# Lecture 7: Dynamic Programming I 

Rafael Oliveira<br>University of Waterloo<br>Cheriton School of Computer Science<br>rafael.oliveira.teaching@gmail.com

September 28, 2023

## Overview

- Dynamic Programming
- General Paradigm
- Simple example: Fibonacci
- Weighted Interval Scheduling
- Solution with Dynamic Programming
- Principles of Dynamic Programming
- Subset-Sum \& Knapsack
- Subset-Sum
- Knapsack
- Acknowledgements


## General Paradigm

- Sometimes, when trying a divide and conquer approach, we are only able to divide in a way which makes us perform "exhaustive search"

Looks like it is going to be a bad divide and conquer

Dynamic Programming.

## General Paradigm

- Sometimes, when trying a divide and conquer approach, we are only able to divide in a way which makes us perform "exhaustive search"

Looks like it is going to be a bad divide and conquer

- However, in several situations, it turns out that a small set of particular subproblems appear several times in our recurrence

Dynamic Programming.

## General Paradigm

- Sometimes, when trying a divide and conquer approach, we are only able to divide in a way which makes us perform "exhaustive search"

Looks like it is going to be a bad divide and conquer

- However, in several situations, it turns out that a small set of particular subproblems appear several times in our recurrence
- Instead of recomputing the subproblems, we can:
(1) solve them once
(2) save them to memory
(3) and if we need them again, we already precomputed them! (savings)

Dynamic Programming.

## Fibonacci Sequence

- Fibonacci sequence

$$
F(n)=F(n-1)+F(n-2)
$$

with $F(0)=F(1)=1$

## Fibonacci Sequence

- Fibonacci sequence

$$
F(n)=F(n-1)+F(n-2)
$$

with $F(0)=F(1)=1$

- Exponential recursion tree

Looks like we can't compute this!

## Fibonacci Sequence

- Fibonacci sequence

$$
F(n)=F(n-1)+F(n-2)
$$

with $F(0)=F(1)=1$

- Exponential recursion tree


## Looks like we can't compute this!

- Wait a second, many subproblems are the same!

Can compute everything with much smaller subtree!

## Fibonacci Sequence

- Fibonacci sequence

$$
F(n)=F(n-1)+F(n-2)
$$

with $F(0)=F(1)=1$

- Exponential recursion tree


## Looks like we can't compute this!

- Wait a second, many subproblems are the same!

Can compute everything with much smaller subtree!

- Essence of Dynamic Programming.


## Fibonacci Sequence

- Fibonacci sequence

$$
F(n)=F(n-1)+F(n-2)
$$

with $F(0)=F(1)=1$

- Exponential recursion tree


## Looks like we can't compute this!

- Wait a second, many subproblems are the same!


## Can compute everything with much smaller subtree!

- Essence of Dynamic Programming.
- Remark on output size: note here that word RAM is no longer appropriate, as the input can be given with $O(\log n)$ bits (say by giving $n, F(0)=F(1)=1$, which takes $O(\log n)$ bits). But output size is $\exp (n)$, which takes $O(n)$ bits (which in this case is exponential time).
- Dynamic Programming
- General Paradigm
- Simple example: Fibonacci
- Weighted Interval Scheduling
- Solution with Dynamic Programming
- Principles of Dynamic Programming
- Subset-Sum \& Knapsack
- Subset-Sum
- Knapsack
- Acknowledgements


## Weighted interval scheduling

- Input: $n$ intervals with weights, denoted $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{n}, f_{n}\right), w_{n}\right]$
- Output: subset of non-overlapping intervals of maximum weight
- Model: Word RAM


## Weighted interval scheduling

- Input: $n$ intervals with weights, denoted $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{n}, f_{n}\right), w_{n}\right]$
- Output: subset of non-overlapping intervals of maximum weight
- Why does greedy not work?


