Lecture 9: Dynamic Programming III

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

October 5, 2023

Overview

- Edit Distance
- Graphs \& DP on Trees
- Acknowledgements

Edit Distance

- Input: two strings $A:=a_{1} a_{2} \cdots a_{m}$ and $B:=b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: minimum number of edits to string A (add, delete, change) to transform it into string B
- Model: word RAM
- Example:

SNOWY and SUNNY

- approach 1
(3 edits)

$$
\begin{aligned}
& S-N O W Y \\
& S U N N-Y
\end{aligned}
$$

(4 edits)

- approach 2

$$
\begin{aligned}
& -S N O W Y \\
& S U N N-Y
\end{aligned}
$$

Edit Distance

- Input: two strings $A:=a_{1} a_{2} \cdots a_{m}$ and $B:=b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: minimum number of edits to string A (add, delete, change) to transform it into string B
- Looks a bit hard. Can we DP it?

Edit Distance

- Input: two strings $A:=a_{1} a_{2} \cdots a_{m}$ and $B:=b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: minimum number of edits to string A (add, delete, change) to transform it into string B
- Subproblems: let $A_{i}:=a_{1} \cdots a_{i}$ and $B_{j}:=b_{1} \cdots b_{j}$, and let $D(i, j)$ be edit distance between A_{i}, B_{j}. Base case: $D(0,0)=0$.

Edit Distance

- Input: two strings $A:=a_{1} a_{2} \cdots a_{m}$ and $B:=b_{1} b_{2} \cdots b_{n}$, where $a_{i}, b_{j} \in \Sigma$
- Output: minimum number of edits to string A (add, delete, change) to transform it into string B
- Subproblems: let $A_{i}:=a_{1} \cdots a_{i}$ and $B_{j}:=b_{1} \cdots b_{j}$, and let $D(i, j)$ be edit distance between A_{i}, B_{j}. Base case: $D(0,0)=0$.
- Cases
(based on allowed operations)
(1) Add: add b_{j} to string A_{i}.

$$
\text { Total cost: Sol } 1:=1+D(i, j-1)
$$

(2) Delete: delete a_{i} from A_{i}.

$$
\text { Total cost Sol } 2:=1+D(i-1, j)
$$

(3) Change/Match: can change $a_{i} \mapsto b_{j}$. (if $a_{i}=b_{j}$ we simply match them)

$$
\text { Total cost: } \mathrm{Sol}_{3}:=\left\{\begin{array}{l}
1+D(i-1, j-1), \text { if } a_{i} \neq b_{j} \\
D(i-1, j-1), \text { if } a_{i}=b_{j}
\end{array}\right.
$$

Edit Distance - Recurrence

- Thus, recurrence given by

$$
D(i, j)=\min \left\{\mathrm{Sol}_{1}, \mathrm{Sol}_{2}, \mathrm{Sol}_{3}\right\}
$$

Edit Distance - Recurrence

- Thus, recurrence given by

$$
D(i, j)=\min \left\{\mathrm{Sol}_{1}, \mathrm{Sol}_{2}, \mathrm{Sol}_{3}\right\}
$$

- Correctness: proof by induction.
(1) True for base case, i.e. $D(0,0)=0$.
(2) If all subcases are correct, then recurrence tells us all possible ways to handle the last symbols of the strings (thus one must lead to the optimum distance).

Edit Distance - Recurrence

- Thus, recurrence given by

$$
D(i, j)=\min \left\{\mathrm{Sol}_{1}, \mathrm{Sol}_{2}, \mathrm{Sol}_{3}\right\}
$$

- Correctness: proof by induction.
(1) True for base case, i.e. $D(0,0)=0$.
(2) If all subcases are correct, then recurrence tells us all possible ways to handle the last symbols of the strings (thus one must lead to the optimum distance).
- Runtime:
(1) \# Subproblems: $O(m n)$
(2) Time per subproblem (given previous subproblems computed): $O(1)$
(3) Runtime: $O(m n)$

Edit Distance - Recurrence

- Thus, recurrence given by

$$
D(i, j)=\min \left\{\mathrm{Sol}_{1}, \mathrm{Sol}_{2}, \mathrm{Sol}_{3}\right\}
$$

- Correctness: proof by induction.
(1) True for base case, i.e. $D(0,0)=0$.
(2) If all subcases are correct, then recurrence tells us all possible ways to handle the last symbols of the strings (thus one must lead to the optimum distance).
- Runtime:
(1) \# Subproblems: $O(m n)$
(2) Time per subproblem (given previous subproblems computed): $O(1)$
(3) Runtime: $O(m n)$
- Computing the table (bottom up): want to go from $(0,0)$ to (m, n). Can compute in increasing row order, from left to right.

- Edit Distance

- Graphs \& DP on Trees
- Acknowledgements

Wait graphs already?!

WHOA WHOA
WHOA WHOA WHOA WHOA WHOA
WHOA WHOA WHOA WHOA WHOA
WHOA WHOA WHOA WHOA WHOA WHC

Graphs - Definition

Trees

Maximum Independent Set on Trees

- Input: A tree $T([n], E)$
- Output: A maximum independent set in T

Maximum Independent Set on Trees

- Input: A tree $T([n], E)$
- Output: A maximum independent set in T
- Idea: pick vertex to be a root. Traverse the tree downwards as follows:
(1) Given vertex v, if we include it in our independent set, then don't include its children (look at the grandchildren)
(2) If don't include v, then pick all its children

Maximum Independent Set on Trees

- Input: A tree $T([n], E)$
- Output: A maximum independent set in T
- Idea: pick vertex to be a root. Traverse the tree downwards as follows:
(1) Given vertex v, if we include it in our independent set, then don't include its children (look at the grandchildren)
(2) If don't include v, then pick all its children
- Recurrence:

$$
\operatorname{MIS}(v)=\max \left\{1+\sum_{w \text { grandchild of } v} M I S(w), \sum_{u \text { child of } v} M I S(u)\right\}
$$

Maximum Independent Set on Trees

- Input: A tree $T([n], E)$
- Output: A maximum independent set in T
- Idea: pick vertex to be a root. Traverse the tree downwards as follows:
(1) Given vertex v, if we include it in our independent set, then don't include its children (look at the grandchildren)
(2) If don't include v, then pick all its children
- Recurrence:

$$
\operatorname{MIS}(v)=\max \left\{1+\sum_{w \text { grandchild of } v} M I S(w), \sum_{u \text { child of } v} M I S(u)\right\}
$$

- Running time:
(1) \# subproblems: $O(n)$ (\# vertices)
(2) time per subproblem (once we have subproblems): $O(|E|)=O(n)$
(3) Total runtime: $O\left(n^{2}\right)$

Acknowledgement

- Based on [DPV 2006]

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press
Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

Releinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

