x)=\sum_{i=0}^{n} q_{i} x^{i}
$$

- Output: the product $a(x):=p(x) \cdot q(x)$. Output given by a list of coefficients $\left(a_{0}, \ldots, a_{2 n}\right)$
- Assume we are in the unit cost model, or word RAM where coefficients are integers in the range $[-w, w]$

Polynomial Multiplication

- Input: two univariate polynomials

$$
p(x)=\sum_{i=0}^{n} p_{i} x^{i} \text { and } q(x)=\sum_{i=0}^{n} q_{i} x^{i}
$$

- Output: the product $a(x):=p(x) \cdot q(x)$. Output given by a list of coefficients $\left(a_{0}, \ldots, a_{2 n}\right)$
- Naive algorithm:
(1) Note that $a_{k}=\sum_{i=0}^{k} p_{i} q_{k-i}$
(2) Hence, can compute all products $p_{i} q_{j}$, then compute the above sums

Polynomial Multiplication

- Input: two univariate polynomials

$$
p(x)=\sum_{i=0}^{n} p_{i} x^{i} \text { and } q(x)=\sum_{i=0}^{n} q_{i} x^{i}
$$

- Output: the product $a(x):=p(x) \cdot q(x)$. Output given by a list of coefficients $\left(a_{0}, \ldots, a_{2 n}\right)$
- Naive algorithm:
(1) Note that $a_{k}=\sum_{i=0}^{k} p_{i} q_{k-i}$
(2) Hence, can compute all products $p_{i} q_{j}$, then compute the above sums
- Runtime analysis: we compute $O\left(n^{2}\right)$ products, and perform $O\left(n^{2}\right)$ additions, hence, total runtime is $O\left(n^{2}\right)$

Polynomial Multiplication

- Input: two univariate polynomials

$$
p(x)=\sum_{i=0}^{n} p_{i} x^{i} \text { and } q(x)=\sum_{i=0}^{n} q_{i} x^{i}
$$

- Output: the product $a(x):=p(x) \cdot q(x)$. Output given by a list of coefficients $\left(a_{0}, \ldots, a_{2 n}\right)$
- Naive algorithm:
(1) Note that $a_{k}=\sum_{i=0}^{k} p_{i} q_{k-i}$
(2) Hence, can compute all products $p_{i} q_{j}$, then compute the above sums
- Runtime analysis: we compute $O\left(n^{2}\right)$ products, and perform $O\left(n^{2}\right)$ additions, hence, total runtime is $O\left(n^{2}\right)$
- can we do better?

Karatsuba's algorithm

(1) write $p(x)=f_{1}(x) \cdot x^{n / 2}+f_{2}(x)$ and $q(x)=g_{1}(x) \cdot x^{n / 2}+g_{2}(x)$, where $\operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{i}\right) \leq n / 2$

Karatsuba's algorithm

(1) write $p(x)=f_{1}(x) \cdot x^{n / 2}+f_{2}(x)$ and $q(x)=g_{1}(x) \cdot x^{n / 2}+g_{2}(x)$, where $\operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{i}\right) \leq n / 2$
(2) note that

$$
p(x) \cdot q(x)=f_{1}(x) \cdot g_{1}(x) \cdot x^{n}+\left[f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x)\right] \cdot x^{\frac{n}{2}}+f_{2}(x) \cdot g_{2}(x)
$$

Karatsuba's algorithm

(1) write $p(x)=f_{1}(x) \cdot x^{n / 2}+f_{2}(x)$ and $q(x)=g_{1}(x) \cdot x^{n / 2}+g_{2}(x)$, where $\operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{i}\right) \leq n / 2$
(2) note that

$$
p(x) \cdot q(x)=f_{1}(x) \cdot g_{1}(x) \cdot x^{n}+\left[f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x)\right] \cdot x^{\frac{n}{2}}+f_{2}(x) \cdot g_{2}(x)
$$

(3) Divide and conquer for the rescue!

$$
T(n)=4 \cdot T(n / 2)+\gamma \cdot n
$$

Karatsuba's algorithm

(1) write $p(x)=f_{1}(x) \cdot x^{n / 2}+f_{2}(x)$ and $q(x)=g_{1}(x) \cdot x^{n / 2}+g_{2}(x)$, where $\operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{i}\right) \leq n / 2$
(2) note that

$$
p(x) \cdot q(x)=f_{1}(x) \cdot g_{1}(x) \cdot x^{n}+\left[f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x)\right] \cdot x^{\frac{n}{2}}+f_{2}(x) \cdot g_{2}(x)
$$