## Weighted interval scheduling

- Input: $n$ intervals with weights, denoted $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{n}, f_{n}\right), w_{n}\right]$
- Output: subset of non-overlapping intervals of maximum weight
- Let's try a recursive approach.
- Sort items by finishing time, so can assume $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- For each interval $j$, let $p(j)$ be largest index $i<j$ such that $f_{i}<s_{j}$.


## Weighted interval scheduling

- Input: $n$ intervals with weights, denoted $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{n}, f_{n}\right), w_{n}\right]$
- Output: subset of non-overlapping intervals of maximum weight
- Let's try a recursive approach.
- Sort items by finishing time, so can assume $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- For each interval $j$, let $p(j)$ be largest index $i<j$ such that $f_{i}<s_{j}$.
- Given optimal solution $S$, two possibilities: either $n \in S$ or $n \notin S$.


## Weighted interval scheduling

- Input: $n$ intervals with weights, denoted $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{n}, f_{n}\right), w_{n}\right]$
- Output: subset of non-overlapping intervals of maximum weight
- Let's try a recursive approach.
- Sort items by finishing time, so can assume $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- For each interval $j$, let $p(j)$ be largest index $i<j$ such that $f_{i}<s_{j}$.
- Given optimal solution $S$, two possibilities: either $n \in S$ or $n \notin S$.
- Letting weight $(j)$ be the weight of optimal solution to problem $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{j}, f_{j}\right), w_{j}\right]$, we have

$$
\operatorname{weight}(n)=\max \left\{w_{n}+\operatorname{weight}(p(n)), \operatorname{weight}(n-1)\right\}
$$

## Weighted interval scheduling

- Input: $n$ intervals with weights, denoted $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{n}, f_{n}\right), w_{n}\right]$
- Output: subset of non-overlapping intervals of maximum weight
- Let's try a recursive approach.
- Sort items by finishing time, so can assume $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- For each interval $j$, let $p(j)$ be largest index $i<j$ such that $f_{i}<s_{j}$.
- Given optimal solution $S$, two possibilities: either $n \in S$ or $n \notin S$.
- Letting weight $(j)$ be the weight of optimal solution to problem $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{j}, f_{j}\right), w_{j}\right]$, we have

$$
\operatorname{weight}(n)=\max \left\{w_{n}+\operatorname{weight}(p(n)), \operatorname{weight}(n-1)\right\}
$$

Looks like a bad divide and conquer. Imagine if $p(j)=j-2$ for each $j$ !

## Weighted interval scheduling

- Input: $n$ intervals with weights, denoted $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{n}, f_{n}\right), w_{n}\right]$
- Output: subset of non-overlapping intervals of maximum weight
- Let's try a recursive approach.
- Sort items by finishing time, so can assume $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- For each interval $j$, let $p(j)$ be largest index $i<j$ such that $f_{i}<s_{j}$.
- Given optimal solution $S$, two possibilities: either $n \in S$ or $n \notin S$.
- Letting weight $(j)$ be the weight of optimal solution to problem $\left[\left(s_{1}, f_{1}\right), w_{1}\right], \ldots,\left[\left(s_{j}, f_{j}\right), w_{j}\right]$, we have

$$
\operatorname{weight}(n)=\max \left\{w_{n}+\operatorname{weight}(p(n)), \operatorname{weight}(n-1)\right\}
$$

- How can we solve such recurrences efficiently?


## Dynamic Programming: Memoization

- Note that although the recurrence might be bad from a divide and conquer point of view, we only need to solve $n$ different subproblems!

Many repetitions in recursion tree!

## Dynamic Programming: Memoization

- Note that although the recurrence might be bad from a divide and conquer point of view, we only need to solve $n$ different subproblems!

Many repetitions in recursion tree!

- If we can store the solution to a subproblem when we encounter it, we don't need to solve it again!


## Dynamic Programming: Memoization

- Note that although the recurrence might be bad from a divide and conquer point of view, we only need to solve $n$ different subproblems!


