
Lecture 10: Graph Algorithms I

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 17, 2023

1 / 39

Overview

Graph Definitions Recap & Graph Connectivity Problems
Definitions
Connectivity Problems

Search Techniques I: Breadth-First Search (BFS)
Shortest Paths
Bipartite Graphs

Acknowledgements

2 / 39

Graphs - Definition

A graph G (V ,E) is the following data:
1 a set of vertices V (usually V = [n])

2 a set of edges (directed or undirected) E (usually |E | = m)

if undirected, edges will be sets {u, v}, where u, v ∈ V , thus E ⊂
(
[n]
2

)

if directed, edges will be tuples (u, v), thus E ⊂ V 2

Note that in directed case order matters!

3 Graph representations: let G ([n],E) be a graph

1 Adjacency matrix: n × n matrix A where

Aij = 1 iff {i , j} ∈ E (undirected)

Aij = 1 iff (i , j) ∈ E (directed)

2 Adjacency list:

3 / 39

Graphs - Definition

A graph G (V ,E) is the following data:
1 a set of vertices V (usually V = [n])
2 a set of edges (directed or undirected) E (usually |E | = m)

if undirected, edges will be sets {u, v}, where u, v ∈ V , thus E ⊂
(
[n]
2

)

if directed, edges will be tuples (u, v), thus E ⊂ V 2

Note that in directed case order matters!

3 Graph representations: let G ([n],E) be a graph

1 Adjacency matrix: n × n matrix A where

Aij = 1 iff {i , j} ∈ E (undirected)

Aij = 1 iff (i , j) ∈ E (directed)

2 Adjacency list:

4 / 39

Graphs - Definition

A graph G (V ,E) is the following data:
1 a set of vertices V (usually V = [n])
2 a set of edges (directed or undirected) E (usually |E | = m)

if undirected, edges will be sets {u, v}, where u, v ∈ V , thus E ⊂
(
[n]
2

)
if directed, edges will be tuples (u, v), thus E ⊂ V 2

Note that in directed case order matters!

3 Graph representations: let G ([n],E) be a graph

1 Adjacency matrix: n × n matrix A where

Aij = 1 iff {i , j} ∈ E (undirected)

Aij = 1 iff (i , j) ∈ E (directed)

2 Adjacency list:

5 / 39

Graphs - Definition

A graph G (V ,E) is the following data:
1 a set of vertices V (usually V = [n])
2 a set of edges (directed or undirected) E (usually |E | = m)

if undirected, edges will be sets {u, v}, where u, v ∈ V , thus E ⊂
(
[n]
2

)
if directed, edges will be tuples (u, v), thus E ⊂ V 2

Note that in directed case order matters!

3 Graph representations: let G ([n],E) be a graph

1 Adjacency matrix: n × n matrix A where

Aij = 1 iff {i , j} ∈ E (undirected)

Aij = 1 iff (i , j) ∈ E (directed)

2 Adjacency list:

6 / 39

Graph Definitions Recap & Graph Connectivity Problems
Definitions
Connectivity Problems

Search Techniques I: Breadth-First Search (BFS)
Shortest Paths
Bipartite Graphs

Acknowledgements

7 / 39

Graph Connectivity

Given a graph G (V ,E), two vertices u, v ∈ V are connected in G if
there is a path from u to v

A subset S ⊂ V is connected if, for any u, v ∈ S , we have that u and v
are connected
A graph is connected if V is connected
A connected component is a maximally connected subset of vertices

Important basic questions: given a graph G
1 is G connected?
2 can we find all the connected components of G?
3 given u, v ∈ V , are they connected?
4 given u, v ∈ V , can we output a shortest path between u, v?

8 / 39

Graph Connectivity

Given a graph G (V ,E), two vertices u, v ∈ V are connected in G if
there is a path from u to v

A subset S ⊂ V is connected if, for any u, v ∈ S , we have that u and v
are connected

A graph is connected if V is connected
A connected component is a maximally connected subset of vertices

Important basic questions: given a graph G
1 is G connected?
2 can we find all the connected components of G?
3 given u, v ∈ V , are they connected?
4 given u, v ∈ V , can we output a shortest path between u, v?