(3) Divide and conquer for the rescue!

$$
T(n)=4 \cdot T(n / 2)+\gamma \cdot n
$$

Hmmmmm... this is giving me $O\left(n^{2}\right)$

Karatsuba's algorithm

(1) write $p(x)=f_{1}(x) \cdot x^{n / 2}+f_{2}(x)$ and $q(x)=g_{1}(x) \cdot x^{n / 2}+g_{2}(x)$, where $\operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{i}\right) \leq n / 2$
(2) note that

$$
p(x) \cdot q(x)=f_{1}(x) \cdot g_{1}(x) \cdot x^{n}+\left[f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x)\right] \cdot x^{\frac{n}{2}}+f_{2}(x) \cdot g_{2}(x)
$$

(3) Divide and conquer for the rescue!

$$
T(n)=4 \cdot T(n / 2)+\gamma \cdot n
$$

(1) Can we reduce the number of subproblems?

Need to reduce number of multiplications!

Reducing number of multiplications

- Want to compute
$p(x) \cdot q(x)=f_{1}(x) \cdot g_{1}(x) \cdot x^{n}+\left[f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x)\right] \cdot x^{\frac{n}{2}}+f_{2}(x) \cdot g_{2}(x)$
So need to compute the polynomials:

$$
f_{1}(x) \cdot g_{1}(x), \quad f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x), \quad f_{2}(x) \cdot g_{2}(x)
$$

with less than 4 multiplications.

Reducing number of multiplications

- Want to compute
$p(x) \cdot q(x)=f_{1}(x) \cdot g_{1}(x) \cdot x^{n}+\left[f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x)\right] \cdot x^{\frac{n}{2}}+f_{2}(x) \cdot g_{2}(x)$
So need to compute the polynomials:

$$
f_{1}(x) \cdot g_{1}(x), \quad f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x), \quad f_{2}(x) \cdot g_{2}(x)
$$

with less than 4 multiplications.

- with the product

$$
A(x):=\left(f_{1}(x)+f_{2}(x)\right) \cdot\left(g_{1}(x)+g_{2}(x)\right)
$$

we are almost there!

Reducing number of multiplications

- Want to compute
$p(x) \cdot q(x)=f_{1}(x) \cdot g_{1}(x) \cdot x^{n}+\left[f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x)\right] \cdot x^{\frac{n}{2}}+f_{2}(x) \cdot g_{2}(x)$
So need to compute the polynomials:

$$
f_{1}(x) \cdot g_{1}(x), \quad f_{1}(x) \cdot g_{2}(x)+f_{2}(x) \cdot g_{1}(x), \quad f_{2}(x) \cdot g_{2}(x)
$$

with less than 4 multiplications.

- with the product

$$
A(x):=\left(f_{1}(x)+f_{2}(x)\right) \cdot\left(g_{1}(x)+g_{2}(x)\right)
$$

we are almost there!

- Using the products

$$
B(x):=f_{1}(x) \cdot g_{1}(x), \text { and } C(x):=f_{2}(x) \cdot g_{2}(x)
$$

can compute the 3 above terms!

Recurrence

- Thus, we have the following recurrence:

$$
T(n)=3 T(n / 2)+\gamma n
$$

which yields

$$
T(n)=O\left(n^{\log 3}\right)=o\left(n^{1.59}\right)
$$

Recurrence

- Thus, we have the following recurrence:

$$
T(n)=3 T(n / 2)+\gamma n
$$

which yields

$$
T(n)=O\left(n^{\log 3}\right)=o\left(n^{1.59}\right)
$$

If you want to learn faster algorithms (and other cool symbolic algorithms), consider taking CS 487.

- Polynomial Multiplication
- Optional I: integer multiplication
- Optional II: matrix multiplication
- Median Finding \& Selection problem
- Acknowledgements

Integer multiplication

- Input: two n-bit numbers $a:=a_{1} a_{2} \cdots a_{n}$ and $b:=b_{1} b_{2} \cdots b_{n}$
- Output: $a \cdot b$
- Bit complexity model!

