Lecture 8: Dynamic Programming II

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

October 5, 2023

Overview

- Longest Common Subsequence
- Minimum Length Triangulation
- Acknowledgements

Longest Common Subsequence (LCS)

- Input: Two strings $a_{1} a_{2} \cdots a_{m}$ and $b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: Largest k such that there is $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$ for which $a_{i \ell}=b_{j_{\ell}}$ for $\ell \in[k]$
- Model: Word RAM model
- Example: given two DNA sequences, want to identify common structures.

> AAACCG TGAG CACCCCTAA GCC

Longest Common Subsequence (LCS)

- Input: Two strings $a_{1} a_{2} \cdots a_{m}$ and $b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: Largest k such that there is $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$ for which $a_{i_{\ell}}=b_{j_{\ell}}$ for $\ell \in[k]$
- how to DP this?

Need to find many overlapping subproblems (few subproblems) and optimal substructure (nice recurrence)

Longest Common Subsequence (LCS)

- Input: Two strings $a_{1} a_{2} \cdots a_{m}$ and $b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: Largest k such that there is $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$ for which $a_{i_{\ell}}=b_{j_{\ell}}$ for $\ell \in[k]$
- how to DP this?

Need to find many overlapping subproblems (few subproblems)

$$
\begin{gathered}
\text { and } \\
\text { optimal substructure (nice recurrence) }
\end{gathered}
$$

- Idea: LCS must look at all strings from a certain index until the end. So, try to build solution one index at a time!

Longest Common Subsequence (LCS)

- Input: Two strings $a_{1} a_{2} \cdots a_{m}$ and $b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: Largest k such that there is $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$ for which $a_{i \ell}=b_{j_{\ell}}$ for $\ell \in[k]$
- how to DP this?

Need to find many overlapping subproblems (few subproblems)

$$
\begin{gathered}
\text { and } \\
\text { optimal substructure (nice recurrence) }
\end{gathered}
$$

- Idea: LCS must look at all strings from a certain index until the end. So, try to build solution one index at a time!
- $C(i, j)=$ length of LCS of $a_{i} \cdots a_{m}$ and $b_{j} \cdots b_{n}$

Longest Common Subsequence (LCS)

- Input: Two strings $a_{1} a_{2} \cdots a_{m}$ and $b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: Largest k such that there is $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$ for which $a_{i \ell}=b_{j_{\ell}}$ for $\ell \in[k]$
- how to DP this?

Need to find many overlapping subproblems (few subproblems) and optimal substructure (nice recurrence)

- Idea: LCS must look at all strings from a certain index until the end. So, try to build solution one index at a time!
- $C(i, j)=$ length of LCS of $a_{i} \cdots a_{m}$ and $b_{j} \cdots b_{n}$
- want to find $C(1,1)$

Longest Common Subsequence (LCS)

- Input: Two strings $a_{1} a_{2} \cdots a_{m}$ and $b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: Largest k such that there is $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$ for which $a_{i_{\ell}}=b_{j_{\ell}}$ for $\ell \in[k]$
- how to DP this?

Need to find many overlapping subproblems (few subproblems) and optimal substructure (nice recurrence)

- Idea: LCS must look at all strings from a certain index until the end. So, try to build solution one index at a time!
- $C(i, j)=$ length of LCS of $a_{i} \cdots a_{m}$ and $b_{j} \cdots b_{n}$
- Optimal Substructure: if $A_{i}=a_{i} \cdots a_{m}, B_{j}=b_{j} \cdots b_{n}$ are the partial sequences and $\Gamma(i, j)=c_{1} \cdots c_{k}$ is an LCS of A_{i}, B_{j}, then:
(1) $a_{i}=b_{j} \Rightarrow c_{1}=a_{i}=b_{j}$ and $\Gamma(i+1, j+1)$ is LCS of A_{i+1}, B_{j+1}
(2) $a_{i} \neq b_{j}$ and $z_{1} \neq a_{i}$ then $\Gamma(i, j)$ is LCS of A_{i+1}, B_{j}
(3) $a_{i} \neq b_{j}$ and $z_{1} \neq b_{j}$ then $\Gamma(i, j)$ is LCS of A_{i}, B_{j+1}