9 / 39

Graph Connectivity

Given a graph G (V ,E), two vertices u, v ∈ V are connected in G if
there is a path from u to v

A subset S ⊂ V is connected if, for any u, v ∈ S , we have that u and v
are connected
A graph is connected if V is connected

A connected component is a maximally connected subset of vertices

Important basic questions: given a graph G
1 is G connected?
2 can we find all the connected components of G?
3 given u, v ∈ V , are they connected?
4 given u, v ∈ V , can we output a shortest path between u, v?

10 / 39

Graph Connectivity

Given a graph G (V ,E), two vertices u, v ∈ V are connected in G if
there is a path from u to v

A subset S ⊂ V is connected if, for any u, v ∈ S , we have that u and v
are connected
A graph is connected if V is connected
A connected component is a maximally connected subset of vertices

Important basic questions: given a graph G
1 is G connected?
2 can we find all the connected components of G?
3 given u, v ∈ V , are they connected?
4 given u, v ∈ V , can we output a shortest path between u, v?

11 / 39

Graph Connectivity

Given a graph G (V ,E), two vertices u, v ∈ V are connected in G if
there is a path from u to v

A subset S ⊂ V is connected if, for any u, v ∈ S , we have that u and v
are connected
A graph is connected if V is connected
A connected component is a maximally connected subset of vertices

Important basic questions: given a graph G
1 is G connected?
2 can we find all the connected components of G?
3 given u, v ∈ V , are they connected?
4 given u, v ∈ V , can we output a shortest path between u, v?

12 / 39

Graph Definitions Recap & Graph Connectivity Problems
Definitions
Connectivity Problems

Search Techniques I: Breadth-First Search (BFS)
Shortest Paths
Bipartite Graphs

Acknowledgements

13 / 39

Breadth-First Search

Input: graph G (V ,E), vertex s ∈ V (adjacency list)

Output: all vertices in G reachable from s

BFS Algorithm:
1 Initialization:

array visited[v] = 0 for all v ∈ V .
queue Q = ∅

2 Start:

ENQUEUE(Q, s)
visited[s] = 1

3 While Q ̸= ∅:
u = DEQUEUE(Q)
for each neighbor v of u:
if visited[v] = 0 then ENQUEUE(Q, v) and visited[v] = 1

14 / 39

Breadth-First Search

Input: graph G (V ,E), vertex s ∈ V (adjacency list)

Output: all vertices in G reachable from s

BFS Algorithm:
1 Initialization:

array visited[v] = 0 for all v ∈ V .
queue Q = ∅

2 Start:

ENQUEUE(Q, s)
visited[s] = 1

3 While Q ̸= ∅:
u = DEQUEUE(Q)
for each neighbor v of u:
if visited[v] = 0 then ENQUEUE(Q, v) and visited[v] = 1

15 / 39

Runtime Analysis

initialization costs O(n)

each vertex v is enqueued at most once

if we traverse it and visited[v] = 0

when we dequeue a vertex v , run loop for deg(v) iterations

Thus, running time is:

O

(
n +

∑
v∈V

deg(v)

)
= O(m + n)

16 / 39

Correctness & Structural Lemma

Lemma (Connectivity)

G has an s − t path iff visited[t] = 1 at the end of BFS algorithm.

Correctness of algorithm follows from lemma

Bonus: can also answer

if graph is connected: visited[v] = 1 for all v ∈ V
connected component containing s: return all vertices v ∈ V with
visited[v] = 1
if there is s − t path for vertex t ∈ V : just check if visited[t] = 1

Can find all connected components:

once BFS finishes, scan visited array to find a vertex u that hasn’t been
visited yet,
run BFS starting from this vertex u
iterate until all vertices are visited

17 / 39

Correctness & Structural Lemma

Lemma (Connectivity)

G has an s − t path iff visited[t] = 1 at the end of BFS algorithm.