Integer multiplication

- Input: two n-bit numbers $a:=a_{1} a_{2} \cdots a_{n}$ and $b:=b_{1} b_{2} \cdots b_{n}$
- Output: $a \cdot b$
- Naive algorithm:
similar to polynomial multiplication, takes $\Theta\left(n^{2}\right)$ time

Integer multiplication

- Input: two n-bit numbers $a:=a_{1} a_{2} \cdots a_{n}$ and $b:=b_{1} b_{2} \cdots b_{n}$
- Output: $a \cdot b$
- Naive algorithm:
similar to polynomial multiplication, takes $\Theta\left(n^{2}\right)$ time
- Can we do better?

Integer multiplication

- Input: two n-bit numbers $a:=a_{1} a_{2} \cdots a_{n}$ and $b:=b_{1} b_{2} \cdots b_{n}$
- Output: $a \cdot b$
- Naive algorithm:
similar to polynomial multiplication, takes $\Theta\left(n^{2}\right)$ time
- Same strategy to Karatsuba's algorithm!

Write $a=x_{1} x_{2}$ and $b=y_{1} y_{2}$. Note that

$$
a \cdot b=x_{1} \cdot y_{1} \cdot 2^{n}+\left(x_{1} \cdot y_{2}+x_{2} \cdot y_{1}\right) \cdot 2^{n / 2}+x_{2} \cdot y_{2}
$$

Integer multiplication

- Input: two n-bit numbers $a:=a_{1} a_{2} \cdots a_{n}$ and $b:=b_{1} b_{2} \cdots b_{n}$
- Output: $a \cdot b$
- Naive algorithm:
similar to polynomial multiplication, takes $\Theta\left(n^{2}\right)$ time
- Same strategy to Karatsuba's algorithm!

Write $a=x_{1} x_{2}$ and $b=y_{1} y_{2}$. Note that

$$
a \cdot b=x_{1} \cdot y_{1} \cdot 2^{n}+\left(x_{1} \cdot y_{2}+x_{2} \cdot y_{1}\right) \cdot 2^{n / 2}+x_{2} \cdot y_{2}
$$

- Same recurrence as Karatsuba's!

$$
\text { Thus } T(n)=O\left(n^{\log 3}\right)
$$

Integer multiplication

- Input: two n-bit numbers $a:=a_{1} a_{2} \cdots a_{n}$ and $b:=b_{1} b_{2} \cdots b_{n}$
- Output: $a \cdot b$
- Naive algorithm:
similar to polynomial multiplication, takes $\Theta\left(n^{2}\right)$ time
- Same strategy to Karatsuba's algorithm!

Write $a=x_{1} x_{2}$ and $b=y_{1} y_{2}$. Note that

$$
a \cdot b=x_{1} \cdot y_{1} \cdot 2^{n}+\left(x_{1} \cdot y_{2}+x_{2} \cdot y_{1}\right) \cdot 2^{n / 2}+x_{2} \cdot y_{2}
$$

- Same recurrence as Karatsuba's!

$$
\text { Thus } T(n)=O\left(n^{\log 3}\right)
$$

- [Harvey, van der Hoeven 2019] algorithm for integer multiplication with $O(n \log n)$ runtime!
- Polynomial Multiplication
- Optional I: integer multiplication
- Optional II: matrix multiplication
- Median Finding \& Selection problem
- Acknowledgements

Matrix Multiplication

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- Output: product $C=A B$

Matrix Multiplication

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- Output: product $C=A B$
- Naive algorithm:

Compute n matrix vector multiplications.

Matrix Multiplication

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- Output: product $C=A B$
- Naive algorithm:

Compute n matrix vector multiplications.

- Running time: $O\left(n^{3}\right)$

Can we do better?

Matrix Multiplication

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- Output: product $C=A B$
- Naive algorithm:

Compute n matrix vector multiplications.

- Running time: $O\left(n^{3}\right)$

Can we do better?

- Strassen 1969: YES!
- Idea: divide matrix into blocks, and reduce number of multiplications needed!

Similar in spirit as Karatsuba's algorithm for polynomial multiplication!

