Lecture 10: Graph Algorithms I

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

October 17, 2023

Overview

- Graph Definitions Recap \& Graph Connectivity Problems
- Definitions
- Connectivity Problems
- Search Techniques I: Breadth-First Search (BFS)
- Shortest Paths
- Bipartite Graphs
- Acknowledgements

Graphs - Definition

- A graph $G(V, E)$ is the following data:
(1) a set of vertices V
(usually $V=[n]$)

Graphs - Definition

- A graph $G(V, E)$ is the following data:
(1) a set of vertices V
(2) a set of edges (directed or undirected) E

$$
\begin{aligned}
\text { (usually } V & =[n] \text {) } \\
\text { (usually }|E| & =m \text {) }
\end{aligned}
$$

- if undirected, edges will be sets $\{u, v\}$, where $u, v \in V$, thus $E \subset\binom{[n]}{2}$

Graphs - Definition

- A graph $G(V, E)$ is the following data:
(1) a set of vertices V
(2) a set of edges (directed or undirected) E

$$
\begin{aligned}
\text { (usually } V & =[n] \text {) } \\
\text { (usually }|E| & =m \text {) }
\end{aligned}
$$

- if undirected, edges will be sets $\{u, v\}$, where $u, v \in V$, thus $E \subset\binom{[n]}{2}$
- if directed, edges will be tuples (u, v), thus $E \subset V^{2}$

Note that in directed case order matters!

Graphs - Definition

- A graph $G(V, E)$ is the following data:
(1) a set of vertices V
(2) a set of edges (directed or undirected) E

$$
\begin{aligned}
\text { (usually } V & =[n] \text {) } \\
\text { (usually }|E| & =m \text {) }
\end{aligned}
$$

- if undirected, edges will be sets $\{u, v\}$, where $u, v \in V$, thus $E \subset\binom{[n]}{2}$
- if directed, edges will be tuples (u, v), thus $E \subset V^{2}$

Note that in directed case order matters!
(3) Graph representations: let $G([n], E)$ be a graph
(1) Adjacency matrix: $n \times n$ matrix A where

$$
\begin{array}{cl}
A_{i j}=1 \text { iff }\{i, j\} \in E \quad \text { (undirected) } \\
A_{i j}=1 \text { iff }(i, j) \in E \quad \text { (directed) }
\end{array}
$$

(2) Adjacency list:

- Graph Definitions Recap \& Graph Connectivity Problems
- Definitions
- Connectivity Problems
- Search Techniques I: Breadth-First Search (BFS)
- Shortest Paths
- Bipartite Graphs
- Acknowledgements

Graph Connectivity

- Given a graph $G(V, E)$, two vertices $u, v \in V$ are connected in G if there is a path from u to v

Graph Connectivity

- Given a graph $G(V, E)$, two vertices $u, v \in V$ are connected in G if there is a path from u to v
- A subset $S \subset V$ is connected if, for any $u, v \in S$, we have that u and v are connected

Graph Connectivity

- Given a graph $G(V, E)$, two vertices $u, v \in V$ are connected in G if there is a path from u to v
- A subset $S \subset V$ is connected if, for any $u, v \in S$, we have that u and v are connected
- A graph is connected if V is connected

Graph Connectivity

- Given a graph $G(V, E)$, two vertices $u, v \in V$ are connected in G if there is a path from u to v
- A subset $S \subset V$ is connected if, for any $u, v \in S$, we have that u and v are connected
- A graph is connected if V is connected
- A connected component is a maximally connected subset of vertices

