Lecture 10: Graph Algorithms |

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 17, 2023

1/39

Overview

@ Graph Definitions Recap & Graph Connectivity Problems
o Definitions
o Connectivity Problems

@ Search Techniques I: Breadth-First Search (BFS)
o Shortest Paths
e Bipartite Graphs

@ Acknowledgements

2/39

Graphs - Definition

e A graph G(V, E) is the following data:
Q a set of vertices V (usually V = [n])

3/39

Graphs - Definition

e A graph G(V, E) is the following data:

Q a set of vertices V (usually V = [n])
@ a set of edges (directed or undirected) E (usually |E| = m)

o if undirected, edges will be sets {u, v}, where u,v € V, thus E C ([g]

4/39

Graphs - Definition

e A graph G(V, E) is the following data:

Q a set of vertices V (usually V = [n])
@ a set of edges (directed or undirected) E (usually |E| = m)

o if undirected, edges will be sets {u, v}, where u,v € V, thus E C ([g])
o if directed, edges will be tuples (u, v), thus E C V?

Note that in directed case order matters!

5/39

Graphs - Definition

o A graph G(V, E) is the following data:

Q a set of vertices V (usually V = [n])
@ a set of edges (directed or undirected) E (usually |E| = m)

o if undirected, edges will be sets {u, v}, where u,v € V, thus E C ([g])
o if directed, edges will be tuples (u, v), thus E C V?

Note that in directed case order matters!
© Graph representations: let G([n], E) be a graph
@ Adjacency matrix: n X n matrix A where

Aj=1iff {i,j} € E (undirected)

Aj =1iff (i,j) € E (directed)
@ Adjacency list:

6/39

@ Graph Definitions Recap & Graph Connectivity Problems

o Connectivity Problems

@ Search Techniques I: Breadth-First Search (BFS)

@ Acknowledgements

7/39

Graph Connectivity

@ Given a graph G(V,E), two vertices u, v € V are connected in G if
there is a path from u to v

8/39

Graph Connectivity

@ Given a graph G(V,E), two vertices u, v € V are connected in G if
there is a path from u to v

o A subset S C V is connected if, for any u,v € S, we have that v and v
are connected

9/39

Graph Connectivity

@ Given a graph G(V,E), two vertices u, v € V are connected in G if
there is a path from u to v
o A subset S C V is connected if, for any u,v € S, we have that v and v
are connected
o A graph is connected if V is connected

10/39

Graph Connectivity

@ Given a graph G(V,E), two vertices u, v € V are connected in G if
there is a path from u to v
o A subset S C V is connected if, for any u,v € S, we have that v and v
are connected
o A graph is connected if V is connected
e A connected component is a maximally connected subset of vertices

11/39

Graph Connectivity

@ Given a graph G(V,E), two vertices u, v € V are connected in G if
there is a path from u to v
o A subset S C V is connected if, for any u,v € S, we have that v and v
are connected
o A graph is connected if V is connected
e A connected component is a maximally connected subset of vertices

@ Important basic questions: given a graph G
© is G connected?
@ can we find all the connected components of G7
© given u,v € V, are they connected?
@ given u,v € V, can we output a shortest path between u, v?

12/39

@ Search Techniques I: Breadth-First Search (BFS)
o Shortest Paths
o Bipartite Graphs

13/39

Breadth-First Search

e Input: graph G(V,E), vertex s € V (adjacency list)

@ Output: all vertices in G reachable from s

14 /39

Breadth-First Search

o Input: graph G(V,E), vertex s € V (adjacency list)
@ Output: all vertices in G reachable from s

e BFS Algorithm:

@ Initialization:
e array visited[v] =0 for all v € V.
@ queue @ =10

@ Start:
o ENQUEUE(Q, s)
o visited[s] =1

@ While Q # 0:
o u= DEQUEUE(Q)
o for each neighbor v of u:

if visited[v] = 0 then ENQUEUE(Q, v) and visited[v] = 1

15/39

Runtime Analysis

e initialization costs O(n)
@ each vertex v is enqueued at most once
if we traverse it and visited[v] = 0
@ when we dequeue a vertex v, run loop for deg(v) iterations

@ Thus, running time is:

0 (n—l— > deg(v)) = O(m + n)

16/39

Correctness & Structural Lemma

Lemma (Connectivity)
G has an s — t path iff visited[t] = 1 at the end of BFS algorithm.

