Lecture 6: Greedy II

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 26, 2023

Overview

• Knapsack Problems

• Scheduling to minimize lateness

Acknowledgements

- **Input:** *n* items, each with a prescribed value and weight, given by $(v_1, w_1), \ldots, (v_n, w_n)$, as well as a maximum load *L*
- **Output:** a subset of the items $S \subseteq [n]$ such that:

- Input: n items, each with a prescribed value and weight, given by (v₁, w₁),..., (v_n, w_n), as well as a maximum load L
 Output: a subset of the items S ⊆ [n] such that:
- Model: Word RAM • $\sum_{k \in S} w_i \leq L$ (respect max load) • $\sum_{k \in S} v_i \geq \sum_{i \in T} v_i$ for any other set T that respects max load
- **Situation:** Thief is robbing a store with *n* items and a bag with load *L*. The *i*th item worth *v_i* moneyz and weighs *w_i* kgs. Thief wants to take most value possible with these constraints.

- **Input:** *n* items, each with a prescribed value and weight, given by $(v_1, w_1), \ldots, (v_n, w_n)$, as well as a maximum load *L*
- **Output:** a subset of the items $S \subseteq [n]$ such that:
 - $\begin{array}{l} \bullet \quad \sum_{k \in S} w_i \leq L & (\text{respect max load}) \\ \bullet \quad \sum_{k \in S} v_i \geq \sum_{i \in T} v_i & \text{for any other set } T \text{ that respects max load} \end{array}$
- This problem has *optimal substructure property*: if remove an item from optimal solution, say item (v_i, w_i) , then remaining load must be optimal for the problem with load $L w_i$

- **Input:** *n* items, each with a prescribed value and weight, given by $(v_1, w_1), \ldots, (v_n, w_n)$, as well as a maximum load *L*
- **Output:** a subset of the items $S \subseteq [n]$ such that:
 - $\sum_{k \in S} w_i \le L$ (respect max load) $\sum_{k \in S} v_i \ge \sum_{i \in T} v_i$ for any other set T that respects max load
- This problem has *optimal substructure property*: if remove an item from optimal solution, say item (v_i, w_i) , then remaining load must be optimal for the problem with load $L w_i$
- Can greedy work here?

- **Input:** *n* items, each with a prescribed value and weight, given by $(v_1, w_1), \ldots, (v_n, w_n)$, as well as a maximum load *L*
- **Output:** a subset of the items $S \subseteq [n]$ such that:
 - $\begin{array}{l} \bullet \quad \sum_{k \in S} w_i \leq L & (\text{respect max load}) \\ \bullet \quad \sum_{k \in S} v_i \geq \sum_{i \in T} v_i & \text{for any other set } T \text{ that respects max load} \end{array}$
- This problem has *optimal substructure property*: if remove an item from optimal solution, say item (v_i, w_i) , then remaining load must be optimal for the problem with load $L w_i$
- Can greedy work here?
- Unfortunately doesn't seem to be the case (*NP-hard*) (we will see this problem again and again later in the course...)

3. 3

- **Input:** *n* items, each with a prescribed value and weight, given by $(v_1, w_1), \ldots, (v_n, w_n)$, as well as a maximum load *L*
- **Output:** a list of fractions $(x_1, \ldots, x_n) \in [0, 1]^n$ such that:
 - $\sum_{k \in [n]} x_i w_i \le L$ (respect max load) $\sum_{k \in [n]} x_i v_i \ge \sum_{k \in [n]} y_i v_i$ for any list (y_1, \dots, y_n) respecting max load
- Model: Word RAM
- Situation: now thief can take fractions of each item.

- **Input:** *n* items, each with a prescribed value and weight, given by $(v_1, w_1), \ldots, (v_n, w_n)$, as well as a maximum load *L*
- **Output:** a list of fractions $(x_1, \ldots, x_n) \in [0, 1]^n$ such that:
 - $\begin{array}{l} \bullet \quad \sum_{k \in [n]} x_i w_i \leq L \quad (\text{respect max load}) \\ \bullet \quad \sum_{k \in [n]} x_i v_i \geq \sum_{k \in [n]} y_i v_i \quad \text{for any list } (y_1, \dots, y_n) \text{ respecting max load} \end{array}$
- Problem also has optimal substructure property

