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General Paradigm

Sometimes, when trying a divide and conquer approach, we are only
able to divide in a way which makes us perform ”exhaustive search”

Looks like it is going to be a bad divide and conquer

However, in several situations, it turns out that a small set of
particular subproblems appear several times in our recurrence

Instead of recomputing the subproblems, we can:
1 solve them once
2 save them to memory (memoization)
3 and if we need them again, we already precomputed them! (savings)

Dynamic Programming.
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Fibonacci Sequence
Fibonacci sequence

F (n) = F (n − 1) + F (n − 2)

with F (0) = F (1) = 1

Exponential recursion tree (see board)

Looks like we can’t compute this!

Wait a second, many subproblems are the same!

Can compute everything with much smaller subtree!

Essence of Dynamic Programming.

Remark on output size: note here that word RAM is no longer
appropriate, as the input can be given with O(log n) bits (say by
giving n, F (0) = F (1) = 1, which takes O(log n) bits). But output
size is exp(n), which takes O(n) bits (which in this case is exponential
time).
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Weighted interval scheduling

Input: n intervals with weights, denoted [(s1, f1),w1], . . . , [(sn, fn),wn]

Output: subset of non-overlapping intervals of maximum weight

Model: Word RAM

Why does greedy not work?

Let’s try a recursive approach.

Sort items by finishing time, so can assume f1 ≤ f2 ≤ · · · ≤ fn
For each interval j , let p(j) be largest index i < j such that fi < sj .

Given optimal solution S , two possibilities: either n ∈ S or n ̸∈ S .

Letting weight(j) be the weight of optimal solution to problem
[(s1, f1),w1], . . . , [(sj , fj),wj ], we have

weight(n) = max{wn + weight(p(n)),weight(n − 1)}

How can we solve such recurrences efficiently?
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Dynamic Programming: Memoization
Note that although the recurrence might be bad from a divide and
conquer point of view, we only need to solve n different subproblems!

Many repetitions in recursion tree!

If we can store the solution to a subproblem when we encounter it, we
don’t need to solve it again! (Memoization)

With this at hand, we note that we only need to compute the
subproblems weight(j), for 0 ≤ j ≤ n.
Moreover, if have solutions to weight(k) for all k < j , we can obtain
weight(j) by the recursion:

weight(j) = max{wj + weight(p(j)),weight(j − 1)}

which takes O(1) time to compute, when we have the values
weight(j − 1) and weight(p(j))

Thus, running time is O(n log n), as we spent O(n log n) to sort the
intervals and then it takes O(n) time to compute all values of
weight(j), for 0 ≤ j ≤ n.
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Principles of Dynamic Programming

Reduce our problem to a simple recurrence relation

Important: this recurrence relation should only have small number of
subproblems appearing in its recursion tree!

Memoization: compute from bottom-up, storing answers to
subproblems in memory.

Return final answer!
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Subset-Sum
Input: n non-negative weights, denoted w1, . . . ,wn, and a bound W
Output: subset S ⊆ [n] such that

1
∑

i∈S wi ≤ W
2

∑
i∈S wi ≥

∑
i∈T wi (for all T satisfying 1)

Model: Word RAM
special case of 0-1 knapsack (values equal weights)

If we try the same approach as in previous problem, we run into
trouble

Subproblems of ([n],W ) are:
1 ([n − 1],W ) (if we don’t take weight wn)
2 ([n − 1],W − wn) (if we do take wn)

Account for all values that the total weight W can take!
Subproblems: all pairs of the form ([j ], ω), where j ∈ [n] and
0 ≤ ω ≤ W
So DP will build up a table of all values of weight([j ], ω) and use
recurrence:

weight([j ], ω) = max{weight([j − 1], ω),wj +weight([j − 1], ω − wj)}
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Analysis of DP algorithm

Number of subproblems: O(n ·W )

Time to compute solution to supproblem, given table of “smaller”
subproblems: O(1)

Total running time: O(n ·W )

Correctness follows from recursion

This algorithm is called pseudo-polynomial, since its running time is
polynomial in n and W (the largest integer involved in defining the
problem)

Pseudo-polynomial good when low numbers, bad when big numbers.
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0-1 Knapsack

Input: n items, each with a prescribed value and weight, given by
(v1,w1), . . . , (vn,wn), as well as a maximum load W

Output: a subset of the items S ⊆ [n] such that:
1

∑
k∈S wi ≤ W (respect max load)

2
∑

k∈S vi ≥
∑

i∈T vi for any other set T that respects max load

Model: Word RAM

Same solution as Subset Sum: the recurrence now becomes

value([j ], ω) = max{value([j − 1], ω), vj + value([j − 1], ω − wj)}
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