
Lecture 9: Dynamic Programming III

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 5, 2023

1 / 20

Overview

Edit Distance

Graphs & DP on Trees

Acknowledgements

2 / 20

Edit Distance
Input: two strings A := a1a2 · · · am and B := b1b2 · · · bn, where
ai , bj ∈ Σ
Output: minimum number of edits to string A (add, delete, change)
to transform it into string B
Model: word RAM
Example:

SNOWY and SUNNY

approach 1 (3 edits)

S – N O W Y
S U N N – Y

approach 2 (4 edits)

– S N O W Y
S U N N – Y

Looks a bit hard. Can we DP it?
Subproblems: let Ai := a1 · · · ai and Bj := b1 · · · bj , and let D(i , j) be
edit distance between Ai ,Bj . Base case: D(0, 0) = 0.
Cases (based on allowed operations)

1 Add: add bj to string Ai .
Total cost: Sol1 := 1 + D(i , j − 1)

2 Delete: delete ai from Ai .
Total cost Sol2 := 1 + D(i − 1, j)

3 Change/Match: can change ai 7→ bj . (if ai = bj we simply match
them)

Total cost: Sol3 :=

{
1 + D(i − 1, j − 1), if ai ̸= bj

D(i − 1, j − 1), if ai = bj

3 / 20

Edit Distance
Input: two strings A := a1a2 · · · am and B := b1b2 · · · bn, where
ai , bj ∈ Σ

Output: minimum number of edits to string A (add, delete, change)
to transform it into string B

Looks a bit hard. Can we DP it?

Subproblems: let Ai := a1 · · · ai and Bj := b1 · · · bj , and let D(i , j) be
edit distance between Ai ,Bj . Base case: D(0, 0) = 0.

Cases (based on allowed operations)
1 Add: add bj to string Ai .

Total cost: Sol1 := 1 + D(i , j − 1)
2 Delete: delete ai from Ai .

Total cost Sol2 := 1 + D(i − 1, j)
3 Change/Match: can change ai 7→ bj . (if ai = bj we simply match

them)

Total cost: Sol3 :=

{
1 + D(i − 1, j − 1), if ai ̸= bj

D(i − 1, j − 1), if ai = bj

4 / 20

Edit Distance
Input: two strings A := a1a2 · · · am and B := b1b2 · · · bn, where
ai , bj ∈ Σ

Output: minimum number of edits to string A (add, delete, change)
to transform it into string B

Looks a bit hard. Can we DP it?

Subproblems: let Ai := a1 · · · ai and Bj := b1 · · · bj , and let D(i , j) be
edit distance between Ai ,Bj . Base case: D(0, 0) = 0.

Cases (based on allowed operations)
1 Add: add bj to string Ai .

Total cost: Sol1 := 1 + D(i , j − 1)
2 Delete: delete ai from Ai .

Total cost Sol2 := 1 + D(i − 1, j)
3 Change/Match: can change ai 7→ bj . (if ai = bj we simply match

them)

Total cost: Sol3 :=

{
1 + D(i − 1, j − 1), if ai ̸= bj

D(i − 1, j − 1), if ai = bj

5 / 20

Edit Distance
Input: two strings A := a1a2 · · · am and B := b1b2 · · · bn, where
ai , bj ∈ Σ

Output: minimum number of edits to string A (add, delete, change)
to transform it into string B

Looks a bit hard. Can we DP it?

Subproblems: let Ai := a1 · · · ai and Bj := b1 · · · bj , and let D(i , j) be
edit distance between Ai ,Bj . Base case: D(0, 0) = 0.

Cases (based on allowed operations)
1 Add: add bj to string Ai .

Total cost: Sol1 := 1 + D(i , j − 1)
2 Delete: delete ai from Ai .

Total cost Sol2 := 1 + D(i − 1, j)
3 Change/Match: can change ai 7→ bj . (if ai = bj we simply match

them)

Total cost: Sol3 :=

{
1 + D(i − 1, j − 1), if ai ̸= bj

D(i − 1, j − 1), if ai = bj

6 / 20

Edit Distance - Recurrence

Thus, recurrence given by

D(i , j) = min{Sol1, Sol2, Sol3}

Correctness: proof by induction.
1 True for base case, i.e. D(0, 0) = 0.
2 If all subcases are correct, then recurrence tells us all possible ways to

handle the last symbols of the strings (thus one must lead to the
optimum distance).

Runtime:
1 # Subproblems: O(mn)
2 Time per subproblem (given previous subproblems computed): O(1)
3 Runtime: O(mn)

Computing the table (bottom up): want to go from (0, 0) to (m, n).
Can compute in increasing row order, from left to right.