17/39

Correctness & Structural Lemma

Lemma (Connectivity)
G has an s — t path iff visited[t] = 1 at the end of BFS algorithm.

e Js—t path = visited[t] = 1
Q@ Takepaths=wy— vy > — - = U1 —u=t
@ By induction, each u; is added to @ and thus we have visited[y;] = 1
If u; not added until we visit u;_1, then we enqueue it when visit u;_1

18/39

Correctness & Structural Lemma

Lemma (Connectivity)
G has an s — t path iff visited[t] = 1 at the end of BFS algorithm.

e Js—t path = visited[t] = 1
Q@ Takepaths=wy— vy > — - = U1 —u=t
@ By induction, each u; is added to @ and thus we have visited[y;] = 1
If u; not added until we visit u;_1, then we enqueue it when visit u;_1
o visited[t] =1 = 3 s — t path
© Idea: trace back an s — t path from algorithm
@ Let up be vertex where visited[t] was set to 1, and inductively, let u; be
vertex where visited[u;_1] was set to 1.
© Process has to stop, as we enqueue each vertex at most once, and can
only stop at s (as process stops when queue is empty).

19/39

Correctness & Structural Lemma

Lemma (Connectivity)
G has an s — t path iff visited[t] = 1 at the end of BFS algorithm.

@ Correctness of algorithm follows from lemma

20/39

Correctness & Structural Lemma

Lemma (Connectivity)

G has an s — t path iff visited[t] = 1 at the end of BFS algorithm.

@ Correctness of algorithm follows from lemma

@ Bonus: can also answer

if graph is connected: visited[v] =1 for all v € V

connected component containing s: return all vertices v € V' with
visited[v] = 1

if there is s — t path for vertex t € V: just check if visited[t] = 1

21/39

Correctness & Structural Lemma

Lemma (Connectivity)

G has an s — t path iff visited[t] = 1 at the end of BFS algorithm.

@ Correctness of algorithm follows from lemma
@ Bonus: can also answer
o if graph is connected: visited[v] =1 for all v € V
e connected component containing s: return all vertices v € V with
visited[v] = 1
o if there is s — t path for vertex t € V: just check if visited[t] = 1
@ Can find all connected components:

e once BFS finishes, scan visited array to find a vertex u that hasn't been
visited yet,

e run BFS starting from this vertex u

e iterate until all vertices are visited

22/39

BFS Tree

@ From our proof of lemma, can trace path from s to t for every visited
vertex
@ Let the “parent of v,” denoted p[v], be the vertex u € V such that the
BFS algorithm sets visited[v] = 1 while looping through u.
@ Let T C E be the set of edges {v, p[v]}
© Let U C V be the connected component of s

23/39

BFS Tree

@ From our proof of lemma, can trace path from s to t for every visited
vertex

@ Let the “parent of v,” denoted p[v], be the vertex u € V such that the
BFS algorithm sets visited[v] = 1 while looping through u.

@ Let T C E be the set of edges {v, p[v]}

© Let U C V be the connected component of s

@ The graph (U, T) is a tree, called the BFS tree

24/39

BFS Tree

@ From our proof of lemma, can trace path from s to t for every visited
vertex

@ Let the “parent of v,” denoted p[v], be the vertex u € V such that the
BFS algorithm sets visited[v] = 1 while looping through u.
@ Let T C E be the set of edges {v, p[v]}
© Let U C V be the connected component of s
@ The graph (U, T) is a tree, called the BFS tree
@ Why is it a tree?
e (U, T)is connected and and | T| = |U| — 1 by our proof of the lemma

e edges cannot form a cycle, since each parent must appear before its
children in the algorithm

25/39

Augmented Breadth-First Search

(Augmented) BFS Algorithm:
@ Initialization:
e array visited[v] = 0 for all v € V.
o queue Q@ =0
e array p[v] =NULL for all v € V
@ Start:
o ENQUEUE(Q,s)
o visited[s] =1
@ While Q # 0
o u= DEQUEUE(Q)
e for each neighbor v of u:
if visited[v] = 0 then:
o ENQUEUE(Q, v)
o visited[v] =1
e plvl=u

26/39

BFS & Shortest Paths

@ Another useful property of the BFS algorithm is that we obtain
shortest paths between s and any other vertex u € V11

'For unweighted graphs.
27/39

BFS & Shortest Paths

@ Another useful property of the BFS algorithm is that we obtain
shortest paths between s and any other vertex u € V!
@ Idea: can simply add “levels” to the BFS algorithm.

o Each vertex v gets a level £(v).
o Set {(s) =0, and whenever add v to queue, set {(v) = ¢(p[v]) + 1

o Induction: level of a vertex equals its distance to s, since each vertex .

