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0-1 Knapsack problem
Input: n items, each with a prescribed value and weight, given by
(v1,w1), . . . , (vn,wn), as well as a maximum load L
Output: a subset of the items S ⊆ [n] such that:

1
∑

k∈S wi ≤ L (respect max load)
2

∑
k∈S vi ≥

∑
i∈T vi for any other set T that respects max load

This problem has optimal substructure property: if remove an item
from optimal solution, say item (vi ,wi ), then remaining load must be
optimal for the problem with load L− wi

Can greedy work here?

Unfortunately doesn’t seem to be the case (NP-hard) (we will see this
problem again and again later in the course...)
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Fractional Knapsack

Input: n items, each with a prescribed value and weight, given by
(v1,w1), . . . , (vn,wn), as well as a maximum load L

Output: a list of fractions (x1, . . . , xn) ∈ [0, 1]n such that:
1

∑
k∈[n] xiwi ≤ L (respect max load)

2
∑

k∈[n] xivi ≥
∑

k∈[n] yivi for any list (y1, . . . , yn) respecting max load

Model: Word RAM

Situation: now thief can take fractions of each item.

Problem also has optimal substructure property

Possible greedy strategy:

Maximize value per weight: vi/wi

Algorithm
1 Sort items by decreasing order of value per weight
2 Take as much as possible of item with highest value per weight
3 Recurse until load is full or no more items
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Proof of correctness (fractional case)
Assuming items are ordered by vi/wi in decreasing order
In fractional case, can assume

∑
i∈[n] xiwi = L

If
∑

i wi ≤ L then problem is trivial.

Thus, if (x1, . . . , xn) ⪰ (y1, . . . , yn), we have

∑
i∈[n]

(xi − yi )vi =
∑
k∈[n]

vi ·

∑
i≤k

(xi − yi )

 ≥ 0

Thug life works!
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Why doesn’t it work for 0-1 Knapsack?

Forced to pick entire item, which may prevent you from picking other
items

Counterexample: items (60, 10), (20, 100), (30, 120) and load 50
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Scheduling problem strikes back

Input: n tasks with deadlines (s1, t1, d1), . . . , (sn, tn, dn)

i th task has to be scheduled on or after starting time si , takes ti time
to complete.

If i th task scheduled at time T , then lateness of i th task defined as
ℓi = max{0,T + ti − di}

Output: assignment S of all tasks that minimizes maximum lateness

L(S) := max
i∈[n]

ℓi

so that
L(S) ≤ L(S ′)

for any S ′ ̸= S

Model: Word RAM

Without assumptions on starting times, then problem is NP-hard...

what if we assumed all starting times are the same (say si = 0)?
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Greedy approaches (same starting time)

1 Schedule tasks in order of increasing length

2 Schedule tasks in order of increasing slack time, i.e. di − ti
3 Sort tasks by increasing order of deadlines, so we can assume

d1 ≤ d2 ≤ · · · ≤ dn and schedule tasks accordingly (i.e. [n]). Break
ties by scheduling easier task first.

Seems like we are ignoring the times of the tasks...
Should this work?
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Greedy approaches (same starting time)

1 Schedule tasks in order of increasing length

Ignoring deadlines.
Counterexample: (1, 100), (10, 10)

2 Schedule tasks in order of increasing slack time, i.e. di − ti
3 Sort tasks by increasing order of deadlines, so we can assume

d1 ≤ d2 ≤ · · · ≤ dn and schedule tasks accordingly (i.e. [n]). Break
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Greedy approaches (same starting time)

1 Schedule tasks in order of increasing length

2 Schedule tasks in order of increasing slack time, i.e. di − ti

Can delay too much easy tasks.
Counterexample: (1, 2), (10, 10)

3 Sort tasks by increasing order of deadlines, so we can assume
d1 ≤ d2 ≤ · · · ≤ dn and schedule tasks accordingly (i.e. [n]). Break
ties by scheduling easier task first.

Seems like we are ignoring the times of the tasks...
Should this work?
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Earliest Deadline First analysis
We are assuming that d1 ≤ d2 ≤ · · · ≤ dn
let f0 := 0 and fi := fi−1 + ti for i ∈ [n] (finishing times of greedy)

Easy to see that optimal strategy has no idle time.

Let Π := (i1, . . . , in) be an optimal scheduling
If Π ̸= (1, . . . , n) (i.e. different from greedy), then Π has an inversion
ik > ik+1 ⇒ dik ≥ dik+1

so after swapping/exchanging (say solution
becomes Π′):

L(Π)− L(Π′) = ℓik+1
(Π)−max{ℓik+1

(Π′), ℓik (Π
′)}

= max{0, gk+1 − dik+1
}

−max(max{0, gk−1 + tik+1
− dik+1

},max{0, gk+1 − dik})

where gk :=
∑k

j=1 tij .
Since

gk+1 − dik+1
≥ gk−1 + tik+1

− dik+1

and
gk+1 − dik+1

≥ gk+1 − dik

we are done
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