- **Input:** *n* items, each with a prescribed value and weight, given by $(v_1, w_1), \ldots, (v_n, w_n)$, as well as a maximum load *L*
- **Output:** a list of fractions $(x_1, \ldots, x_n) \in [0, 1]^n$ such that:
 - $\begin{array}{l} \bullet \quad \sum_{k \in [n]} x_i w_i \leq L \quad (\text{respect max load}) \\ \bullet \quad \sum_{k \in [n]} x_i v_i \geq \sum_{k \in [n]} y_i v_i \quad \text{for any list } (y_1, \dots, y_n) \text{ respecting max load} \end{array}$
- Problem also has optimal substructure property
- Possible greedy strategy:

Maximize value per weight: v_i/w_i

- Input: n items, each with a prescribed value and weight, given by (v₁, w₁),..., (v_n, w_n), as well as a maximum load L
- **Output:** a list of fractions $(x_1, \ldots, x_n) \in [0, 1]^n$ such that:
 - $\begin{array}{l} \bullet & \sum_{k \in [n]} x_i w_i \leq L & (\text{respect max load}) \\ \bullet & \sum_{k \in [n]} x_i v_i \geq \sum_{k \in [n]} y_i v_i & \text{for any list } (y_1, \dots, y_n) \text{ respecting max load} \end{array}$
- Problem also has optimal substructure property
- Possible greedy strategy:

Maximize value per weight: v_i/w_i

- Algorithm
 - Sort items by decreasing order of value per weight
 - 2 Take as much as possible of item with highest value per weight
 - 8 Recurse until load is full or no more items

Proof of correctness (fractional case)

- Assuming items are ordered by v_i/w_i in decreasing order
- In fractional case, can assume $\sum_{i \in [n]} x_i w_i = L$

If $\sum_{i} w_i \leq L$ then problem is trivial.

Proof of correctness (fractional case)

- Assuming items are ordered by v_i/w_i in decreasing order
- In fractional case, can assume $\sum_{i \in [n]} x_i w_i = L$
- Thus, if $(x_1, \ldots, x_n) \succeq (y_1, \ldots, y_n)$, we have

$$\sum_{i\in[n]}(x_i-y_i)v_i=\sum_{k\in[n]}v_i\cdot\left(\sum_{i\leq k}(x_i-y_i)\right)\geq 0$$

Proof of correctness (fractional case)

- Assuming items are ordered by v_i/w_i in decreasing order
- In fractional case, can assume $\sum_{i \in [n]} x_i w_i = L$
- Thus, if $(x_1, \ldots, x_n) \succeq (y_1, \ldots, y_n)$, we have

$$\sum_{i\in[n]}(x_i-y_i)v_i=\sum_{k\in[n]}v_i\cdot\left(\sum_{i\leq k}(x_i-y_i)\right)\geq 0$$

Thug life works!

Why doesn't it work for 0-1 Knapsack?

- Forced to pick entire item, which may prevent you from picking other items
- Counterexample: items (60, 10), (20, 100), (30, 120) and load 50

• Knapsack Problems

• Scheduling to minimize lateness

Acknowledgements

Scheduling problem strikes back

• Input: *n* tasks with deadlines $(s_1, t_1, d_1), \ldots, (s_n, t_n, d_n)$

 i^{th} task has to be scheduled *on or after* starting time s_i , takes t_i time to complete.

If i^{th} task scheduled at time *T*, then *lateness* of i^{th} task defined as $\ell_i = \max\{0, T + t_i - d_i\}$

• Output: assignment S of all tasks that minimizes maximum lateness

$$L(S) := \max_{i \in [n]} \ell_i$$

so that

 $L(S) \leq L(S')$

for any $S' \neq S$

Model: Word RAM

Scheduling problem strikes back

Input: n tasks with deadlines (s₁, t₁, d₁), ..., (s_n, t_n, d_n)
 ith task has to be scheduled on or after starting time s_i, takes t_i time to complete.

If i^{th} task scheduled at time T, then *lateness* of i^{th} task defined as $\ell_i = \max\{0, T + t_i - d_i\}$

• Output: assignment S of all tasks that minimizes maximum lateness

$$L(S) := \max_{i \in [n]} \ell_i$$

so that

$$L(S) \leq L(S')$$

for any $S' \neq S$

• Without assumptions on starting times, then problem is *NP-hard*...

Scheduling problem strikes back

Input: n tasks with deadlines (s₁, t₁, d₁), ..., (s_n, t_n, d_n)
 ith task has to be scheduled on or after starting time s_i, takes t_i time to complete.

If i^{th} task scheduled at time T, then *lateness* of i^{th} task defined as $\ell_i = \max\{0, T + t_i - d_i\}$

• Output: assignment S of all tasks that minimizes maximum lateness

$$L(S) := \max_{i \in [n]} \ell_i$$

so that

$$L(S) \leq L(S')$$

for any $S' \neq S$

• what if we assumed all starting times are the same (say $s_i = 0$)?

