#### Lecture 4: Divide and Conquer III

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 19, 2023

### Overview

• Closest Pair

• Non-dominated points

• Acknowledgements

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Unit cost model!
- Simplifying assumption: all x coordinates are distinct.
- Exercise: remove this assumption, but preserve the running time.

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time O(n<sup>2</sup>)

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time O(n<sup>2</sup>)
- Can we do better?

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time O(n<sup>2</sup>)
- Divide and conquer!
  - Vertical line Λ that separates points into 2 halves (left and right of Λ)
     Use median finding algorithm from previous lecture.

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time O(n<sup>2</sup>)
- Divide and conquer!
  - Vertical line Λ that separates points into 2 halves (left and right of Λ)
     Use median finding algorithm from previous lecture.
  - 2 Let L and R be the set of points to left and right of  $\Lambda$ , respectively

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time  $O(n^2)$
- Divide and conquer!
  - Vertical line Λ that separates points into 2 halves (left and right of Λ) Use median finding algorithm from previous lecture.
  - 2 Let L and R be the set of points to left and right of  $\Lambda$ , respectively
  - Solve closest pair for L and for R. Suppose the smallest distance  $\delta$  is between points of L.

Are we done?

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time O(n<sup>2</sup>)
- Divide and conquer!
  - Vertical line Λ that separates points into 2 halves (left and right of Λ)
     Use median finding algorithm from previous lecture.
  - **2** Let *L* and *R* be the set of points to left and right of  $\Lambda$ , respectively
  - **③** Solve closest pair for *L* and for *R*. Suppose the smallest distance  $\delta$  is between points of *L*.

#### Are we done?

Nope. Need to check if smallest distance is between points crossing from L to R.

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time  $O(n^2)$
- Divide and conquer!
  - Vertical line Λ that separates points into 2 halves (left and right of Λ)
     Use median finding algorithm from previous lecture.
  - **2** Let L and R be the set of points to left and right of  $\Lambda$ , respectively
  - **③** Solve closest pair for *L* and for *R*. Suppose the smallest distance  $\delta$  is between points of *L*.

Are we done?

Nope. Need to check if smallest distance is between points crossing from L to R.

Checking crossing pairs seems as hard as the original problem!

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time  $O(n^2)$
- Divide and conquer!
  - Vertical line Λ that separates points into 2 halves (left and right of Λ)
     Use median finding algorithm from previous lecture.
  - 2 Let L and R be the set of points to left and right of  $\Lambda$ , respectively
  - Solve closest pair for L and for R. Suppose the smallest distance  $\delta$  is between points of L.

**Observation:** only need to check if  $\exists$  crossing pair with distance  $< \delta$ 

- Input: *n* points  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$
- **Output:** indices  $1 \le i < j \le n$  which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time O(n<sup>2</sup>)
- Divide and conquer!
  - Vertical line Λ that separates points into 2 halves (left and right of Λ)
     Use median finding algorithm from previous lecture.
  - **2** Let *L* and *R* be the set of points to left and right of  $\Lambda$ , respectively
  - Solve closest pair for L and for R. Suppose the smallest distance  $\delta$  is between points of L.

**Observation:** only need to check if  $\exists$  crossing pair with distance  $<\delta$ Could just pay attention to points with *x*-coordinate within  $\delta$  to line  $\Lambda$ ... but still all points can be there...



- Make  $\delta/2 \times \delta/2$  boxes!
- Each square box has  $\leq 1$  point from our set

Maximum distance inside square is  $\delta/\sqrt{2}$ 



- Make  $\delta/2 \times \delta/2$  boxes!
- Each square box has  $\leq 1$  point from our set

Maximum distance inside square is  $\delta/\sqrt{2}$ 

• Each point only needs to compute distances with points within two horizontal layers

All other distances are  $>\delta$ 

- Make  $\delta/2 \times \delta/2$  boxes!
- Each square box has  $\leq 1$  point from our set

Maximum distance inside square is  $\delta/\sqrt{2}$ 

• Each point only needs to compute distances with points within two horizontal layers

All other distances are  $>\delta$ 

• Hence, each point needs only check its distance with  $\leq$  11 other points!

Now we only need to check O(n) pairs<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Before boxing needed to check  $\Omega(n^2)$  pairs

- Ind vertical line Λ
- **2** Recursively solve *L*, *R* subproblems
- **③** Linear scan to remove points  $> \delta$  far (horizontally) from  $\Lambda$
- Sort points by y-coordinate, store them in array A
- Solution For each point in A, compute distances to next 11 points in A
- Return minimum distance found.

- Ind vertical line Λ
- **2** Recursively solve *L*, *R* subproblems
- **③** Linear scan to remove points  $> \delta$  far (horizontally) from  $\Lambda$
- Sort points by y-coordinate, store them in array A
- Solution For each point in A, compute distances to next 11 points in A
- Return minimum distance found.
  - Correctness: by arguments in previous slides.