Recursion for LCS

- Optimal Substructure: if $A_{i}=a_{i} \cdots a_{m}, B_{j}=b_{j} \cdots b_{n}$ are the partial sequences and $\Gamma(i, j)=c_{1} \cdots c_{k}$ is an LCS of A_{i}, B_{j}, then:
(1) $a_{i}=b_{j} \Rightarrow c_{1}=a_{i}=b_{j}$ and $\Gamma(i+1, j+1)$ is LCS of A_{i+1}, B_{j+1}
(2) $a_{i} \neq b_{j}$ and $z_{1} \neq a_{i}$ then $\Gamma(i, j)$ is LCS of A_{i+1}, B_{j}
(3) $a_{i} \neq b_{j}$ and $z_{1} \neq b_{j}$ then $\Gamma(i, j)$ is LCS of A_{i}, B_{j+1}
- Based on optimal substructure, we have:

$$
C(i, j)=\left\{\begin{array}{l}
0, \text { if } i>m \text { or } j>n \\
C(i+1, j+1)+1, \text { if } a_{i}=b_{j} \text { and } i, j \leq n \\
\max \{C(i+1, j), C(i, j+1)\}, \text { if } a_{i} \neq b_{j} \text { and } i, j \leq n
\end{array}\right.
$$

Recursion for LCS

- Optimal Substructure: if $A_{i}=a_{i} \cdots a_{m}, B_{j}=b_{j} \cdots b_{n}$ are the partial sequences and $\Gamma(i, j)=c_{1} \cdots c_{k}$ is an LCS of A_{i}, B_{j}, then:
(1) $a_{i}=b_{j} \Rightarrow c_{1}=a_{i}=b_{j}$ and $\Gamma(i+1, j+1)$ is LCS of A_{i+1}, B_{j+1}
(2) $a_{i} \neq b_{j}$ and $z_{1} \neq a_{i}$ then $\Gamma(i, j)$ is LCS of A_{i+1}, B_{j}
(3) $a_{i} \neq b_{j}$ and $z_{1} \neq b_{j}$ then $\Gamma(i, j)$ is LCS of A_{i}, B_{j+1}
- Based on optimal substructure, we have:

$$
C(i, j)=\left\{\begin{array}{l}
0, \text { if } i>m \text { or } j>n \\
C(i+1, j+1)+1, \text { if } a_{i}=b_{j} \text { and } i, j \leq n \\
\max \{C(i+1, j), C(i, j+1)\}, \text { if } a_{i} \neq b_{j} \text { and } i, j \leq n
\end{array}\right.
$$

- Have $m \cdot n$ subproblems, so bottom up implementation takes $O(m n)$ time.

Recursion for LCS

- Optimal Substructure: if $A_{i}=a_{i} \cdots a_{m}, B_{j}=b_{j} \cdots b_{n}$ are the partial sequences and $\Gamma(i, j)=c_{1} \cdots c_{k}$ is an LCS of A_{i}, B_{j}, then:
(1) $a_{i}=b_{j} \Rightarrow c_{1}=a_{i}=b_{j}$ and $\Gamma(i+1, j+1)$ is LCS of A_{i+1}, B_{j+1}
(2) $a_{i} \neq b_{j}$ and $z_{1} \neq a_{i}$ then $\Gamma(i, j)$ is LCS of A_{i+1}, B_{j}
(3) $a_{i} \neq b_{j}$ and $z_{1} \neq b_{j}$ then $\Gamma(i, j)$ is LCS of A_{i}, B_{j+1}
- Based on optimal substructure, we have:

$$
C(i, j)=\left\{\begin{array}{l}
0, \text { if } i>m \text { or } j>n \\
C(i+1, j+1)+1, \text { if } a_{i}=b_{j} \text { and } i, j \leq n \\
\max \{C(i+1, j), C(i, j+1)\}, \text { if } a_{i} \neq b_{j} \text { and } i, j \leq n
\end{array}\right.
$$

- Have $m \cdot n$ subproblems, so bottom up implementation takes $O(m n)$ time.
- Correctness of solution follows by the correctness of the recurrence.

- Longest Common Subsequence

- Minimum Length Triangulation
- Acknowledgements

Minimum Length Triangulation

- Input: n points $P_{1}, \ldots, P_{n} \in \mathbb{R}^{2}$ forming a convex n-gon Γ
- Output: a triangulation of Γ such that the perimeters of the $n-2$ triangles is minimized

> (output sum of perimeters)

- Model: unit cost model
- will assume we can compute distance between two points in $O(1)$ time.
- hence can assume we have a function Π which computes the perimeter of a triangle.