Graph Connectivity

- Given a graph $G(V, E)$, two vertices $u, v \in V$ are connected in G if there is a path from u to v
- A subset $S \subset V$ is connected if, for any $u, v \in S$, we have that u and v are connected
- A graph is connected if V is connected
- A connected component is a maximally connected subset of vertices
- Important basic questions: given a graph G
(1) is G connected?
(2) can we find all the connected components of G ?
(3) given $u, v \in V$, are they connected?
(9) given $u, v \in V$, can we output a shortest path between u, v ?
- Graph Definitions Recap \& Graph Connectivity Problems
- Definitions
- Connectivity Problems
- Search Techniques I: Breadth-First Search (BFS)
- Shortest Paths
- Bipartite Graphs
- Acknowledgements

Breadth-First Search

- Input: graph $G(V, E)$, vertex $s \in V$ (adjacency list)
- Output: all vertices in G reachable from s

Breadth-First Search

- Input: graph $G(V, E)$, vertex $s \in V$
- Output: all vertices in G reachable from s
- BFS Algorithm:
(1) Initialization:
- array visited $[v]=0$ for all $v \in V$.
- queue $Q=\emptyset$
(2) Start:
- ENQUEUE (Q, s)
- visited $[s]=1$
(3) While $Q \neq \emptyset$:
- $u=\operatorname{DEQUEUE}(Q)$
- for each neighbor v of u : if visited $[v]=0$ then $\operatorname{ENQUEUE}(Q, v)$ and $\operatorname{visited}[v]=1$

Runtime Analysis

- initialization costs $O(n)$
- each vertex v is enqueued at most once

$$
\text { if we traverse it and visited }[v]=0
$$

- when we dequeue a vertex v, run loop for $\operatorname{deg}(v)$ iterations
- Thus, running time is:

$$
O\left(n+\sum_{v \in V} \operatorname{deg}(v)\right)=O(m+n)
$$

Correctness \& Structural Lemma

Lemma (Connectivity)
G has an $s-t$ path iff visited $[t]=1$ at the end of BFS algorithm.

Correctness \& Structural Lemma

Lemma (Connectivity)

G has an $s-t$ path iff visited $[t]=1$ at the end of BFS algorithm.

- $\exists s-t$ path $\Rightarrow \operatorname{visited}[t]=1$
(1) Take path $s=u_{0} \rightarrow u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}=t$
(2) By induction, each u_{i} is added to Q and thus we have visited $\left[u_{i}\right]=1$

If u_{i} not added until we visit u_{i-1}, then we enqueue it when visit u_{i-1}

Correctness \& Structural Lemma

Lemma (Connectivity)

G has an $s-t$ path iff visited $[t]=1$ at the end of BFS algorithm.

- $\exists s-t$ path $\Rightarrow \operatorname{visited}[t]=1$
(1) Take path $s=u_{0} \rightarrow u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}=t$
(2) By induction, each u_{i} is added to Q and thus we have visited $\left[u_{i}\right]=1$

If u_{i} not added until we visit u_{i-1}, then we enqueue it when visit u_{i-1}

- visited $[t]=1 \Rightarrow \exists s-t$ path
(1) Idea: trace back an $s-t$ path from algorithm
(2) Let u_{0} be vertex where visited $[t]$ was set to 1 , and inductively, let u_{i} be vertex where visited $\left[u_{i-1}\right]$ was set to 1 .
(3) Process has to stop, as we enqueue each vertex at most once, and can only stop at s (as process stops when queue is empty).

Correctness \& Structural Lemma

Lemma (Connectivity)
G has an $s-t$ path iff visited $[t]=1$ at the end of BFS algorithm.

- Correctness of algorithm follows from lemma

Correctness \& Structural Lemma

Lemma (Connectivity)

G has an $s-t$ path iff visited $[t]=1$ at the end of BFS algorithm.

- Correctness of algorithm follows from lemma
- Bonus: can also answer
- if graph is connected: visited $[v]=1$ for all $v \in V$
- connected component containing s : return all vertices $v \in V$ with visited $[v]=1$
- if there is $s-t$ path for vertex $t \in V$: just check if visited $[t]=1$

Correctness \& Structural Lemma

Lemma (Connectivity)

G has an $s-t$ path iff visited $[t]=1$ at the end of BFS algorithm.

