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Edit Distance
Input: two strings A := a1a2 · · · am and B := b1b2 · · · bn, where
ai , bj ∈ Σ
Output: minimum number of edits to string A (add, delete, change)
to transform it into string B
Model: word RAM
Example:

SNOWY and SUNNY

approach 1 (3 edits)

S – N O W Y
S U N N – Y

approach 2 (4 edits)

– S N O W Y
S U N N – Y

Looks a bit hard. Can we DP it?
Subproblems: let Ai := a1 · · · ai and Bj := b1 · · · bj , and let D(i , j) be
edit distance between Ai ,Bj . Base case: D(0, 0) = 0.
Cases (based on allowed operations)

1 Add: add bj to string Ai .
Total cost: Sol1 := 1 + D(i , j − 1)

2 Delete: delete ai from Ai .
Total cost Sol2 := 1 + D(i − 1, j)

3 Change/Match: can change ai 7→ bj . (if ai = bj we simply match
them)

Total cost: Sol3 :=

{
1 + D(i − 1, j − 1), if ai ̸= bj

D(i − 1, j − 1), if ai = bj

3 / 20



Edit Distance
Input: two strings A := a1a2 · · · am and B := b1b2 · · · bn, where
ai , bj ∈ Σ

Output: minimum number of edits to string A (add, delete, change)
to transform it into string B

Looks a bit hard. Can we DP it?

Subproblems: let Ai := a1 · · · ai and Bj := b1 · · · bj , and let D(i , j) be
edit distance between Ai ,Bj . Base case: D(0, 0) = 0.

Cases (based on allowed operations)
1 Add: add bj to string Ai .

Total cost: Sol1 := 1 + D(i , j − 1)
2 Delete: delete ai from Ai .

Total cost Sol2 := 1 + D(i − 1, j)
3 Change/Match: can change ai 7→ bj . (if ai = bj we simply match

them)

Total cost: Sol3 :=

{
1 + D(i − 1, j − 1), if ai ̸= bj

D(i − 1, j − 1), if ai = bj

4 / 20



Edit Distance
Input: two strings A := a1a2 · · · am and B := b1b2 · · · bn, where
ai , bj ∈ Σ

Output: minimum number of edits to string A (add, delete, change)
to transform it into string B

Looks a bit hard. Can we DP it?

Subproblems: let Ai := a1 · · · ai and Bj := b1 · · · bj , and let D(i , j) be
edit distance between Ai ,Bj . Base case: D(0, 0) = 0.

Cases (based on allowed operations)
1 Add: add bj to string Ai .

Total cost: Sol1 := 1 + D(i , j − 1)
2 Delete: delete ai from Ai .

Total cost Sol2 := 1 + D(i − 1, j)
3 Change/Match: can change ai 7→ bj . (if ai = bj we simply match

them)

Total cost: Sol3 :=

{
1 + D(i − 1, j − 1), if ai ̸= bj

D(i − 1, j − 1), if ai = bj

5 / 20



Edit Distance
Input: two strings A := a1a2 · · · am and B := b1b2 · · · bn, where
ai , bj ∈ Σ

Output: minimum number of edits to string A (add, delete, change)
to transform it into string B

Looks a bit hard. Can we DP it?

Subproblems: let Ai := a1 · · · ai and Bj := b1 · · · bj , and let D(i , j) be
edit distance between Ai ,Bj . Base case: D(0, 0) = 0.

Cases (based on allowed operations)
1 Add: add bj to string Ai .

Total cost: Sol1 := 1 + D(i , j − 1)
2 Delete: delete ai from Ai .

Total cost Sol2 := 1 + D(i − 1, j)
3 Change/Match: can change ai 7→ bj . (if ai = bj we simply match

them)

Total cost: Sol3 :=

{
1 + D(i − 1, j − 1), if ai ̸= bj

D(i − 1, j − 1), if ai = bj

6 / 20



Edit Distance - Recurrence

Thus, recurrence given by

D(i , j) = min{Sol1, Sol2, Sol3}

Correctness: proof by induction.
1 True for base case, i.e. D(0, 0) = 0.
2 If all subcases are correct, then recurrence tells us all possible ways to

handle the last symbols of the strings (thus one must lead to the
optimum distance).

Runtime:
1 # Subproblems: O(mn)
2 Time per subproblem (given previous subproblems computed): O(1)
3 Runtime: O(mn)

Computing the table (bottom up): want to go from (0, 0) to (m, n).
Can compute in increasing row order, from left to right.
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Wait graphs already?!
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Graphs - Definition
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Trees
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Maximum Independent Set on Trees

Input: A tree T ([n],E )

Output: A maximum independent set in T

Idea: pick vertex to be a root. Traverse the tree downwards as
follows:

1 Given vertex v , if we include it in our independent set, then don’t
include its children (look at the grandchildren)

2 If don’t include v , then pick all its children

Recurrence:

MIS(v) = max

1 +
∑

w grandchild of v

MIS(w),
∑

u child of v

MIS(u)


Running time:

1 # subproblems: O(n) (# vertices)
2 time per subproblem (once we have subproblems): O(|E |) = O(n)
3 Total runtime: O(n2)
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