Minimum Length Triangulation

- Input: n points $P_{1}, \ldots, P_{n} \in \mathbb{R}^{2}$ forming a convex n-gon Γ
- Output: a triangulation of Γ such that the perimeters of the $n-2$ triangles is minimized (output sum of perimeters)
- Can we try all possibilities?

Number of triangulations is the $(n-2)^{n d}$ Catalan number:

$$
\frac{1}{n-1} \cdot\binom{2 n-4}{n-2}=\omega\left(2^{n}\right)
$$

Minimum Length Triangulation

- Input: n points $P_{1}, \ldots, P_{n} \in \mathbb{R}^{2}$ forming a convex n-gon Γ
- Output: a triangulation of Γ such that the perimeters of the $n-2$ triangles is minimized (output sum of perimeters)
- Can we try all possibilities?

Number of triangulations is the $(n-2)^{n d}$ Catalan number:

$$
\frac{1}{n-1} \cdot\binom{2 n-4}{n-2}=\omega\left(2^{n}\right)
$$

- Can we DP it?

Need to find optimal substructure first, and then look for overlapping subproblems.

Recurrence Relation

- Idea: which triangle will contain edge $P_{n} P_{1}$?

If we choose index $2 \leq k \leq n-1$ for the third point of the triangle, we have the following perimeters:
(1) Triangle $P_{n} P_{1} P_{k}$
(2) Polygon with vertices $P_{1} P_{2} \ldots P_{k-1}$
(3) Polygon with vertices $P_{k+1} \cdots P_{n}$

Recurrence Relation

- Idea: which triangle will contain edge $P_{n} P_{1}$?

If we choose index $2 \leq k \leq n-1$ for the third point of the triangle, we have the following perimeters:
(1) Triangle $P_{n} P_{1} P_{k}$
(2) Polygon with vertices $P_{1} P_{2} \ldots P_{k-1}$
(3) Polygon with vertices $P_{k+1} \ldots P_{n}$

- Leads to recurrence:

$$
\operatorname{OPT}(1, n)=\max _{2 \leq k \leq n-1}\left\{\Pi\left(P_{1}, P_{k}, P_{n}\right)+O P T(1, k-1)+O P T(k+1, n)\right\}
$$

Recurrence Relation

- Idea: which triangle will contain edge $P_{n} P_{1}$?

If we choose index $2 \leq k \leq n-1$ for the third point of the triangle, we have the following perimeters:
(1) Triangle $P_{n} P_{1} P_{k}$
(2) Polygon with vertices $P_{1} P_{2} \ldots P_{k-1}$
(3) Polygon with vertices $P_{k+1} \ldots P_{n}$

- Leads to recurrence:

$$
\operatorname{OPT}(1, n)=\max _{2 \leq k \leq n-1}\left\{\Pi\left(P_{1}, P_{k}, P_{n}\right)+O P T(1, k-1)+O P T(k+1, n)\right\}
$$

- Subproblems: any pair of indices $1 \leq i<j \leq n$ gives us an instance of the problem.

Thus $O\left(n^{2}\right)$ subproblems.

Recurrence Relation

- Idea: which triangle will contain edge $P_{n} P_{1}$?

If we choose index $2 \leq k \leq n-1$ for the third point of the triangle, we have the following perimeters:
(1) Triangle $P_{n} P_{1} P_{k}$
(2) Polygon with vertices $P_{1} P_{2} \ldots P_{k-1}$
(3) Polygon with vertices $P_{k+1} \ldots P_{n}$

- Leads to recurrence:
$\operatorname{OPT}(1, n)=\max _{2 \leq k \leq n-1}\left\{\Pi\left(P_{1}, P_{k}, P_{n}\right)+O P T(1, k-1)+O P T(k+1, n)\right\}$
- Subproblems: any pair of indices $1 \leq i<j \leq n$ gives us an instance of the problem.

Thus $O\left(n^{2}\right)$ subproblems.

- Bottom-up approach, takes $O(n)$ time to compute $O P T(i, j)$ if we know optimum for all subproblems. Hence, running time is $O\left(n^{3}\right)$.

Acknowledgement

- Based on [CLRS 2009, Chapter 15] and Prof Lau's notes https://cs.uwaterloo.ca/~lapchi/cs341/notes/L12.pdf
- Based on Prof. Brown's notes on minimum triangulation

References I

B
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press
Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