- Correctness of algorithm follows from lemma
- Bonus: can also answer
- if graph is connected: visited $[v]=1$ for all $v \in V$
- connected component containing s : return all vertices $v \in V$ with visited $[v]=1$
- if there is $s-t$ path for vertex $t \in V$: just check if visited $[t]=1$
- Can find all connected components:
- once BFS finishes, scan visited array to find a vertex u that hasn't been visited yet,
- run BFS starting from this vertex u
- iterate until all vertices are visited

BFS Tree

- From our proof of lemma, can trace path from s to t for every visited vertex
(1) Let the "parent of v," denoted $p[v]$, be the vertex $u \in V$ such that the BFS algorithm sets visited $[v]=1$ while looping through u.
(2) Let $T \subset E$ be the set of edges $\{v, p[v]\}$
(3) Let $U \subset V$ be the connected component of s

BFS Tree

- From our proof of lemma, can trace path from s to t for every visited vertex
(1) Let the "parent of v," denoted $p[v]$, be the vertex $u \in V$ such that the BFS algorithm sets visited $[v]=1$ while looping through u.
(2) Let $T \subset E$ be the set of edges $\{v, p[v]\}$
(3) Let $U \subset V$ be the connected component of s
- The graph (U, T) is a tree, called the BFS tree

BFS Tree

- From our proof of lemma, can trace path from s to t for every visited vertex
(1) Let the "parent of v," denoted $p[v]$, be the vertex $u \in V$ such that the BFS algorithm sets visited $[v]=1$ while looping through u.
(2) Let $T \subset E$ be the set of edges $\{v, p[v]\}$
(3) Let $U \subset V$ be the connected component of s
- The graph (U, T) is a tree, called the BFS tree
- Why is it a tree?
- (U, T) is connected and and $|T|=|U|-1$ by our proof of the lemma
- edges cannot form a cycle, since each parent must appear before its children in the algorithm

Augmented Breadth-First Search

(Augmented) BFS Algorithm:
(1) Initialization:

- array visited $[v]=0$ for all $v \in V$.
- queue $Q=\emptyset$
- array $p[v]=$ NULL for all $v \in V$
(2) Start:
- ENQUEUE (Q, s)
- visited[s] =1
(3) While $Q \neq \emptyset$:
- $u=\operatorname{DEQUEUE}(Q)$
- for each neighbor v of u :
if visited[$v]=0$ then:
- ENQUEUE (Q, v)
- visited[$v]=1$
- $p[v]=u$

BFS \& Shortest Paths

- Another useful property of the BFS algorithm is that we obtain shortest paths between s and any other vertex $u \in V!^{1}$

BFS \& Shortest Paths

- Another useful property of the BFS algorithm is that we obtain shortest paths between s and any other vertex $u \in V$!
- Idea: can simply add "levels" to the BFS algorithm.
- Each vertex v gets a level $\ell(v)$.
(initially set to ∞)
- Set $\ell(s)=0$, and whenever add v to queue, set $\ell(v)=\ell(p[v])+1$
- Induction: level of a vertex equals its distance to s, since each vertex.

Augmented Breadth-First Search

(Augmented) BFS Algorithm:
(1) Initialization:

- array visited $[v]=0$ for all $v \in V$.
- queue $Q=\emptyset$
- array $p[v]=$ NULL for all $v \in V$
- array $\ell[v]=\infty$ for all $v \in V$
(2) Start:
- ENQUEUE (Q, s)
- visited[s] = 1
- $\ell[s]=0$
(3) While $Q \neq \emptyset$:
- $u=\operatorname{DEQUEUE}(Q)$
- for each neighbor v of u :
if visited[$v]=0$ then:
- ENQUEUE (Q, v)
- visited[$v]=1$
- $p[v]=u$
- $\ell[v]=\ell[u]+1$