## Many repetitions in recursion tree!

- If we can store the solution to a subproblem when we encounter it, we don't need to solve it again!
(Memoization)
- With this at hand, we note that we only need to compute the subproblems weight $(j)$, for $0 \leq j \leq n$. Moreover, if have solutions to weight $(k)$ for all $k<j$, we can obtain weight $(j)$ by the recursion:

$$
\operatorname{weight}(j)=\max \left\{w_{j}+\operatorname{weight}(p(j)), \operatorname{weight}(j-1)\right\}
$$

which takes $O(1)$ time to compute, when we have the values weight $(j-1)$ and weight $(p(j))$

## Dynamic Programming: Memoization

- Note that although the recurrence might be bad from a divide and conquer point of view, we only need to solve $n$ different subproblems!


## Many repetitions in recursion tree!

- If we can store the solution to a subproblem when we encounter it, we don't need to solve it again!
(Memoization)
- With this at hand, we note that we only need to compute the subproblems weight $(j)$, for $0 \leq j \leq n$. Moreover, if have solutions to weight $(k)$ for all $k<j$, we can obtain weight $(j)$ by the recursion:

$$
\operatorname{weight}(j)=\max \left\{w_{j}+\operatorname{weight}(p(j)), \operatorname{weight}(j-1)\right\}
$$

which takes $O(1)$ time to compute, when we have the values weight $(j-1)$ and weight $(p(j))$

- Thus, running time is $O(n \log n)$, as we spent $O(n \log n)$ to sort the intervals and then it takes $O(n)$ time to compute all values of weight $(j)$, for $0 \leq j \leq n$.


## Principles of Dynamic Programming

- Reduce our problem to a simple recurrence relation
- Important: this recurrence relation should only have small number of subproblems appearing in its recursion tree!
- Memoization: compute from bottom-up, storing answers to subproblems in memory.
- Return final answer!
- Dynamic Programming
- General Paradigm
- Simple example: Fibonacci
- Weighted Interval Scheduling
- Solution with Dynamic Programming
- Principles of Dynamic Programming
- Subset-Sum \& Knapsack
- Subset-Sum
- Knapsack
- Acknowledgements


## Subset-Sum

- Input: $n$ non-negative weights, denoted $w_{1}, \ldots, w_{n}$, and a bound $W$
- Output: subset $S \subseteq[n]$ such that
(1) $\sum_{i \in S} w_{i} \leq W$
(2) $\sum_{i \in S} w_{i} \geq \sum_{i \in T} w_{i}$
(for all $T$ satisfying 1 )
- Model: Word RAM
- special case of 0-1 knapsack (values equal weights)


## Subset-Sum

- Input: $n$ non-negative weights, denoted $w_{1}, \ldots, w_{n}$, and a bound $W$
- Output: subset $S \subseteq[n]$ such that
(1) $\sum_{i \in S} w_{i} \leq W$
(2) $\sum_{i \in S} w_{i} \geq \sum_{i \in T} w_{i}$
(for all $T$ satisfying 1 )
- If we try the same approach as in previous problem, we run into trouble

Subproblems of ([n],W) are:
(1) $([n-1], W)$
(2) $\left([n-1], W-w_{n}\right)$
(if we don't take weight $w_{n}$ )
(if we do take $w_{n}$ )

## Subset-Sum

- Input: $n$ non-negative weights, denoted $w_{1}, \ldots, w_{n}$, and a bound $W$
- Output: subset $S \subseteq[n]$ such that
(1) $\sum_{i \in S} w_{i} \leq W$
(2) $\sum_{i \in S} w_{i} \geq \sum_{i \in T} w_{i}$
(for all $T$ satisfying 1 )
- If we try the same approach as in previous problem, we run into trouble

Subproblems of ([n],W) are:
(1) $([n-1], W)$
(2) $\left([n-1], W-w_{n}\right)$
(if we don't take weight $w_{n}$ ) (if we do take $w_{n}$ )

- Account for all values that the total weight $W$ can take!