Strassen's Algorithm

- Suppose that $n=2^{k}$
- Let $A, B, C \in \mathbb{F}^{n \times n}$ such that $C=A B$. Divide them into blocks of size $n / 2$:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

Strassen's Algorithm

- Suppose that $n=2^{k}$
- Let $A, B, C \in \mathbb{F}^{n \times n}$ such that $C=A B$. Divide them into blocks of size $n / 2$:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

Strassen's Algorithm

- Suppose that $n=2^{k}$
- Let $A, B, C \in \mathbb{F}^{n \times n}$ such that $C=A B$. Divide them into blocks of size $n / 2$:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, \quad S_{2}=S_{1}-A_{11}, \quad S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, T_{2}=B_{22}-T_{1}, T_{3}=B_{22}-B_{12}, T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$
- $C_{12}=A_{11} B_{12}+A_{12} B_{22}=P_{1}+P_{3}+P_{5}+P_{6}$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, T_{3}=B_{22}-B_{12}, T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, \quad P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$
- $C_{12}=A_{11} B_{12}+A_{12} B_{22}=P_{1}+P_{3}+P_{5}+P_{6}$
- $C_{21}=A_{21} B_{11}+A_{22} B_{21}=P_{1}-P_{4}+P_{6}+P_{7}$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, T_{3}=B_{22}-B_{12}, T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, \quad P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$
- $C_{12}=A_{11} B_{12}+A_{12} B_{22}=P_{1}+P_{3}+P_{5}+P_{6}$
- $C_{21}=A_{21} B_{11}+A_{22} B_{21}=P_{1}-P_{4}+P_{6}+P_{7}$
- $C_{22}=A_{21} B_{12}+A_{22} B_{22}=P_{1}+P_{5}+P_{6}+P_{7}$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, T_{3}=B_{22}-B_{12}, T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, \quad P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$
- $C_{12}=A_{11} B_{12}+A_{12} B_{22}=P_{1}+P_{3}+P_{5}+P_{6}$
- $C_{21}=A_{21} B_{11}+A_{22} B_{21}=P_{1}-P_{4}+P_{6}+P_{7}$
- $C_{22}=A_{21} B_{12}+A_{22} B_{22}=P_{1}+P_{5}+P_{6}+P_{7}$
- Correctness follows from the computations

Analysis of Strassen's Algorithm

- To compute $A B=C$ we used:
(1) 8 additions
(2) 7 multiplications
S_{i}, T_{i} 's
(3) 10 additions P_{i} 's

Analysis of Strassen's Algorithm

- To compute $A B=C$ we used:
(1) 8 additions
(2) 7 multiplications

$$
S_{i}, T_{i} \text { 's }
$$

(3) 10 additions P_{i} 's

- Recurrence:

$$
M M(n) \leq 7 \cdot M M(n / 2)+18 \cdot c \cdot(n / 2)^{2}
$$

Analysis of Strassen's Algorithm

- To compute $A B=C$ we used:
(1) 8 additions
(2) 7 multiplications

$$
S_{i}, T_{i} \text { 's }
$$

P_{i} 's
(3) 10 additions $C_{i j}$'s

- Recurrence:

$$
M M(n) \leq 7 \cdot M M(n / 2)+18 \cdot c \cdot(n / 2)^{2}
$$

- Master theorem: $M M(n)=O\left(n^{\log 7}\right) \approx O\left(n^{2.807}\right)$

Can we do better?

- There has been phenomenal progress in this question, spurred by work of Coppersmith and Vinograd.
- By following their approach, the current record for matrix multiplication is roughly $O\left(n^{2.37}\right)$

Open problem: can you do better?
－Polynomial Multiplication
－Optional I：integer multiplication
－Optional II：matrix multiplication
－Median Finding \＆Selection problem
－Acknowledgements

Median Finding

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: median of these numbers
- Word RAM model!

Median Finding

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.

Running time: $O(n \log n)$.

Median Finding

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.

Running time: $O(n \log n)$.

- Can we do better?

Median Finding

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.

Running time: $O(n \log n)$.

- Can we do better?
- Turns out we can solve this problem in $\Theta(n)$ time!

Divide and conquer!

Median Finding

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.

$$
\text { Running time: } O(n \log n) \text {. }
$$

- Can we do better?
- Turns out we can solve this problem in $\Theta(n)$ time!

Divide and conquer!

- hmmmmm... but how can we divide?

Subproblem will not be the median problem!

