Lecture 7: Dynamic Programming |

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 28, 2023

1/35

Overview

@ Dynamic Programming
e General Paradigm
e Simple example: Fibonacci

@ Weighted Interval Scheduling
o Solution with Dynamic Programming
e Principles of Dynamic Programming

@ Subset-Sum & Knapsack
e Subset-Sum

o Knapsack

@ Acknowledgements

2/35

General Paradigm

@ Sometimes, when trying a divide and conquer approach, we are only
able to divide in a way which makes us perform " exhaustive search”

Looks like it is going to be a bad divide and conquer

Dynamic Programming.

3/35

General Paradigm

@ Sometimes, when trying a divide and conquer approach, we are only
able to divide in a way which makes us perform " exhaustive search”

Looks like it is going to be a bad divide and conquer

@ However, in several situations, it turns out that a small set of
particular subproblems appear several times in our recurrence

Dynamic Programming.

4/35

General Paradigm

@ Sometimes, when trying a divide and conquer approach, we are only
able to divide in a way which makes us perform " exhaustive search”
Looks like it is going to be a bad divide and conquer
@ However, in several situations, it turns out that a small set of
particular subproblems appear several times in our recurrence
@ Instead of recomputing the subproblems, we can:
@ solve them once

@ save them to memory (memoization)
© and if we need them again, we already precomputed them! (savings)

Dynamic Programming.

5/35

Fibonacci Sequence

@ Fibonacci sequence
F(n)=F(n—1)+ F(n—2)

with F(0) = F(1) = 1

6/35

Fibonacci Sequence

@ Fibonacci sequence
F(n)=F(n—1)+ F(n—2)

with F(0)=F(1) =1
e Exponential recursion tree (see board)

Looks like we can't compute this!

7/35

Fibonacci Sequence

@ Fibonacci sequence
F(n)=F(n—1)+ F(n—2)

with F(0)=F(1) =1
e Exponential recursion tree (see board)

Looks like we can't compute this!

@ Wait a second, many subproblems are the same!

Can compute everything with much smaller subtree!

8/35

Fibonacci Sequence

@ Fibonacci sequence
F(n)=F(n—1)+ F(n—2)

with F(0)=F(1) =1
e Exponential recursion tree (see board)

Looks like we can't compute this!

@ Wait a second, many subproblems are the same!

Can compute everything with much smaller subtree!

@ Essence of Dynamic Programming.

9/35

Fibonacci Sequence

@ Fibonacci sequence
F(n)=F(n—1)+ F(n—2)

with F(0)=F(1) =1
e Exponential recursion tree (see board)

Looks like we can't compute this!

@ Wait a second, many subproblems are the same!

Can compute everything with much smaller subtree!

@ Essence of Dynamic Programming.

@ Remark on output size: note here that word RAM is no longer
appropriate, as the input can be given with O(log n) bits (say by
giving n, F(0) = F(1) = 1, which takes O(log n) bits). But output
size is exp(n), which takes O(n) bits (which in this case is exponential
time).

10/35

@ Weighted Interval Scheduling
o Solution with Dynamic Programming
e Principles of Dynamic Programming

11/35

Weighted interval scheduling

e Input: n intervals with weights, denoted [(s1, f), wi], ..., [(Sn, fa), Wn]
@ Output: subset of non-overlapping intervals of maximum weight
e Model: Word RAM

12/35

Weighted interval scheduling

e Input: nintervals with weights, denoted [(s1,f1), wa], ..., [(Sn, fn), wp]
@ Qutput: subset of non-overlapping intervals of maximum weight

@ Why does greedy not work?

13/35

Weighted interval scheduling

e Input: nintervals with weights, denoted [(s1,f1), wa], ..., [(Sn, fn), wp]

@ Qutput: subset of non-overlapping intervals of maximum weight

@ Let’s try a recursive approach.

e Sort items by finishing time, so can assume f; < L <--- < f,
o For each interval j, let p(j) be largest index i < j such that f; <'s;.

14/35

Weighted interval scheduling

Input: n intervals with weights, denoted [(s1, f1), wi], ..., [(Sn, fn), Wn]

Output: subset of non-overlapping intervals of maximum weight

Let's try a recursive approach.

e Sort items by finishing time, so can assume f; < f, <--- < f,
o For each interval j, let p(j) be largest index i < j such that f; <'s;.

Given optimal solution S, two possibilities: either n€ Sorn¢ S.