- Find vertical line  $\Lambda$
- **2** Recursively solve *L*, *R* subproblems
- **③** Linear scan to remove points  $> \delta$  far (horizontally) from  $\Lambda$
- Sort points by y-coordinate, store them in array A
- Solution For each point in A, compute distances to next 11 points in A
- Return minimum distance found.
  - Correctness: by arguments in previous slides.
  - Running time:

$$T(n) = 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- I Find vertical line Λ
- **2** Recursively solve *L*, *R* subproblems
- Solution Linear scan to remove points  $> \delta$  far (horizontally) from  $\Lambda$
- Sort points by y-coordinate, store them in array A
- Solution For each point in A, compute distances to next 11 points in A
- Return minimum distance found.
  - Correctness: by arguments in previous slides.
  - **Running time:** (sorting in beginning) We can first sort *y*-coordinates prior to recursing, and this sorted array can still be used in recursion. Thus, running time (with sorted input):

$$T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$

adding the time to sort doesn't change total runtime.

• Non-dominated points

Acknowledgements

• Given two points  $(x_1, y_1)$  and  $(x_2, y_2)$ 

 $(x_1, y_1)$  dominates  $(x_2, y_2)$  if  $x_1 > x_2$  and  $y_1 > y_2$ .



- Input: set of *n* points  $S := \{(x_1, y_1), ..., (x_n, y_n)\}$
- Output: all *non-dominated* points of S
- Model: unit-cost model
- Assumptions: (for simplicity) distinct x values

- Input: set of *n* points  $S := \{(x_1, y_1), ..., (x_n, y_n)\}$
- Output: all non-dominated points of S
- Naive algorithm:

For each point  $(x_i, y_i)$  check against all other points, if it is dominated or not. **Running time:**  $O(n^2)$ 

- Input: set of *n* points  $S := \{(x_1, y_1), ..., (x_n, y_n)\}$
- Output: all non-dominated points of S
- Naive algorithm:

For each point  $(x_i, y_i)$  check against all other points, if it is dominated or not. **Running time:**  $O(n^2)$ 

• Can we do better?

- Input: set of *n* points  $S := \{(x_1, y_1), ..., (x_n, y_n)\}$
- Output: all *non-dominated* points of S
- Naive algorithm:

For each point  $(x_i, y_i)$  check against all other points, if it is dominated or not. **Running time:**  $O(n^2)$ 

- Can we do better?
- Divide and conquer!
  - Sort points according to x-coordinate
  - Recursively solve two subproblems n/2 points to the left of middle (denoted S<sub>L</sub>), n/2 points to the right of middle (denoted S<sub>R</sub>)
  - How do we combine?
    - (astute) Observation: no point in  $S_L$  dominates a point in  $S_R$
    - Need to eliminate points from  $S_L$  which are dominated by a point in  $S_R$
    - These must be the points with *y*-coordinate larger than the largest height of *S*<sub>*R*</sub>!

• Let  $ND_L = [P_1, \dots, P_a]$  and  $ND_R = [Q_1, \dots, Q_b]$  be non-dominated points of  $S_L, S_R$ , respectively, *sorted by* x-coordinate.

- Let  $ND_L = [P_1, \dots, P_a]$  and  $ND_R = [Q_1, \dots, Q_b]$  be non-dominated points of  $S_L, S_R$ , respectively, *sorted by* x-coordinate.
- Must be the case that  $y(Q_1) > y(Q_j)$  for all j > 1!

- Let  $ND_L = [P_1, \dots, P_a]$  and  $ND_R = [Q_1, \dots, Q_b]$  be non-dominated points of  $S_L, S_R$ , respectively, *sorted by* x-coordinate.
- Must be the case that  $y(Q_1) > y(Q_j)$  for all j > 1!
- Thus, only need to compare  $y(P_i)$  with  $y(Q_1)!$
- O(n) time to combine!

- Let  $ND_L = [P_1, \dots, P_a]$  and  $ND_R = [Q_1, \dots, Q_b]$  be non-dominated points of  $S_L, S_R$ , respectively, *sorted by* x-coordinate.
- Must be the case that  $y(Q_1) > y(Q_j)$  for all j > 1!
- Thus, only need to compare  $y(P_i)$  with  $y(Q_1)!$
- O(n) time to combine!
- Algorithm
  - Sort points by x-coordinate
  - Recursively solve two subproblems n/2 points to the left of middle (denoted S<sub>L</sub>), n/2 points to the right of middle (denoted S<sub>R</sub>)
  - Ombine points as above (linear scan)
  - Output non-dominated points

- Let  $ND_L = [P_1, \dots, P_a]$  and  $ND_R = [Q_1, \dots, Q_b]$  be non-dominated points of  $S_L, S_R$ , respectively, *sorted by* x-coordinate.
- Must be the case that  $y(Q_1) > y(Q_j)$  for all j > 1!
- Thus, only need to compare  $y(P_i)$  with  $y(Q_1)!$
- O(n) time to combine!
- Algorithm
  - Sort points by x-coordinate
  - Recursively solve two subproblems n/2 points to the left of middle (denoted S<sub>L</sub>), n/2 points to the right of middle (denoted S<sub>R</sub>)
  - Ombine points as above (linear scan)
  - Output non-dominated points

#### Running time:

- sorting  $O(n \log n)$
- Recursion (for sorted input):

$$T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$

Total runtime: O(n log n)

### Acknowledgement

Based on Prof. Lau's lecture 4 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf
Based on Prof. Brown's lecture (see course webpage)

### References I



Kleinberg, John and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley