
Lecture 8: Dynamic Programming II

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 5, 2023

1 / 21



Overview

Longest Common Subsequence

Minimum Length Triangulation

Acknowledgements

2 / 21



Longest Common Subsequence (LCS)
Input: Two strings a1a2 · · · am and b1b2 · · · bn, where ai , bj ∈ Σ
Output: Largest k such that there is i1 < i2 < · · · < ik and
j1 < j2 < · · · < jk for which aiℓ = bjℓ for ℓ ∈ [k]
Model: Word RAM model
Example: given two DNA sequences, want to identify common
structures.

AAACCGTGAG

CACCCCTAAGCC

how to DP this?

Need to find many overlapping subproblems (few subproblems)
and

optimal substructure (nice recurrence)

Idea: LCS must look at all strings from a certain index until the end.
So, try to build solution one index at a time!
C (i , j) = length of LCS of ai · · · am and bj · · · bn
Optimal Substructure: if Ai = ai · · · am, Bj = bj · · · bn are the
partial sequences and Γ(i , j) = c1 · · · ck is an LCS of Ai ,Bj , then:

1 ai = bj ⇒ c1 = ai = bj and Γ(i + 1, j + 1) is LCS of Ai+1,Bj+1

2 ai ̸= bj and z1 ̸= ai then Γ(i , j) is LCS of Ai+1,Bj

3 ai ̸= bj and z1 ̸= bj then Γ(i , j) is LCS of Ai ,Bj+1

3 / 21



Longest Common Subsequence (LCS)

Input: Two strings a1a2 · · · am and b1b2 · · · bn, where ai , bj ∈ Σ

Output: Largest k such that there is i1 < i2 < · · · < ik and
j1 < j2 < · · · < jk for which aiℓ = bjℓ for ℓ ∈ [k]

how to DP this?

Need to find many overlapping subproblems (few subproblems)
and

optimal substructure (nice recurrence)

Idea: LCS must look at all strings from a certain index until the end.
So, try to build solution one index at a time!

C (i , j) = length of LCS of ai · · · am and bj · · · bn
Optimal Substructure: if Ai = ai · · · am, Bj = bj · · · bn are the
partial sequences and Γ(i , j) = c1 · · · ck is an LCS of Ai ,Bj , then:

1 ai = bj ⇒ c1 = ai = bj and Γ(i + 1, j + 1) is LCS of Ai+1,Bj+1

2 ai ̸= bj and z1 ̸= ai then Γ(i , j) is LCS of Ai+1,Bj

3 ai ̸= bj and z1 ̸= bj then Γ(i , j) is LCS of Ai ,Bj+1

4 / 21



Longest Common Subsequence (LCS)

Input: Two strings a1a2 · · · am and b1b2 · · · bn, where ai , bj ∈ Σ

Output: Largest k such that there is i1 < i2 < · · · < ik and
j1 < j2 < · · · < jk for which aiℓ = bjℓ for ℓ ∈ [k]

how to DP this?

Need to find many overlapping subproblems (few subproblems)
and

optimal substructure (nice recurrence)

Idea: LCS must look at all strings from a certain index until the end.
So, try to build solution one index at a time!

C (i , j) = length of LCS of ai · · · am and bj · · · bn
Optimal Substructure: if Ai = ai · · · am, Bj = bj · · · bn are the
partial sequences and Γ(i , j) = c1 · · · ck is an LCS of Ai ,Bj , then:

1 ai = bj ⇒ c1 = ai = bj and Γ(i + 1, j + 1) is LCS of Ai+1,Bj+1

2 ai ̸= bj and z1 ̸= ai then Γ(i , j) is LCS of Ai+1,Bj

3 ai ̸= bj and z1 ̸= bj then Γ(i , j) is LCS of Ai ,Bj+1

5 / 21



Longest Common Subsequence (LCS)

Input: Two strings a1a2 · · · am and b1b2 · · · bn, where ai , bj ∈ Σ

Output: Largest k such that there is i1 < i2 < · · · < ik and
j1 < j2 < · · · < jk for which aiℓ = bjℓ for ℓ ∈ [k]

how to DP this?

Need to find many overlapping subproblems (few subproblems)
and

optimal substructure (nice recurrence)

Idea: LCS must look at all strings from a certain index until the end.
So, try to build solution one index at a time!

C (i , j) = length of LCS of ai · · · am and bj · · · bn

Optimal Substructure: if Ai = ai · · · am, Bj = bj · · · bn are the
partial sequences and Γ(i , j) = c1 · · · ck is an LCS of Ai ,Bj , then:

1 ai = bj ⇒ c1 = ai = bj and Γ(i + 1, j + 1) is LCS of Ai+1,Bj+1

2 ai ̸= bj and z1 ̸= ai then Γ(i , j) is LCS of Ai+1,Bj

3 ai ̸= bj and z1 ̸= bj then Γ(i , j) is LCS of Ai ,Bj+1

6 / 21



Longest Common Subsequence (LCS)
Input: Two strings a1a2 · · · am and b1b2 · · · bn, where ai , bj ∈ Σ

Output: Largest k such that there is i1 < i2 < · · · < ik and
j1 < j2 < · · · < jk for which aiℓ = bjℓ for ℓ ∈ [k]

how to DP this?

Need to find many overlapping subproblems (few subproblems)
and

optimal substructure (nice recurrence)

Idea: LCS must look at all strings from a certain index until the end.
So, try to build solution one index at a time!

C (i , j) = length of LCS of ai · · · am and bj · · · bn
want to find C (1, 1)

Optimal Substructure: if Ai = ai · · · am, Bj = bj · · · bn are the
partial sequences and Γ(i , j) = c1 · · · ck is an LCS of Ai ,Bj , then:

1 ai = bj ⇒ c1 = ai = bj and Γ(i + 1, j + 1) is LCS of Ai+1,Bj+1

2 ai ̸= bj and z1 ̸= ai then Γ(i , j) is LCS of Ai+1,Bj

3 ai ̸= bj and z1 ̸= bj then Γ(i , j) is LCS of Ai ,Bj+1

7 / 21



Longest Common Subsequence (LCS)

Input: Two strings a1a2 · · · am and b1b2 · · · bn, where ai , bj ∈ Σ

Output: Largest k such that there is i1 < i2 < · · · < ik and
j1 < j2 < · · · < jk for which aiℓ = bjℓ for ℓ ∈ [k]

how to DP this?

Need to find many overlapping subproblems (few subproblems)
and

optimal substructure (nice recurrence)

Idea: LCS must look at all strings from a certain index until the end.
So, try to build solution one index at a time!

C (i , j) = length of LCS of ai · · · am and bj · · · bn
Optimal Substructure: if Ai = ai · · · am, Bj = bj · · · bn are the
partial sequences and Γ(i , j) = c1 · · · ck is an LCS of Ai ,Bj , then:

1 ai = bj ⇒ c1 = ai = bj and Γ(i + 1, j + 1) is LCS of Ai+1,Bj+1

2 ai ̸= bj and z1 ̸= ai then Γ(i , j) is LCS of Ai+1,Bj

3 ai ̸= bj and z1 ̸= bj then Γ(i , j) is LCS of Ai ,Bj+1

8 / 21



Recursion for LCS

Optimal Substructure: if Ai = ai · · · am, Bj = bj · · · bn are the
partial sequences and Γ(i , j) = c1 · · · ck is an LCS of Ai ,Bj , then:

1 ai = bj ⇒ c1 = ai = bj and Γ(i + 1, j + 1) is LCS of Ai+1,Bj+1

2 ai ̸= bj and z1 ̸= ai then Γ(i , j) is LCS of Ai+1,Bj

3 ai ̸= bj and z1 ̸= bj then Γ(i , j) is LCS of Ai ,Bj+1

Based on optimal substructure, we have:

C (i , j) =


0, if i > m or j > n

C (i + 1, j + 1) + 1, if ai = bj and i , j ≤ n

max{C (i + 1, j),C (i , j + 1)}, if ai ̸= bj and i , j ≤ n

Have m · n subproblems, so bottom up implementation takes O(mn)
time.

Correctness of solution follows by the correctness of the recurrence.

9 / 21



Recursion for LCS

Optimal Substructure: if Ai = ai · · · am, Bj = bj · · · bn are the
partial sequences and Γ(i , j) = c1 · · · ck is an LCS of Ai ,Bj , then:

1 ai = bj ⇒ c1 = ai = bj and Γ(i + 1, j + 1) is LCS of Ai+1,Bj+1

2 ai ̸= bj and z1 ̸= ai then Γ(i , j) is LCS of Ai+1,Bj

3 ai ̸= bj and z1 ̸= bj then Γ(i , j) is LCS of Ai ,Bj+1

Based on optimal substructure, we have:

C (i , j) =


0, if i > m or j > n

C (i + 1, j + 1) + 1, if ai = bj and i , j ≤ n

max{C (i + 1, j),C (i , j + 1)}, if ai ̸= bj and i , j ≤ n

Have m · n subproblems, so bottom up implementation takes O(mn)
time.

Correctness of solution follows by the correctness of the recurrence.

10 / 21



Recursion for LCS

Optimal Substructure: if Ai = ai · · · am, Bj = bj · · · bn are the
partial sequences and Γ(i , j) = c1 · · · ck is an LCS of Ai ,Bj , then:

1 ai = bj ⇒ c1 = ai = bj and Γ(i + 1, j + 1) is LCS of Ai+1,Bj+1

2 ai ̸= bj and z1 ̸= ai then Γ(i , j) is LCS of Ai+1,Bj

3 ai ̸= bj and z1 ̸= bj then Γ(i , j) is LCS of Ai ,Bj+1

Based on optimal substructure, we have:

C (i , j) =


0, if i > m or j > n

C (i + 1, j + 1) + 1, if ai = bj and i , j ≤ n

max{C (i + 1, j),C (i , j + 1)}, if ai ̸= bj and i , j ≤ n

Have m · n subproblems, so bottom up implementation takes O(mn)
time.

Correctness of solution follows by the correctness of the recurrence.

11 / 21



Longest Common Subsequence

Minimum Length Triangulation

Acknowledgements

12 / 21



Minimum Length Triangulation
Input: n points P1, . . . ,Pn ∈ R2 forming a convex n-gon Γ

Output: a triangulation of Γ such that the perimeters of the n − 2
triangles is minimized (output sum of perimeters)

Model: unit cost model

will assume we can compute distance between two points in O(1)
time.

hence can assume we have a function Π which computes the
perimeter of a triangle.

Can we try all possibilities?

Number of triangulations is the (n − 2)nd Catalan number:

1

n − 1
·
(
2n − 4

n − 2

)
= ω(2n)

Can we DP it?

Need to find optimal substructure first, and then look for overlapping
subproblems.

13 / 21



Minimum Length Triangulation

Input: n points P1, . . . ,Pn ∈ R2 forming a convex n-gon Γ

Output: a triangulation of Γ such that the perimeters of the n − 2
triangles is minimized (output sum of perimeters)

Can we try all possibilities?

Number of triangulations is the (n − 2)nd Catalan number:

1

n − 1
·
(
2n − 4

n − 2

)
= ω(2n)

Can we DP it?

Need to find optimal substructure first, and then look for overlapping
subproblems.

14 / 21



Minimum Length Triangulation

Input: n points P1, . . . ,Pn ∈ R2 forming a convex n-gon Γ

Output: a triangulation of Γ such that the perimeters of the n − 2
triangles is minimized (output sum of perimeters)

Can we try all possibilities?