15/35

Weighted interval scheduling

Input: n intervals with weights, denoted [(s1, f1), wi], ..., [(Sn, fn), Wn]

Output: subset of non-overlapping intervals of maximum weight

Let's try a recursive approach.

e Sort items by finishing time, so can assume f; < f, <--- < f,
o For each interval j, let p(j) be largest index i < j such that f; <'s;.

Given optimal solution S, two possibilities: either n€ Sorn¢ S.

Letting weight(j) be the weight of optimal solution to problem
[(517 fl)v Wl]v ce [(Sja 6)7 WJ]' we have

weight(n) = max{w, + weight(p(n)), weight(n — 1)}

16 /35

Weighted interval scheduling

Input: n intervals with weights, denoted [(s1, f1), wi], ..., [(Sn, fn), Wa]

Output: subset of non-overlapping intervals of maximum weight

Let's try a recursive approach.

e Sort items by finishing time, so can assume f; < <.-- < f,
o For each interval j, let p(j) be largest index i < j such that f; <'s;.

Given optimal solution S, two possibilities: either n € Sorn¢ S.

Letting weight(j) be the weight of optimal solution to problem
[(517 fl), Wl]a SRR [(sja 6)3 VV_I]' we have

weight(n) = max{w, + weight(p(n)), weight(n — 1)}

Looks like a bad divide and conquer.
Imagine if p(j) = — 2 for each !

17/35

Weighted interval scheduling

Input: n intervals with weights, denoted [(s1, f1), wi], ..., [(Sn, fn), Wn]

Output: subset of non-overlapping intervals of maximum weight

Let's try a recursive approach.

e Sort items by finishing time, so can assume f; < L <--- < f,
o For each interval j, let p(j) be largest index i < j such that f; <'s;.

Given optimal solution S, two possibilities: either n€ Sorn¢ S.

Letting weight(j) be the weight of optimal solution to problem
[(517 fl)? Wl]v ce [(Sja 6)7 WJ]' we have

weight(n) = max{w, + weight(p(n)), weight(n — 1)}

@ How can we solve such recurrences efficiently?

18/35

Dynamic Programming: Memoization

@ Note that although the recurrence might be bad from a divide and
conquer point of view, we only need to solve n different subproblems!

Many repetitions in recursion tree!

19/35

Dynamic Programming: Memoization
@ Note that although the recurrence might be bad from a divide and
conquer point of view, we only need to solve n different subproblems!
Many repetitions in recursion tree!

@ If we can store the solution to a subproblem when we encounter it, we
don’t need to solve it again! (Memoization)

20/35

Dynamic Programming: Memoization
@ Note that although the recurrence might be bad from a divide and
conquer point of view, we only need to solve n different subproblems!
Many repetitions in recursion tree!

@ If we can store the solution to a subproblem when we encounter it, we
don’t need to solve it again! (Memoization)
@ With this at hand, we note that we only need to compute the
subproblems weight(j), for 0 < j < n.
Moreover, if have solutions to weight(k) for all k < j, we can obtain
weight(j) by the recursion:

weight(j) = max{w; 4 weight(p(j)), weight(j — 1)}
which takes O(1) time to compute, when we have the values
weight(j — 1) and weight(p(j))

21/35

Dynamic Programming: Memoization

@ Note that although the recurrence might be bad from a divide and

conquer point of view, we only need to solve n different subproblems!
Many repetitions in recursion tree!

@ If we can store the solution to a subproblem when we encounter it, we
don’t need to solve it again! (Memoization)

@ With this at hand, we note that we only need to compute the
subproblems weight(j), for 0 < j < n.
Moreover, if have solutions to weight(k) for all k < j, we can obtain
weight(j) by the recursion:

weight(j) = max{w; 4 weight(p(j)), weight(j — 1)}
which takes O(1) time to compute, when we have the values
weight(j — 1) and weight(p(j))
@ Thus, running time is O(nlog n), as we spent O(nlog n) to sort the
intervals and then it takes O(n) time to compute all values of
weight(j), for 0 < j < n.

22/35

Principles of Dynamic Programming

@ Reduce our problem to a simple recurrence relation

o Important: this recurrence relation should only have small number of
subproblems appearing in its recursion tree!

o Memoization: compute from bottom-up, storing answers to
subproblems in memory.

@ Return final answer!