Bipartite Graphs

- Bipartite Graph: we say that $G(V, E)$ is a bipartite graph if we can partition $V=L \sqcup R$ such that:
(1) $L \cap R=\emptyset$
(2) E only has edges of the form $\{u, v\}$ where $u \in L$ and $v \in R$

Bipartite Graphs

- Bipartite Graph: we say that $G(V, E)$ is a bipartite graph if we can partition $V=L \sqcup R$ such that:
(1) $L \cap R=\emptyset$
(2) E only has edges of the form $\{u, v\}$ where $u \in L$ and $v \in R$
- Can use BFS algorithm to check whether graph is bipartite

Bipartite Graphs

- Bipartite Graph: we say that $G(V, E)$ is a bipartite graph if we can partition $V=L \sqcup R$ such that:
(1) $L \cap R=\emptyset$
(2) E only has edges of the form $\{u, v\}$ where $u \in L$ and $v \in R$
- Can use BFS algorithm to check whether graph is bipartite
- Simply run BFS and partition $V=L \sqcup R$ with:

$$
L:=\{u \in V \mid \ell(u) \equiv 0 \bmod 2\} \text { and } R:=\{u \in V \mid \ell(u) \equiv 1 \bmod 2\}
$$

Bipartite Graphs

- Bipartite Graph: we say that $G(V, E)$ is a bipartite graph if we can partition $V=L \sqcup R$ such that:
(1) $L \cap R=\emptyset$
(2) E only has edges of the form $\{u, v\}$ where $u \in L$ and $v \in R$
- Can use BFS algorithm to check whether graph is bipartite
- Simply run BFS and partition $V=L \sqcup R$ with:

$$
L:=\{u \in V \mid \ell(u) \equiv 0 \bmod 2\} \text { and } R:=\{u \in V \mid \ell(u) \equiv 1 \bmod 2\}
$$

- Run BFS again and check if there is an edge between two vertices of L or two vertices of R.
- If there is, return non-bipartite
- Else, return bipartite

Correctness of Algorithm

- Easy to see that algorithm always correct when we return bipartite, as we checked there are no edges within L or R

Correctness of Algorithm

- Easy to see that algorithm always correct when we return bipartite, as we checked there are no edges within L or R
- Hard case: is the algorithm correct when we return NO?

$$
\text { Graph bipartite } \Leftrightarrow \text { NO odd cycles }{ }^{1}
$$

Correctness of Algorithm

- Easy to see that algorithm always correct when we return bipartite, as we checked there are no edges within L or R
- Hard case: is the algorithm correct when we return NO?

Graph bipartite \Leftrightarrow NO odd cycles

- Let T be BFS tree of G with root s.
- Suppose we find an edge between vertices $u, v \in L$ (w.l.o.g.)
- Let w be lowest common ancestor of u, v in T, and let $P_{u w}, P_{w v}$ be the paths $u-w$ and $w-v$ in T.
- Consider cycle $\mathcal{C}:=\{u, v\} \cup P_{u w} \cup P_{w v}$.
- Since $\ell(u), \ell(v) \equiv 0 \bmod 2$ and $\left|P_{u w}\right|=\ell(u)-\ell(w)$, $\left|P_{w v}\right|=\ell(v)-\ell(w)$, we have

$$
\left|P_{u w}\right| \equiv\left|P_{w v}\right| \equiv-\ell(w) \bmod 2
$$

- Thus $\left|P_{u w}\right|+\left|P_{w v}\right|+1 \equiv 1 \bmod 2 \Rightarrow \mathcal{C}$ is odd cycle.

Remarks

- Above can be modified to give algorithmic proof that graph is bipartite iff no odd cycles
- linear time algorithm to find odd cycle of undirected graph
- Having odd cycle is a "short proof" of non-bipartiteness (and easy!)

Acknowledgement

- Based on Prof. Lau's lecture 05
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L05.pdf

References I

B
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press
Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

