Lecture 8: Dynamic Programming |l

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 5, 2023

1/21



Overview

@ Longest Common Subsequence

@ Minimum Length Triangulation

@ Acknowledgements

2/21



Longest Common Subsequence (LCS)
@ Input: Two strings ajaz---am and byby--- by, where a;, b; € =
@ Output: Largest k such that thereis ii < ip < -+ < i, and
J1 <jo < -+ < ji for which aj, = b;, for £ € [K]
e Model: Word RAM model
o Example: given two DNA sequences, want to identify common
structures.
AAACCGTGAG
CACCCCTAAGCC

3/21



Longest Common Subsequence (LCS)

@ Input: Two strings ajaz---am and byby - -- by, where a;, bj € &
@ Output: Largest k such that thereis i < ip < --- < i, and

J1 < Jja <--- < ji for which aj, = bj, for £ € [k]
@ how to DP this?

Need to find many overlapping subproblems (few subproblems)
and
optimal substructure (nice recurrence)

4/21



Longest Common Subsequence (LCS)

@ Input: Two strings ajaz---am and byby - -- by, where a;, bj € &
@ Output: Largest k such that thereis i < ip < --- < i, and

J1 < Jja <--- < ji for which aj, = bj, for £ € [k]
@ how to DP this?

Need to find many overlapping subproblems (few subproblems)
and
optimal substructure (nice recurrence)

o Idea: LCS must look at all strings from a certain index until the end.
So, try to build solution one index at a time!

5/21



Longest Common Subsequence (LCS)

@ Input: Two strings ajaz---am and byby - -- by, where a;, bj € &
@ Output: Largest k such that thereis i < ip < --- < i, and

J1 < Jja <--- < ji for which aj, = bj, for £ € [k]
@ how to DP this?

Need to find many overlapping subproblems (few subproblems)
and
optimal substructure (nice recurrence)

o Idea: LCS must look at all strings from a certain index until the end.
So, try to build solution one index at a time!

o C(i,j) = length of LCS of a;---am and b;--- by,

6/21



Longest Common Subsequence (LCS)
@ Input: Two strings aiaz---am and biby - - - b,, where a;, b; € X
@ Output: Largest k such that thereis i < ip < --- < i, and
J1 <jo < -+ < ji for which aj, = b;, for £ € [K]
@ how to DP this?

Need to find many overlapping subproblems (few subproblems)
and
optimal substructure (nice recurrence)

o Idea: LCS must look at all strings from a certain index until the end.
So, try to build solution one index at a time!

e C(i,j) = length of LCS of a;---am and b;--- b,
e want to find C(1,1)

7/21



Longest Common Subsequence (LCS)

@ Input: Two strings ajaz---am and byby - -- by, where a;, bj € &
@ Output: Largest k such that thereis i < ip < --- < i, and

J1 < Jja <--- < ji for which aj, = bj, for £ € [k]
@ how to DP this?

Need to find many overlapping subproblems (few subproblems)
and
optimal substructure (nice recurrence)

o Idea: LCS must look at all strings from a certain index until the end.

So, try to build solution one index at a time!
o C(i,j) = length of LCS of a;---am and b;--- by,

e Optimal Substructure: if A; = a;---any, B = bj--- b, are the
partial sequences and '(/,j) = c1--- ¢k is an LCS of A;, B;, then:
Q 5= bj = C = aj = bj and F(/ +1,j+ 1) is LCS of Ait1, Bj+1
Q 5 75 bj and z; 75 a; then r(l,_/) is LCS of A,'+1, Bj
© a; # bj and z; # b then I'(i, ) is LCS of A;, Bj11

8/21



Recursion for LCS

e Optimal Substructure: if A; =a;---an, Bj = bj--- b, are the
partial sequences and I'(i,j) = c1--- ¢k is an LCS of A;, B;, then:
Q a2 = b_,' = C = aj = bj and r(l +1,j+ 1) is LCS of Aiy1, Bj+1
@ a; # bj and z; # a; then (7, ) is LCS of Ajt1, B;
© a;i # bj and z; # b;j then I'(i, ) is LCS of A;, Bj41

@ Based on optimal substructure, we have:

0, ifi>morj>n
C(i,j))=Cli+1,j+1)+1, ifaj=bjand i,j<n
max{C(i +1,/), C(i,j+1)}, if aj # bjand i,j <n

9/21



Recursion for LCS

e Optimal Substructure: if A; =a;---an, Bj = bj--- b, are the
partial sequences and I'(i,j) = c1--- ¢k is an LCS of A;, B;, then:
Q a2 = b_,' = C = aj = bj and r(l +1,j+ 1) is LCS of Aiy1, Bj+1
@ a; # bj and z; # a; then (7, ) is LCS of Ajt1, B;
© a;i # bj and z; # b;j then I'(i, ) is LCS of A;, Bj41

@ Based on optimal substructure, we have:

0, ifi>morj>n
C(i,j))=Cli+1,j+1)+1, ifaj=bjand i,j<n
max{C(i +1,/), C(i,j+1)}, if aj # bjand i,j <n

e Have m - n subproblems, so bottom up implementation takes O(mn)
time.