∃ s − t path ⇒ visited[t] = 1
1 Take path s = u0 → u1 → u2 → · · · → uk−1 → uk = t
2 By induction, each ui is added to Q and thus we have visited[ui] = 1

If ui not added until we visit ui−1, then we enqueue it when visit ui−1

visited[t] = 1 ⇒ ∃ s − t path
1 Idea: trace back an s − t path from algorithm
2 Let u0 be vertex where visited[t] was set to 1, and inductively, let ui be

vertex where visited[ui−1] was set to 1.
3 Process has to stop, as we enqueue each vertex at most once, and can

only stop at s (as process stops when queue is empty).

Correctness of algorithm follows from lemma
Bonus: can also answer

if graph is connected: visited[v] = 1 for all v ∈ V
connected component containing s: return all vertices v ∈ V with
visited[v] = 1
if there is s − t path for vertex t ∈ V : just check if visited[t] = 1

Can find all connected components:
once BFS finishes, scan visited array to find a vertex u that hasn’t been
visited yet,
run BFS starting from this vertex u
iterate until all vertices are visited

18 / 39

Correctness & Structural Lemma

Lemma (Connectivity)

G has an s − t path iff visited[t] = 1 at the end of BFS algorithm.

∃ s − t path ⇒ visited[t] = 1
1 Take path s = u0 → u1 → u2 → · · · → uk−1 → uk = t
2 By induction, each ui is added to Q and thus we have visited[ui] = 1

If ui not added until we visit ui−1, then we enqueue it when visit ui−1

visited[t] = 1 ⇒ ∃ s − t path
1 Idea: trace back an s − t path from algorithm
2 Let u0 be vertex where visited[t] was set to 1, and inductively, let ui be

vertex where visited[ui−1] was set to 1.
3 Process has to stop, as we enqueue each vertex at most once, and can

only stop at s (as process stops when queue is empty).

Correctness of algorithm follows from lemma
Bonus: can also answer

if graph is connected: visited[v] = 1 for all v ∈ V
connected component containing s: return all vertices v ∈ V with
visited[v] = 1
if there is s − t path for vertex t ∈ V : just check if visited[t] = 1

Can find all connected components:
once BFS finishes, scan visited array to find a vertex u that hasn’t been
visited yet,
run BFS starting from this vertex u
iterate until all vertices are visited

19 / 39

Correctness & Structural Lemma

Lemma (Connectivity)

G has an s − t path iff visited[t] = 1 at the end of BFS algorithm.

Correctness of algorithm follows from lemma

Bonus: can also answer

if graph is connected: visited[v] = 1 for all v ∈ V
connected component containing s: return all vertices v ∈ V with
visited[v] = 1
if there is s − t path for vertex t ∈ V : just check if visited[t] = 1

Can find all connected components:

once BFS finishes, scan visited array to find a vertex u that hasn’t been
visited yet,
run BFS starting from this vertex u
iterate until all vertices are visited

20 / 39

Correctness & Structural Lemma

Lemma (Connectivity)

G has an s − t path iff visited[t] = 1 at the end of BFS algorithm.

Correctness of algorithm follows from lemma

Bonus: can also answer

if graph is connected: visited[v] = 1 for all v ∈ V
connected component containing s: return all vertices v ∈ V with
visited[v] = 1
if there is s − t path for vertex t ∈ V : just check if visited[t] = 1

Can find all connected components:

once BFS finishes, scan visited array to find a vertex u that hasn’t been
visited yet,
run BFS starting from this vertex u
iterate until all vertices are visited

21 / 39

Correctness & Structural Lemma

Lemma (Connectivity)

G has an s − t path iff visited[t] = 1 at the end of BFS algorithm.