Median Finding

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: median of these numbers
- Naive algorithm: sort the numbers, then output the middle element.

$$
\text { Running time: } O(n \log n) \text {. }
$$

- Can we do better?
- Turns out we can solve this problem in $\Theta(n)$ time!

Divide and conquer!

- hmmmmm... but how can we divide?

Subproblem will not be the median problem!

- Idea: generalize our problem a little bit, to make it more flexible.

Selection Problem

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$, integer $k \in[n]$
- Output: $k^{\text {th }}$ smallest element of A
- (Still) Word RAM model!

Selection Problem

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$, integer $k \in[n]$
- Output: $k^{\text {th }}$ smallest element of A
- To divide-and-conquer, can select an element α of the array (the pivot), and with a linear scan break A into A_{L}, A_{R}, where

$$
\left\{\begin{array}{l}
a_{i} \in A_{L} \text { iff } a_{i}<\alpha \\
a_{i} \in A_{R} \text { iff } a_{i}>\alpha
\end{array}\right.
$$

Selection Problem

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$, integer $k \in[n]$
- Output: $k^{\text {th }}$ smallest element of A
- To divide-and-conquer, can select an element α of the array (the pivot), and with a linear scan break A into A_{L}, A_{R}, where

$$
\left\{\begin{array}{l}
a_{i} \in A_{L} \text { iff } a_{i}<\alpha \\
a_{i} \in A_{R} \text { iff } a_{i}>\alpha
\end{array}\right.
$$

- Question: how to find a good pivot? If $\operatorname{rank}(\alpha)=r$ (i.e. α is the $r^{\text {th }}$ smallest element), then subproblems of size: $r-1$ and $n-r$

To make progress on subproblem sizes, need $r=\Theta(n)$.

Selection Problem

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$, integer $k \in[n]$
- Output: $k^{\text {th }}$ smallest element of A
- To divide-and-conquer, can select an element α of the array (the pivot), and with a linear scan break A into A_{L}, A_{R}, where
$\left\{\begin{array}{l}a_{i} \in A_{L} \text { iff } a_{i}<\alpha \\ a_{i} \in A_{R} \text { iff } a_{i}>\alpha\end{array}\right.$
- Question: how to find a good pivot? If $\operatorname{rank}(\alpha)=r$ (i.e. α is the $r^{\text {th }}$ smallest element), then subproblems of size: $r-1$ and $n-r$

To make progress on subproblem sizes, need $r=\Theta(n)$.

- For instance, if $n / 4 \leq r \leq 3 n / 4$, we have:

$$
T(n) \leq T(3 n / 4)+P(n)+\gamma \cdot n
$$

where $P(n)=$ time to find a good pivot and $T(n)=$ time to find $k^{t h}$ element

Selection Problem

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$, integer $k \in[n]$
- Output: $k^{\text {th }}$ smallest element of A
- To divide-and-conquer, can select an element α of the array (the pivot), and with a linear scan break A into A_{L}, A_{R}, where
$\left\{\begin{array}{l}a_{i} \in A_{L} \text { iff } a_{i}<\alpha \\ a_{i} \in A_{R} \text { iff } a_{i}>\alpha\end{array}\right.$
- Question: how to find a good pivot? If $\operatorname{rank}(\alpha)=r$ (i.e. α is the $r^{\text {th }}$ smallest element), then subproblems of size: $r-1$ and $n-r$

To make progress on subproblem sizes, need $r=\Theta(n)$.

- For instance, if $n / 4 \leq r \leq 3 n / 4$, we have:

$$
T(n) \leq T(3 n / 4)+P(n)+\gamma \cdot n
$$

where $P(n)=$ time to find a good pivot and $T(n)=$ time to find $k^{t h}$ element

- So if we could show that $P(n)=O(n)$ we would be done.

