# Lecture 4: Divide and Conquer III 

Rafael Oliveira<br>University of Waterloo<br>Cheriton School of Computer Science<br>rafael.oliveira.teaching@gmail.com

September 19, 2023

## Overview

## - Closest Pair

- Non-dominated points
- Acknowledgements


## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Unit cost model!
- Simplifying assumption: all $x$ coordinates are distinct.
- Exercise: remove this assumption, but preserve the running time.


## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time $O\left(n^{2}\right)$


## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time $O\left(n^{2}\right)$
- Can we do better?


## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time $O\left(n^{2}\right)$
- Divide and conquer!
(1) Vertical line $\Lambda$ that separates points into 2 halves (left and right of $\Lambda$ ) Use median finding algorithm from previous lecture.


## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time $O\left(n^{2}\right)$
- Divide and conquer!
(1) Vertical line $\Lambda$ that separates points into 2 halves (left and right of $\Lambda$ ) Use median finding algorithm from previous lecture.
(2) Let $L$ and $R$ be the set of points to left and right of $\Lambda$, respectively


## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time $O\left(n^{2}\right)$
- Divide and conquer!
(1) Vertical line $\Lambda$ that separates points into 2 halves (left and right of $\Lambda$ ) Use median finding algorithm from previous lecture.
(2) Let $L$ and $R$ be the set of points to left and right of $\Lambda$, respectively
(3) Solve closest pair for $L$ and for $R$. Suppose the smallest distance $\delta$ is between points of $L$.

Are we done?

## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time $O\left(n^{2}\right)$
- Divide and conquer!
(1) Vertical line $\Lambda$ that separates points into 2 halves (left and right of $\Lambda$ ) Use median finding algorithm from previous lecture.
(2) Let $L$ and $R$ be the set of points to left and right of $\Lambda$, respectively
(3) Solve closest pair for $L$ and for $R$. Suppose the smallest distance $\delta$ is between points of $L$.

Are we done?
Nope. Need to check if smallest distance is between points crossing from $L$ to $R$.

## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time $O\left(n^{2}\right)$
- Divide and conquer!
(1) Vertical line $\Lambda$ that separates points into 2 halves (left and right of $\Lambda$ ) Use median finding algorithm from previous lecture.
(2) Let $L$ and $R$ be the set of points to left and right of $\Lambda$, respectively
(3) Solve closest pair for $L$ and for $R$. Suppose the smallest distance $\delta$ is between points of $L$.

Are we done?
Nope. Need to check if smallest distance is between points crossing from $L$ to $R$.
Checking crossing pairs seems as hard as the original problem!

## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time $O\left(n^{2}\right)$
- Divide and conquer!
(1) Vertical line $\Lambda$ that separates points into 2 halves (left and right of $\Lambda$ )

Use median finding algorithm from previous lecture.
(2) Let $L$ and $R$ be the set of points to left and right of $\Lambda$, respectively
(3) Solve closest pair for $L$ and for $R$. Suppose the smallest distance $\delta$ is between points of $L$.
Observation: only need to check if $\exists$ crossing pair with distance $<\delta$

## Closest Pair

- Input: $n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$
- Output: indices $1 \leq i<j \leq n$ which minimizes the distance
- Exhaustive search: compute all distances and output minimum one running time $O\left(n^{2}\right)$
- Divide and conquer!
(1) Vertical line $\Lambda$ that separates points into 2 halves (left and right of $\Lambda$ ) Use median finding algorithm from previous lecture.
(2) Let $L$ and $R$ be the set of points to left and right of $\Lambda$, respectively
(3) Solve closest pair for $L$ and for $R$. Suppose the smallest distance $\delta$ is between points of $L$.
Observation: only need to check if $\exists$ crossing pair with distance $<\delta$ Could just pay attention to points with $x$-coordinate within $\delta$ to line ^... but still all points can be there...