23/35

@ Subset-Sum & Knapsack
o Subset-Sum
o Knapsack

24/35

Subset-Sum

o Input: n non-negative weights, denoted ws, ..., w,, and a bound W
@ Output: subset S C [n] such that
Q D icswi>Dicrwi (for all T satisfying 1)

o Model: Word RAM
@ special case of 0-1 knapsack (values equal weights)

25/35

Subset-Sum

@ Input: n non-negative weights, denoted wy, ..., w,, and a bound W
@ Output: subset S C [n] such that

o ZiES w; < W

Q D icswi>D icrwi (for all T satisfying 1)
o If we try the same approach as in previous problem, we run into

trouble
Subproblems of ([n], W) are:
Q ([n—-1], W) (if we don't take weight w,)
Q ([n—1,W —w,) (if we do take w,)

26/35

Subset-Sum

@ Input: n non-negative weights, denoted wy, ..., w,, and a bound W
@ Output: subset S C [n] such that

o ZiES w; < W

Q D icswi>D icrwi (for all T satisfying 1)
o If we try the same approach as in previous problem, we run into

trouble
Subproblems of ([n], W) are:
Q ([n—-1], W) (if we don't take weight w,)
Q ([n—1,W —w,) (if we do take w,)

@ Account for all values that the total weight W can take!

27/35

Subset-Sum

@ Input: n non-negative weights, denoted wy, ..., w,, and a bound W
@ Output: subset S C [n] such that
QD i cswisW
Q D icswi>D icrwi (for all T satisfying 1)
o If we try the same approach as in previous problem, we run into
trouble
Subproblems of ([n], W) are:
Q ([n—-1], W) (if we don't take weight w,)
Q ([n—1,W —w,) (if we do take w,)
@ Account for all values that the total weight W can take!
@ Subproblems: all pairs of the form ([j],w), where j € [n] and
0<w< W

28/35

Subset-Sum

@ Input: n non-negative weights, denoted wy, ..., w,, and a bound W
@ Output: subset S C [n] such that

(1) Z,-es w; < W

Q D icswi>D icrwi (for all T satisfying 1)
o If we try the same approach as in previous problem, we run into

trouble
Subproblems of ([n], W) are:
Q ([n—-1], W) (if we don't take weight w,)
Q ([n—1,W —w,) (if we do take w,)

@ Account for all values that the total weight W can take!

@ Subproblems: all pairs of the form ([j],w), where j € [n] and
0<w< W

@ So DP will build up a table of all values of weight([j],w) and use
recurrence:

weight([/], w) = max{weight([j — 1],w), w; + weight([j — 1], w — w;)}

29/35

Analysis of DP algorithm

@ Number of subproblems: O(n- W)

@ Time to compute solution to supproblem, given table of “smaller”
subproblems: O(1)

e Total running time: O(n- W)
@ Correctness follows from recursion

30/35

Analysis of DP algorithm

@ Number of subproblems: O(n- W)

@ Time to compute solution to supproblem, given table of “smaller”
subproblems: O(1)

e Total running time: O(n- W)
@ Correctness follows from recursion

@ This algorithm is called pseudo-polynomial, since its running time is
polynomial in n and W (the largest integer involved in defining the
problem)

Pseudo-polynomial good when low numbers, bad when big numbers.

31/35

0-1 Knapsack

o Input: n items, each with a prescribed value and weight, given by
(vi,w1),...,(Vn, wp), as well as a maximum load W
@ Output: a subset of the items S C [n] such that:
Q> cswi<W (respect max load)
Q Zkes v > EieT v for any other set T that respects max load

o Model: Word RAM

32/35

0-1 Knapsack

o Input: n items, each with a prescribed value and weight, given by
(vi,wi),...,(Vn, wn), as well as a maximum load W
@ Output: a subset of the items S C [n] such that:

QD cswi<W (respect max load)
Q D csVi>D Vi for any other set T that respects max load

@ Same solution as Subset Sum: the recurrence now becomes

value([j],w) = max{value([j — 1],w), v; + value([j — 1],w — w;)}

33/35

Acknowledgement

@ Based on prof. Lau's lecture 11 notes
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L11.pdf
@ Based on [Kleinberg Tardos 2006, Chapter 6]

34/35

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L11.pdf

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

ﬁ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

35/35

	Dynamic Programming
	General Paradigm
	Simple example: Fibonacci

	Weighted Interval Scheduling
	Solution with Dynamic Programming
	Principles of Dynamic Programming

	Subset-Sum & Knapsack
	Subset-Sum
	Knapsack

	Acknowledgements