7 / 20

Edit Distance - Recurrence

Thus, recurrence given by

D(i , j) = min{Sol1, Sol2, Sol3}

Correctness: proof by induction.
1 True for base case, i.e. D(0, 0) = 0.
2 If all subcases are correct, then recurrence tells us all possible ways to

handle the last symbols of the strings (thus one must lead to the
optimum distance).

Runtime:
1 # Subproblems: O(mn)
2 Time per subproblem (given previous subproblems computed): O(1)
3 Runtime: O(mn)

Computing the table (bottom up): want to go from (0, 0) to (m, n).
Can compute in increasing row order, from left to right.

8 / 20

Edit Distance - Recurrence

Thus, recurrence given by

D(i , j) = min{Sol1, Sol2, Sol3}

Correctness: proof by induction.
1 True for base case, i.e. D(0, 0) = 0.
2 If all subcases are correct, then recurrence tells us all possible ways to

handle the last symbols of the strings (thus one must lead to the
optimum distance).

Runtime:
1 # Subproblems: O(mn)
2 Time per subproblem (given previous subproblems computed): O(1)
3 Runtime: O(mn)

Computing the table (bottom up): want to go from (0, 0) to (m, n).
Can compute in increasing row order, from left to right.

9 / 20

Edit Distance - Recurrence

Thus, recurrence given by

D(i , j) = min{Sol1, Sol2, Sol3}

Correctness: proof by induction.
1 True for base case, i.e. D(0, 0) = 0.
2 If all subcases are correct, then recurrence tells us all possible ways to

handle the last symbols of the strings (thus one must lead to the
optimum distance).

Runtime:
1 # Subproblems: O(mn)
2 Time per subproblem (given previous subproblems computed): O(1)
3 Runtime: O(mn)

Computing the table (bottom up): want to go from (0, 0) to (m, n).
Can compute in increasing row order, from left to right.

10 / 20

Edit Distance

Graphs & DP on Trees

Acknowledgements

11 / 20

Wait graphs already?!

12 / 20

Graphs - Definition

13 / 20

Trees

14 / 20

Maximum Independent Set on Trees

Input: A tree T ([n],E)

Output: A maximum independent set in T

Idea: pick vertex to be a root. Traverse the tree downwards as
follows:

1 Given vertex v , if we include it in our independent set, then don’t
include its children (look at the grandchildren)

2 If don’t include v , then pick all its children

Recurrence:

MIS(v) = max

1 +
∑

w grandchild of v

MIS(w),
∑

u child of v

MIS(u)

Running time:

1 # subproblems: O(n) (# vertices)
2 time per subproblem (once we have subproblems): O(|E |) = O(n)
3 Total runtime: O(n2)

15 / 20

Maximum Independent Set on Trees

Input: A tree T ([n],E)

Output: A maximum independent set in T

Idea: pick vertex to be a root. Traverse the tree downwards as
follows:

1 Given vertex v , if we include it in our independent set, then don’t
include its children (look at the grandchildren)

2 If don’t include v , then pick all its children

Recurrence:

MIS(v) = max

1 +
∑

w grandchild of v

MIS(w),
∑

u child of v

MIS(u)

Running time:

1 # subproblems: O(n) (# vertices)
2 time per subproblem (once we have subproblems): O(|E |) = O(n)
3 Total runtime: O(n2)

16 / 20

Maximum Independent Set on Trees

Input: A tree T ([n],E)

Output: A maximum independent set in T

Idea: pick vertex to be a root. Traverse the tree downwards as
follows:

1 Given vertex v , if we include it in our independent set, then don’t
include its children (look at the grandchildren)

2 If don’t include v , then pick all its children

Recurrence:

MIS(v) = max

1 +
∑

w grandchild of v

MIS(w),
∑

u child of v

MIS(u)

Running time:
1 # subproblems: O(n) (# vertices)
2 time per subproblem (once we have subproblems): O(|E |) = O(n)
3 Total runtime: O(n2)

17 / 20

Maximum Independent Set on Trees

Input: A tree T ([n],E)

Output: A maximum independent set in T

Idea: pick vertex to be a root. Traverse the tree downwards as
follows:

1 Given vertex v , if we include it in our independent set, then don’t
include its children (look at the grandchildren)

2 If don’t include v , then pick all its children

Recurrence:

MIS(v) = max

1 +
∑

w grandchild of v

MIS(w),
∑

u child of v

MIS(u)

Running time:

1 # subproblems: O(n) (# vertices)
2 time per subproblem (once we have subproblems): O(|E |) = O(n)
3 Total runtime: O(n2)

18 / 20

Acknowledgement

Based on [DPV 2006]

19 / 20

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)

Algorithms

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

20 / 20

	Edit Distance
	Graphs & DP on Trees
	Acknowledgements