Number of triangulations is the (n − 2)nd Catalan number:

1

n − 1
·
(
2n − 4

n − 2

)
= ω(2n)

Can we DP it?

Need to find optimal substructure first, and then look for overlapping
subproblems.

15 / 21



Recurrence Relation

Idea: which triangle will contain edge PnP1?
If we choose index 2 ≤ k ≤ n − 1 for the third point of the triangle,
we have the following perimeters:

1 Triangle PnP1Pk

2 Polygon with vertices P1P2 · · ·Pk−1

3 Polygon with vertices Pk+1 · · ·Pn

Leads to recurrence:

OPT (1, n) = max
2≤k≤n−1

{Π(P1,Pk ,Pn)+OPT (1, k−1)+OPT (k+1, n)}

Subproblems: any pair of indices 1 ≤ i < j ≤ n gives us an instance
of the problem.

Thus O(n2) subproblems.

Bottom-up approach, takes O(n) time to compute OPT (i , j) if we
know optimum for all subproblems. Hence, running time is O(n3).

16 / 21



Recurrence Relation

Idea: which triangle will contain edge PnP1?
If we choose index 2 ≤ k ≤ n − 1 for the third point of the triangle,
we have the following perimeters:

1 Triangle PnP1Pk

2 Polygon with vertices P1P2 · · ·Pk−1

3 Polygon with vertices Pk+1 · · ·Pn

Leads to recurrence:

OPT (1, n) = max
2≤k≤n−1

{Π(P1,Pk ,Pn)+OPT (1, k−1)+OPT (k+1, n)}

Subproblems: any pair of indices 1 ≤ i < j ≤ n gives us an instance
of the problem.

Thus O(n2) subproblems.

Bottom-up approach, takes O(n) time to compute OPT (i , j) if we
know optimum for all subproblems. Hence, running time is O(n3).

17 / 21



Recurrence Relation

Idea: which triangle will contain edge PnP1?
If we choose index 2 ≤ k ≤ n − 1 for the third point of the triangle,
we have the following perimeters:

1 Triangle PnP1Pk

2 Polygon with vertices P1P2 · · ·Pk−1

3 Polygon with vertices Pk+1 · · ·Pn

Leads to recurrence:

OPT (1, n) = max
2≤k≤n−1

{Π(P1,Pk ,Pn)+OPT (1, k−1)+OPT (k+1, n)}

Subproblems: any pair of indices 1 ≤ i < j ≤ n gives us an instance
of the problem.

Thus O(n2) subproblems.

Bottom-up approach, takes O(n) time to compute OPT (i , j) if we
know optimum for all subproblems. Hence, running time is O(n3).

18 / 21



Recurrence Relation

Idea: which triangle will contain edge PnP1?
If we choose index 2 ≤ k ≤ n − 1 for the third point of the triangle,
we have the following perimeters:

1 Triangle PnP1Pk

2 Polygon with vertices P1P2 · · ·Pk−1

3 Polygon with vertices Pk+1 · · ·Pn

Leads to recurrence:

OPT (1, n) = max
2≤k≤n−1

{Π(P1,Pk ,Pn)+OPT (1, k−1)+OPT (k+1, n)}

Subproblems: any pair of indices 1 ≤ i < j ≤ n gives us an instance
of the problem.

Thus O(n2) subproblems.

Bottom-up approach, takes O(n) time to compute OPT (i , j) if we
know optimum for all subproblems. Hence, running time is O(n3).

19 / 21



Acknowledgement

Based on [CLRS 2009, Chapter 15] and Prof Lau’s notes

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L12.pdf

Based on Prof. Brown’s notes on minimum triangulation

20 / 21

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L12.pdf


References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

21 / 21


	Longest Common Subsequence
	

	Minimum Length Triangulation
	Acknowledgements