10/21



Recursion for LCS

e Optimal Substructure: if A; =a;---an, Bj = bj--- b, are the
partial sequences and I'(i,j) = c1--- ¢k is an LCS of A;, B;, then:
Q a2 = b_,' = C = aj = bj and r(l +1,j+ 1) is LCS of Aiy1, Bj+1
@ a; # bj and z; # a; then (7, ) is LCS of Ajt1, B;
© a;i # bj and z; # b;j then I'(i, ) is LCS of A;, Bj41

@ Based on optimal substructure, we have:
0, ifi>morj>n
C(i,j))=Cli+1,j+1)+1, ifaj=bjand i,j<n
max{C(i +1,/), C(i,j+1)}, if aj # bjand i,j <n

e Have m - n subproblems, so bottom up implementation takes O(mn)
time.

@ Correctness of solution follows by the correctness of the recurrence.

11/21



@ Minimum Length Triangulation

12/21



Minimum Length Triangulation

e Input: n points Py, ..., P, € R? forming a convex n-gon I’
@ Output: a triangulation of I such that the perimeters of the n — 2
triangles is minimized (output sum of perimeters)

@ Model: unit cost model

@ will assume we can compute distance between two points in O(1)
time.

@ hence can assume we have a function 1 which computes the
perimeter of a triangle.

13/21



Minimum Length Triangulation

e Input: n points Py,..., P, € R? forming a convex n-gon I’

@ Qutput: a triangulation of I such that the perimeters of the n — 2
triangles is minimized (output sum of perimeters)

o Can we try all possibilities?

Number of triangulations is the (n —2)" Catalan number:

n i 1 <2nn— 24> = w(2%)

14 /21



Minimum Length Triangulation

e Input: n points Py,..., P, € R? forming a convex n-gon I’

@ Qutput: a triangulation of I such that the perimeters of the n — 2
triangles is minimized (output sum of perimeters)

o Can we try all possibilities?

Number of triangulations is the (n —2)" Catalan number:
1 2n—4
. = w(2"
n—1 < n—2 ) w(2')
o Can we DP it?

Need to find optimal substructure first, and then look for overlapping
subproblems.

15/21



Recurrence Relation

@ Idea: which triangle will contain edge P,P;?
If we choose index 2 < k < n— 1 for the third point of the triangle,
we have the following perimeters:
@ Triangle P,P; Py
@ Polygon with vertices P1Ps -+ Px_1
© Polygon with vertices Py --- Py

16/21



Recurrence Relation

@ Idea: which triangle will contain edge P,P;?
If we choose index 2 < k < n— 1 for the third point of the triangle,
we have the following perimeters:
@ Triangle P,P; Py
@ Polygon with vertices P1Ps -+ Px_1
© Polygon with vertices Py --- Py

@ Leads to recurrence:

OPT(L,n) = max {N(Py, Py, Pn)+OPT (1, k—1)+OPT (k+1,n)}

17/21



Recurrence Relation

@ Idea: which triangle will contain edge P,P;?
If we choose index 2 < k < n— 1 for the third point of the triangle,
we have the following perimeters:
@ Triangle P,P; Py
@ Polygon with vertices P1Ps -+ Px_1
© Polygon with vertices Py --- Py

@ Leads to recurrence:

OPT(L,n) = max {N(Py, Py, Pn)+OPT (1, k—1)+OPT (k+1,n)}

@ Subproblems: any pair of indices 1 < i < j < n gives us an instance
of the problem.

Thus O(n?) subproblems.

18/21



Recurrence Relation

@ Idea: which triangle will contain edge P,P;?
If we choose index 2 < k < n— 1 for the third point of the triangle,
we have the following perimeters:
@ Triangle P,P; Py
@ Polygon with vertices P1Ps -+ Px_1
© Polygon with vertices Py --- Py

@ Leads to recurrence:

OPT(L,n) = max {N(Py, Py, Pn)+OPT (1, k—1)+OPT (k+1,n)}

@ Subproblems: any pair of indices 1 < i < j < n gives us an instance
of the problem.
Thus O(n?) subproblems.

@ Bottom-up approach, takes O(n) time to compute OPT (/,j) if we
know optimum for all subproblems. Hence, running time is O(n3).

19/21



Acknowledgement

@ Based on [CLRS 2009, Chapter 15] and Prof Lau's notes
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L12.pdf

@ Based on Prof. Brown's notes on minimum triangulation

20/21


https://cs.uwaterloo.ca/~lapchi/cs341/notes/L12.pdf

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

ﬁ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

21/21



	Longest Common Subsequence
	

	Minimum Length Triangulation
	Acknowledgements