## Closest pair - boxing up

- Make $\delta / 2 \times \delta / 2$ boxes! $\Lambda^{-\delta} \wedge^{-\delta / 2}$



## Closest pair - boxing up

- Make $\delta / 2 \times \delta / 2$ boxes!
- Each square box has $\leq 1$ point from our set

Maximum distance inside square is $\delta / \sqrt{2}$


## Closest pair - boxing up

- Make $\delta / 2 \times \delta / 2$ boxes!
- Each square box has $\leq 1$ point from our set

Maximum distance inside square is $\delta / \sqrt{2}$

- Each point only needs to compute distances with points within two horizontal layers

All other distances are $>\delta$

## Closest pair - boxing up

- Make $\delta / 2 \times \delta / 2$ boxes!
- Each square box has $\leq 1$ point from our set

Maximum distance inside square is $\delta / \sqrt{2}$

- Each point only needs to compute distances with points within two horizontal layers

$$
\text { All other distances are }>\delta
$$

- Hence, each point needs only check its distance with $\leq 11$ other points!

Now we only need to check $O(n)$ pairs ${ }^{1}$

[^0]
## Algorithm

(1) Find vertical line $\Lambda$
(2) Recursively solve $L, R$ subproblems
(3) Linear scan to remove points $>\delta$ far (horizontally) from $\Lambda$
(9) Sort points by $y$-coordinate, store them in array $A$
(6) For each point in $A$, compute distances to next 11 points in $A$
(0) Return minimum distance found.

## Algorithm

(1) Find vertical line $\Lambda$
(2) Recursively solve $L, R$ subproblems
(3) Linear scan to remove points $>\delta$ far (horizontally) from $\Lambda$
(9) Sort points by $y$-coordinate, store them in array $A$
(6) For each point in $A$, compute distances to next 11 points in $A$
(0) Return minimum distance found.

- Correctness: by arguments in previous slides.


## Algorithm

(1) Find vertical line $\Lambda$
(2) Recursively solve $L, R$ subproblems
(3) Linear scan to remove points $>\delta$ far (horizontally) from $\Lambda$
(9) Sort points by $y$-coordinate, store them in array $A$
(3) For each point in $A$, compute distances to next 11 points in $A$
(6) Return minimum distance found.

- Correctness: by arguments in previous slides.
- Running time:

$$
T(n)=2 T(n / 2)+O(n \log n) \Rightarrow T(n)=O\left(n \log ^{2} n\right)
$$

## Algorithm

(1) Find vertical line $\Lambda$
(2) Recursively solve $L, R$ subproblems
(3) Linear scan to remove points $>\delta$ far (horizontally) from $\Lambda$
(9) Sort points by $y$-coordinate, store them in array $A$
(3) For each point in $A$, compute distances to next 11 points in $A$
(0) Return minimum distance found.

- Correctness: by arguments in previous slides.
- Running time:
(sorting in beginning)
We can first sort $y$-coordinates prior to recursing, and this sorted array can still be used in recursion. Thus, running time (with sorted input):

$$
T(n)=2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \log n)
$$

adding the time to sort doesn't change total runtime.

## - Closest Pair

- Non-dominated points
- Acknowledgements


## Non-dominated points

- Given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
\left(x_{1}, y_{1}\right) \text { dominates }\left(x_{2}, y_{2}\right) \text { if } x_{1}>x_{2} \text { and } y_{1}>y_{2} .
$$



## Non-dominated points

- Input: set of $n$ points $S:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Output: all non-dominated points of $S$
- Model: unit-cost model
- Assumptions: (for simplicity) distinct $x$ values


## Non-dominated points

- Input: set of $n$ points $S:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Output: all non-dominated points of $S$
- Naive algorithm:

For each point $\left(x_{i}, y_{i}\right)$ check against all other points, if it is dominated or not.
Running time: $O\left(n^{2}\right)$

## Non-dominated points

- Input: set of $n$ points $S:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Output: all non-dominated points of $S$
- Naive algorithm:

For each point $\left(x_{i}, y_{i}\right)$ check against all other points, if it is dominated or not.
Running time: $O\left(n^{2}\right)$

- Can we do better?