Schedule tasks in order of increasing length

 Schedule tasks in order of increasing length Ignoring deadlines. Counterexample: (1, 100), (10, 10)

2 Schedule tasks in order of increasing *slack time*, i.e. $d_i - t_i$

Schedule tasks in order of increasing *slack time*, i.e. $d_i - t_i$ Can delay too much easy tasks. Counterexample: (1, 2), (10, 10)

 Sort tasks by increasing order of deadlines, so we can assume *d*₁ ≤ *d*₂ ≤ ··· ≤ *d_n* and schedule tasks accordingly (i.e. [*n*]). Break ties by scheduling easier task first.

> Seems like we are ignoring the times of the tasks... Should this work?

- We are assuming that $d_1 \leq d_2 \leq \cdots \leq d_n$
- let $f_0 := 0$ and $f_i := f_{i-1} + t_i$ for $i \in [n]$ (finishing times of greedy)

Easy to see that optimal strategy has no *idle time*.

- We are assuming that $d_1 \leq d_2 \leq \cdots \leq d_n$
- let $f_0 := 0$ and $f_i := f_{i-1} + t_i$ for $i \in [n]$ (finishing times of greedy)
- Let $\Pi := (i_1, \ldots, i_n)$ be an optimal scheduling

- We are assuming that $d_1 \leq d_2 \leq \cdots \leq d_n$
- let $f_0 := 0$ and $f_i := f_{i-1} + t_i$ for $i \in [n]$ (finishing times of greedy)
- Let $\Pi := (i_1, \ldots, i_n)$ be an optimal scheduling
- If $\Pi \neq (1, ..., n)$ (i.e. different from greedy), then Π has an inversion

- We are assuming that $d_1 \leq d_2 \leq \cdots \leq d_n$
- let $f_0 := 0$ and $f_i := f_{i-1} + t_i$ for $i \in [n]$ (finishing times of greedy)
- Let $\Pi := (i_1, \ldots, i_n)$ be an optimal scheduling
- If $\Pi \neq (1, \dots, n)$ (i.e. different from greedy), then Π has an inversion
- *i_k* > *i_{k+1}* ⇒ *d_{i_k}* ≥ *d<sub>i_{k+1}* so after swapping/exchanging (say solution becomes Π'):
 </sub>

$$L(\Pi) - L(\Pi') = \ell_{i_{k+1}}(\Pi) - \max\{\ell_{i_{k+1}}(\Pi'), \ell_{i_k}(\Pi')\}$$

= max{0, g_{k+1} - d_{i_{k+1}}}
- max(max{0, g_{k-1} + t_{i_{k+1}} - d_{i_{k+1}}}, max{0, g_{k+1} - d_{i_k}})

where $g_k := \sum_{j=1}^k t_{i_j}$.

- We are assuming that $d_1 \leq d_2 \leq \cdots \leq d_n$
- let $f_0 := 0$ and $f_i := f_{i-1} + t_i$ for $i \in [n]$ (finishing times of greedy)
- Let $\Pi := (i_1, \ldots, i_n)$ be an optimal scheduling
- If $\Pi \neq (1, \dots, n)$ (i.e. different from greedy), then Π has an inversion
- *i_k* > *i_{k+1}* ⇒ *d_{i_k}* ≥ *d<sub>i_{k+1}* so after swapping/exchanging (say solution becomes Π'):
 </sub>

$$L(\Pi) - L(\Pi') = \ell_{i_{k+1}}(\Pi) - \max\{\ell_{i_{k+1}}(\Pi'), \ell_{i_k}(\Pi')\}$$

= max{0, g_{k+1} - d_{i_{k+1}}}
- max(max{0, g_{k-1} + t_{i_{k+1}} - d_{i_{k+1}}}, max{0, g_{k+1} - d_{i_k}})

where
$$g_k := \sum_{j=1}^k t_{i_j}$$
.
• Since

$$g_{k+1} - d_{i_{k+1}} \ge g_{k-1} + t_{i_{k+1}} - d_{i_{k+1}}$$

and

$$g_{k+1} - d_{i_{k+1}} \ge g_{k+1} - d_{i_k}$$

we are done

29/31

Acknowledgement

- Knapsack based on [CLRS 2009, Chapter 16]
- Scheduling problem based on [Kleinberg Tardos 2006, Chapter 4.2]

References I

 Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)
 Introduction to Algorithms, third edition. *MIT Press* Kleinberg, Jon and Tardos, Eva (2006)
 Algorithm Design.

Addison Wesley