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Greedy Approach

Greedy strategy based on following principles:
1 choose a “progress measure”
2 preprocess input accordingly
3 make next decision based on what is best given current partial solution
4 Main idea: must show that the greedy solution is always no worse

than any other optimal solution!

Usually can prove this by begin able to “transform” any optimal
solution into the greedy one without losing anything.

5 Optimal Substructure: a problem has optimal substructure if any
optimal solution contains optimal solutions to subproblems.
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Interval Scheduling

Input: n intervals (with integral endpoints) [s1, f1], [s2, f2], . . . , [sn, fn],
where si < fi

Output: a maximum set of disjoint intervals

Model: word RAM model

How to go greedy?
1 pick interval with earliest starting time (min

i
si )

2 pick interval with earliest finishing time (min
i

fi )

3 pick shortest interval (min
i

fi − si )

4 pick interval with minimum number of conflicts

What about strategy 2?

Seems like this is good. How can we show this works?
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Earliest Finishing Time

Algorithm:
1 Sort intervals by finishing time, so we can assume f1 ≤ f2 · · · ≤ fn
2 Initial solution S = ∅, k = 0 and we set f0 = −∞
3 For i ∈ [n]:

If si ≥ fk , then set k ← i and add [si , fi ] to S

4 Return S

Correctness:

Claim 1: there is optimal solution with [s1, f1]

Let [sj1 , fj1 ], . . . , [sjℓ , fjℓ ] be optimal solution, with fj1 ≤ fj2 ≤ · · · ≤ fjℓ
since f1 ≤ fj1 < sj2 , we have that [s1, f1], . . . , [sjℓ , fjℓ ] also optimal

Claim 2: optimal solution for input {[si , fi ] : si > f1} together with
[s1, f1] is optimal solution to our problem

Same proof as the one above

Induction: if our greedy is optimal for sets of size ≤ n − 1, then it is
optimal for any input of size n (proved in claim 2)

Running time: sorting then linear scan ⇒ O(n log n)
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Interval colouring

Input: n intervals (with integral endpoints) [s1, f1], [s2, f2], . . . , [sn, fn],
where si < fi

Output: a minimum number of colours such that each interval gets
one colour and we always colour overlapping intervals with distinct
colours

Model: word RAM model

one approach:
1 use previous problem to find maximum set of non-overlapping intervals
2 assign a colour to this set
3 recurse on the remaining intervals

Exercise: show this won’t work...

Observation: if there is a time t where k intervals overlap, then the
minimum number of colours is ≥ k

Is this only obstacle?

19 / 35



Interval colouring

Input: n intervals (with integral endpoints) [s1, f1], [s2, f2], . . . , [sn, fn],
where si < fi

Output: a minimum number of colours such that each interval gets
one colour and we always colour overlapping intervals with distinct
colours

Model: word RAM model

one approach:
1 use previous problem to find maximum set of non-overlapping intervals
2 assign a colour to this set
3 recurse on the remaining intervals

Exercise: show this won’t work...

Observation: if there is a time t where k intervals overlap, then the
minimum number of colours is ≥ k

Is this only obstacle?

20 / 35



Interval colouring

Input: n intervals (with integral endpoints) [s1, f1], [s2, f2], . . . , [sn, fn],
where si < fi

Output: a minimum number of colours such that each interval gets
one colour and we always colour overlapping intervals with distinct
colours

Model: word RAM model

one approach:
1 use previous problem to find maximum set of non-overlapping intervals
2 assign a colour to this set
3 recurse on the remaining intervals

Exercise: show this won’t work...

Observation: if there is a time t where k intervals overlap, then the
minimum number of colours is ≥ k

Is this only obstacle?

21 / 35



Interval colouring

Input: n intervals (with integral endpoints) [s1, f1], [s2, f2], . . . , [sn, fn],
where si < fi

Output: a minimum number of colours such that each interval gets
one colour and we always colour overlapping intervals with distinct
colours

Model: word RAM model

one approach:
1 use previous problem to find maximum set of non-overlapping intervals
2 assign a colour to this set
3 recurse on the remaining intervals

Exercise: show this won’t work...

Observation: if there is a time t where k intervals overlap, then the
minimum number of colours is ≥ k

Is this only obstacle?

22 / 35



Interval Colouring

We will associate to each colour a natural number

Algorithm:
1 Sort intervals by start time, so that s1 ≤ s2 ≤ · · · ≤ sn
2 Let A be a set of active intervals (i.e., whose finishing time “has not

passed” yet). Initialize A← {}.
3 For i ∈ [n]

Update A by removing any interval [sj , fj ] with fj < si
use minimum available colour to colour interval i

I.e., use minimum colour that was not assigned to an active interval.

4 output colouring and number of colours used

Correctness: must show that cannot use k − 1 colours. This follows
from observation in previous slide, as greedy uses k colours ⇒ there is
i ∈ [n] such that length(A) after cleaning up (at the i th step) is k − 1,
thus we must have k overlapping intervals.

Running time: if we output k colours, then length of A is upper
bounded by k − 1, so running time O(n · k) = O(n2)
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Minimizing Completion Time
Input: n tasks, with processing times p1, . . . , pn ∈ [n100]
Output: an ordering of the tasks that minimizes total completion
time
Model: word RAM
Example: given tasks with processing times 2, 3, 5, 11, if we schedule
them in this order we get completion times: 2, 5, 10, 21, so total
completion time is 38

Intuition: makes sense to schedule “faster/easier” tasks earlier
Turns out this greedy approach works!
Algorithm:

1 Sort tasks by processing times, so can assume p1 ≤ · · · ≤ pn
2 Output the set [n] (after the relabeling)

Correctness: if we output any other order pi1 , . . . , pin , there is index
t ∈ [n − 1] such that it > it+1 and thus pit ≥ pit+1 , so swapping these
two tasks changes the total completion time by pit+1 − pit ≤ 0, so we
are improving.
Running time: only sorted and output the reindexed set
⇒ O(n log n)
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Fancier Completion Time

Input: n tasks, with processing times and release times
(p1, r1), . . . , (pn, rn) ∈ [n100]2

Output: an ordering of the tasks that minimizes total completion
time.

Constraints & capabilities: Now, task i can only be scheduled from
time ri onwards, and we also allow preemption, that is, we can
suspend a task and resume it at a later given time.

Model: word RAM
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