Finding good pivot: median of medians

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: element a_{i} such that $3 n / 10 \leq \operatorname{rank}\left(a_{i}\right) \leq 7 n / 10$

Finding good pivot: median of medians

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: element a_{i} such that $3 n / 10 \leq \operatorname{rank}\left(a_{i}\right) \leq 7 n / 10$
- Median of medians algorithm:
(1) divide A into $n / 5$ arrays $A_{1}, \ldots, A_{n / 5}$ each of size 5
(2) let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n / 5}$ be the medians of $A_{1}, \ldots, A_{n / 5}$, respectively
(3) return $\alpha:=\operatorname{median}\left(\alpha_{1}, \ldots, \alpha_{n / 5}\right)$

Finding good pivot: median of medians

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: element a_{i} such that $3 n / 10 \leq \operatorname{rank}\left(a_{i}\right) \leq 7 n / 10$
- Median of medians algorithm:
(1) divide A into $n / 5$ arrays $A_{1}, \ldots, A_{n / 5}$ each of size 5
(2) let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n / 5}$ be the medians of $A_{1}, \ldots, A_{n / 5}$, respectively
(3) return $\alpha:=$ median $\left(\alpha_{1}, \ldots, \alpha_{n / 5}\right)$
- Running time based on recurrence:

$$
P(n)=T(n / 5)+\delta \cdot n
$$

Master theorem: $O(n)$

Finding good pivot: median of medians

- Input: array with distinct integers $A=\left[a_{1}, \ldots, a_{n}\right]$
- Output: element a_{i} such that $3 n / 10 \leq \operatorname{rank}\left(a_{i}\right) \leq 7 n / 10$
- Median of medians algorithm:
(1) divide A into $n / 5$ arrays $A_{1}, \ldots, A_{n / 5}$ each of size 5
(2) let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n / 5}$ be the medians of $A_{1}, \ldots, A_{n / 5}$, respectively
(3) return $\alpha:=$ median $\left(\alpha_{1}, \ldots, \alpha_{n / 5}\right)$
- Running time based on recurrence:

$$
P(n)=T(n / 5)+\delta \cdot n
$$

Master theorem: $O(n)$

- Rank of output: note that

$$
3 \cdot \frac{n}{10} \leq \operatorname{rank}(\alpha) \leq 7 \cdot \frac{n}{10}
$$

as α larger than median of $n / 10$ of the arrays, and smaller than median of $n / 10$ of the arrays

Back to selection problem

- Now we can find an element $\alpha \in A$ with $3 n / 10 \leq \operatorname{rank}(\alpha) \leq 7 n / 10$ in time $\delta \cdot n$

Back to selection problem

- Now we can find an element $\alpha \in A$ with $3 n / 10 \leq \operatorname{rank}(\alpha) \leq 7 n / 10$ in time $\delta \cdot n$
- Our recursion for selection problem is then:

$$
T(n) \leq T(7 n / 10)+P(n)+\gamma \cdot n
$$

Back to selection problem

- Now we can find an element $\alpha \in A$ with $3 n / 10 \leq \operatorname{rank}(\alpha) \leq 7 n / 10$ in time $\delta \cdot n$
- Our recursion for selection problem is then:

$$
T(n) \leq T(7 n / 10)+P(n)+\gamma \cdot n
$$

- But we saw that

$$
P(n) \leq T(n / 5)+\delta \cdot n
$$

Back to selection problem

- Now we can find an element $\alpha \in A$ with $3 n / 10 \leq \operatorname{rank}(\alpha) \leq 7 n / 10$ in time $\delta \cdot n$
- Our recursion for selection problem is then:

$$
T(n) \leq T(7 n / 10)+P(n)+\gamma \cdot n
$$

- But we saw that

$$
P(n) \leq T(n / 5)+\delta \cdot n
$$

- Thus, we have:

$$
T(n) \leq T(7 n / 10)+T(n / 5)+(\gamma+\delta) \cdot n
$$

Back to selection problem

- Now we can find an element $\alpha \in A$ with $3 n / 10 \leq \operatorname{rank}(\alpha) \leq 7 n / 10$ in time $\delta \cdot n$
- Our recursion for selection problem is then:

$$
T(n) \leq T(7 n / 10)+P(n)+\gamma \cdot n
$$

- But we saw that

$$
P(n) \leq T(n / 5)+\delta \cdot n
$$

- Thus, we have:

$$
T(n) \leq T(7 n / 10)+T(n / 5)+(\gamma+\delta) \cdot n
$$

- Same analysis as recurrence from previous lecture, yields

$$
T(n)=\Theta(n)
$$

Acknowledgement

- Based on Prof. Lau's lectures 3 and 4 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L03.pdf https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf

References I

围
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press
T Harvey, David and van der Hoeven, Joris (2019)
Integer multiplication in time $O(n \log n)$
Annals of Mathematics