## Non-dominated points

- Input: set of $n$ points $S:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Output: all non-dominated points of $S$
- Naive algorithm:

For each point $\left(x_{i}, y_{i}\right)$ check against all other points, if it is dominated or not.
Running time: $O\left(n^{2}\right)$

- Can we do better?
- Divide and conquer!
(1) Sort points according to $x$-coordinate
(2) Recursively solve two subproblems $n / 2$ points to the left of middle (denoted $S_{L}$ ), $n / 2$ points to the right of middle (denoted $S_{R}$ )
(3) How do we combine?
- (astute) Observation: no point in $S_{L}$ dominates a point in $S_{R}$
- Need to eliminate points from $S_{L}$ which are dominated by a point in $S_{R}$
- These must be the points with $y$-coordinate larger than the largest height of $S_{R}$ !


## Combining solutions to subproblems

- Let $N D_{L}=\left[P_{1}, \ldots, P_{a}\right]$ and $N D_{R}=\left[Q_{1}, \ldots, Q_{b}\right]$ be non-dominated points of $S_{L}, S_{R}$, respectively, sorted by x-coordinate.


## Combining solutions to subproblems

- Let $N D_{L}=\left[P_{1}, \ldots, P_{a}\right]$ and $N D_{R}=\left[Q_{1}, \ldots, Q_{b}\right]$ be non-dominated points of $S_{L}, S_{R}$, respectively, sorted by x-coordinate.
- Must be the case that $y\left(Q_{1}\right)>y\left(Q_{j}\right)$ for all $j>1$ !


## Combining solutions to subproblems

- Let $N D_{L}=\left[P_{1}, \ldots, P_{a}\right]$ and $N D_{R}=\left[Q_{1}, \ldots, Q_{b}\right]$ be non-dominated points of $S_{L}, S_{R}$, respectively, sorted by x-coordinate.
- Must be the case that $y\left(Q_{1}\right)>y\left(Q_{j}\right)$ for all $j>1$ !
- Thus, only need to compare $y\left(P_{i}\right)$ with $\left.y_{( } Q_{1}\right)$ !
- $O(n)$ time to combine!


## Combining solutions to subproblems

- Let $N D_{L}=\left[P_{1}, \ldots, P_{a}\right]$ and $N D_{R}=\left[Q_{1}, \ldots, Q_{b}\right]$ be non-dominated points of $S_{L}, S_{R}$, respectively, sorted by x-coordinate.
- Must be the case that $y\left(Q_{1}\right)>y\left(Q_{j}\right)$ for all $j>1$ !
- Thus, only need to compare $y\left(P_{i}\right)$ with $\left.y_{( } Q_{1}\right)$ !
- $O(n)$ time to combine!
- Algorithm
(1) Sort points by $x$-coordinate
(2) Recursively solve two subproblems $n / 2$ points to the left of middle (denoted $S_{L}$ ), $n / 2$ points to the right of middle (denoted $S_{R}$ )
(3) Combine points as above (linear scan)
(9) Output non-dominated points


## Combining solutions to subproblems

- Let $N D_{L}=\left[P_{1}, \ldots, P_{a}\right]$ and $N D_{R}=\left[Q_{1}, \ldots, Q_{b}\right]$ be non-dominated points of $S_{L}, S_{R}$, respectively, sorted by x-coordinate.
- Must be the case that $y\left(Q_{1}\right)>y\left(Q_{j}\right)$ for all $j>1$ !
- Thus, only need to compare $y\left(P_{i}\right)$ with $\left.y_{( } Q_{1}\right)$ !
- $O(n)$ time to combine!
- Algorithm
(1) Sort points by $x$-coordinate
(2) Recursively solve two subproblems $n / 2$ points to the left of middle (denoted $S_{L}$ ), $n / 2$ points to the right of middle (denoted $S_{R}$ )
(3) Combine points as above (linear scan)
(9) Output non-dominated points
- Running time:
(1) sorting $O(n \log n)$
(2) Recursion (for sorted input):

$$
T(n)=2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \log n)
$$

(3) Total runtime: $O(n \log n)$

## Acknowledgement

- Based on Prof. Lau's lecture 4
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf
- Based on Prof. Brown's lecture (see course webpage)


## References I

围 Kleinberg, John and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley


[^0]:    ${ }^{1}$ Before boxing needed to check $\Omega\left(n^{2}\right)$ pairs