## Subset-Sum

- Input: $n$ non-negative weights, denoted $w_{1}, \ldots, w_{n}$, and a bound $W$
- Output: subset $S \subseteq[n]$ such that
(1) $\sum_{i \in S} w_{i} \leq W$
(2) $\sum_{i \in S} w_{i} \geq \sum_{i \in T} w_{i}$
(for all $T$ satisfying 1 )
- If we try the same approach as in previous problem, we run into trouble

Subproblems of ([n],W) are:
(1) $([n-1], W)$
(2) $\left([n-1], W-w_{n}\right)$
(if we don't take weight $w_{n}$ ) (if we do take $w_{n}$ )

- Account for all values that the total weight $W$ can take!
- Subproblems: all pairs of the form $([j], \omega)$, where $j \in[n]$ and $0 \leq \omega \leq W$


## Subset-Sum

- Input: $n$ non-negative weights, denoted $w_{1}, \ldots, w_{n}$, and a bound $W$
- Output: subset $S \subseteq[n]$ such that
(1) $\sum_{i \in S} w_{i} \leq W$
(2) $\sum_{i \in S} w_{i} \geq \sum_{i \in T} w_{i}$
(for all $T$ satisfying 1 )
- If we try the same approach as in previous problem, we run into trouble

Subproblems of ([n], W) are:
(1) $([n-1], W)$
(2) $\left([n-1], W-w_{n}\right)$
(if we don't take weight $w_{n}$ )
(if we do take $w_{n}$ )

- Account for all values that the total weight $W$ can take!
- Subproblems: all pairs of the form $([j], \omega)$, where $j \in[n]$ and $0 \leq \omega \leq W$
- So DP will build up a table of all values of weight $([j], \omega)$ and use recurrence:

$$
\operatorname{weight}([j], \omega)=\max \left\{\operatorname{weight}([j-1], \omega), w_{j}+\operatorname{weight}\left([j-1], \omega-w_{j}\right)\right\}
$$

## Analysis of DP algorithm

- Number of subproblems: $O(n \cdot W)$
- Time to compute solution to supproblem, given table of "smaller" subproblems: $O(1)$
- Total running time: $O(n \cdot W)$
- Correctness follows from recursion


## Analysis of DP algorithm

- Number of subproblems: $O(n \cdot W)$
- Time to compute solution to supproblem, given table of "smaller" subproblems: $O(1)$
- Total running time: $O(n \cdot W)$
- Correctness follows from recursion
- This algorithm is called pseudo-polynomial, since its running time is polynomial in $n$ and $W$ (the largest integer involved in defining the problem)

Pseudo-polynomial good when low numbers, bad when big numbers.

## 0-1 Knapsack

- Input: $n$ items, each with a prescribed value and weight, given by $\left(v_{1}, w_{1}\right), \ldots,\left(v_{n}, w_{n}\right)$, as well as a maximum load $W$
- Output: a subset of the items $S \subseteq[n]$ such that:
(1) $\sum_{k \in S} w_{i} \leq W$
(respect max load)
(2) $\sum_{k \in S} v_{i} \geq \sum_{i \in T} v_{i}$ for any other set $T$ that respects max load
- Model: Word RAM


## 0-1 Knapsack

- Input: $n$ items, each with a prescribed value and weight, given by $\left(v_{1}, w_{1}\right), \ldots,\left(v_{n}, w_{n}\right)$, as well as a maximum load $W$
- Output: a subset of the items $S \subseteq[n]$ such that:
(1) $\sum_{k \in S} w_{i} \leq W$
(respect max load)
(2) $\sum_{k \in S} v_{i} \geq \sum_{i \in T} v_{i} \quad$ for any other set $T$ that respects max load
- Same solution as Subset Sum: the recurrence now becomes

$$
\operatorname{value}([j], \omega)=\max \left\{\operatorname{value}([j-1], \omega), v_{j}+\operatorname{value}\left([j-1], \omega-w_{j}\right)\right\}
$$

## Acknowledgement

- Based on prof. Lau's lecture 11 notes
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L11.pdf
- Based on [Kleinberg Tardos 2006, Chapter 6]


## References I

B
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press
Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