(initially set to c0)

28/39

Augmented Breadth-First Search

(Augmented) BFS Algorithm:
© Initialization:
array visited[v] = 0 for all v € V.
queue Q@ =0
array p[v] =NULL for all v € V
array {[v] = oo for all v € V
@ Start:
o ENQUEUE(Q, s)
o visited[s] =1
o ([s]=0
© While Q # 0:
o u= DEQUEUE(Q)
e for each neighbor v of u:
if visited[v] = 0 then:
o ENQUEUE(Q, v)
o visited[v] =1
o plvl=u
o (vl]=/{u]+1

29/39

Bipartite Graphs

o Bipartite Graph: we say that G(V/, E) is a bipartite graph if we can
partition V = L LI R such that:

Q@ LNR=0
@ E only has edges of the form {u,v} where u € Land v € R

30/39

Bipartite Graphs

o Bipartite Graph: we say that G(V/, E) is a bipartite graph if we can
partition V = L LI R such that:

Q@ LNR=0
@ E only has edges of the form {u,v} where u € Land v € R

@ Can use BFS algorithm to check whether graph is bipartite

31/39

Bipartite Graphs

o Bipartite Graph: we say that G(V/, E) is a bipartite graph if we can
partition V = L LI R such that:

Q@ LNR=0
@ E only has edges of the form {u,v} where u € Land v € R

@ Can use BFS algorithm to check whether graph is bipartite
@ Simply run BFS and partition V = L LI R with:
L:={ueV|lu)=0mod?2}and R:={ue V|{l(u)=1mod 2}

32/39

Bipartite Graphs

Bipartite Graph: we say that G(V/, E) is a bipartite graph if we can
partition V = L LI R such that:

Q@ LNR=10

@ E only has edges of the form {u,v} where u € Land v € R

Can use BFS algorithm to check whether graph is bipartite
Simply run BFS and partition V = L L R with:
L:={ueV|lu)=0mod?2}and R:={ue V|{l(u)=1mod 2}

@ Run BFS again and check if there is an edge between two vertices of
L or two vertices of R.

o If there is, return non-bipartite
o Else, return bipartite

33/39

Correctness of Algorithm

o Easy to see that algorithm always correct when we return bipartite, as
we checked there are no edges within L or R

34/39

Correctness of Algorithm

o Easy to see that algorithm always correct when we return bipartite, as
we checked there are no edges within L or R

@ Hard case: is the algorithm correct when we return NO?

Graph bipartite < NO odd cycles!

!MATH 239/249
35/39

Correctness of Algorithm

o Easy to see that algorithm always correct when we return bipartite,
we checked there are no edges within L or R

@ Hard case: is the algorithm correct when we return NO?

Graph bipartite < NO odd cycles

@ Let T be BFS tree of G with root s.

e Suppose we find an edge between vertices u, v € L (w.l.o.g.)

o Let w be lowest common ancestor of u,v in T, and let P,,, P, be
the paths u —wand w —vin T.

o Consider cycle C := {u,v} U P, U Py, .

o Since ¢(u),4(v) =0 mod 2 and |P,,| = {(u) — ¢(w),
[P | = £(v) — ¢(w), we have

|Puw| = |Pwv| = —€(w) mod 2

o Thus |Pyy| + |Puwv| +1=1mod 2= Cis odd cycle.

as

36/39

Remarks

@ Above can be modified to give algorithmic proof that graph is
bipartite iff no odd cycles

@ linear time algorithm to find odd cycle of undirected graph

@ Having odd cycle is a “short proof” of non-bipartiteness (and easy!)

37/39

Acknowledgement

@ Based on Prof. Lau's lecture 05
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L05.pdf

38/39

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L05.pdf

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

ﬁ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

39/39

	Graph Definitions Recap & Graph Connectivity Problems
	Definitions
	Connectivity Problems

	Search Techniques I: Breadth-First Search (BFS)
	Shortest Paths
	Bipartite Graphs

	Acknowledgements