Correctness of algorithm follows from lemma

Bonus: can also answer

if graph is connected: visited[v] = 1 for all v ∈ V
connected component containing s: return all vertices v ∈ V with
visited[v] = 1
if there is s − t path for vertex t ∈ V : just check if visited[t] = 1

Can find all connected components:

once BFS finishes, scan visited array to find a vertex u that hasn’t been
visited yet,
run BFS starting from this vertex u
iterate until all vertices are visited

22 / 39

BFS Tree

From our proof of lemma, can trace path from s to t for every visited
vertex

1 Let the “parent of v ,” denoted p[v], be the vertex u ∈ V such that the
BFS algorithm sets visited[v] = 1 while looping through u.

2 Let T ⊂ E be the set of edges {v , p[v]}
3 Let U ⊂ V be the connected component of s

The graph (U,T) is a tree, called the BFS tree

Why is it a tree?

(U,T) is connected and and |T | = |U| − 1 by our proof of the lemma
edges cannot form a cycle, since each parent must appear before its
children in the algorithm

23 / 39

BFS Tree

From our proof of lemma, can trace path from s to t for every visited
vertex

1 Let the “parent of v ,” denoted p[v], be the vertex u ∈ V such that the
BFS algorithm sets visited[v] = 1 while looping through u.

2 Let T ⊂ E be the set of edges {v , p[v]}
3 Let U ⊂ V be the connected component of s

The graph (U,T) is a tree, called the BFS tree

Why is it a tree?

(U,T) is connected and and |T | = |U| − 1 by our proof of the lemma
edges cannot form a cycle, since each parent must appear before its
children in the algorithm

24 / 39

BFS Tree

From our proof of lemma, can trace path from s to t for every visited
vertex

1 Let the “parent of v ,” denoted p[v], be the vertex u ∈ V such that the
BFS algorithm sets visited[v] = 1 while looping through u.

2 Let T ⊂ E be the set of edges {v , p[v]}
3 Let U ⊂ V be the connected component of s

The graph (U,T) is a tree, called the BFS tree

Why is it a tree?

(U,T) is connected and and |T | = |U| − 1 by our proof of the lemma
edges cannot form a cycle, since each parent must appear before its
children in the algorithm

25 / 39

Augmented Breadth-First Search

(Augmented) BFS Algorithm:
1 Initialization:

array visited[v] = 0 for all v ∈ V .
queue Q = ∅
array p[v] =NULL for all v ∈ V

2 Start:

ENQUEUE(Q, s)
visited[s] = 1

3 While Q ̸= ∅:
u = DEQUEUE(Q)
for each neighbor v of u:
if visited[v] = 0 then:

ENQUEUE(Q, v)
visited[v] = 1
p[v] = u

26 / 39

BFS & Shortest Paths

Another useful property of the BFS algorithm is that we obtain
shortest paths between s and any other vertex u ∈ V !1

Idea: can simply add “levels” to the BFS algorithm.

Each vertex v gets a level ℓ(v). (initially set to ∞)
Set ℓ(s) = 0, and whenever add v to queue, set ℓ(v) = ℓ(p[v]) + 1
Induction: level of a vertex equals its distance to s, since each vertex .

1For unweighted graphs.
27 / 39

BFS & Shortest Paths

Another useful property of the BFS algorithm is that we obtain
shortest paths between s and any other vertex u ∈ V !

Idea: can simply add “levels” to the BFS algorithm.

Each vertex v gets a level ℓ(v). (initially set to ∞)
Set ℓ(s) = 0, and whenever add v to queue, set ℓ(v) = ℓ(p[v]) + 1
Induction: level of a vertex equals its distance to s, since each vertex .

28 / 39

Augmented Breadth-First Search
(Augmented) BFS Algorithm:

1 Initialization:

array visited[v] = 0 for all v ∈ V .
queue Q = ∅
array p[v] =NULL for all v ∈ V
array ℓ[v] = ∞ for all v ∈ V

2 Start:

ENQUEUE(Q, s)
visited[s] = 1
ℓ[s] = 0

3 While Q ̸= ∅:
u = DEQUEUE(Q)
for each neighbor v of u:
if visited[v] = 0 then:

ENQUEUE(Q, v)
visited[v] = 1
p[v] = u
ℓ[v] = ℓ[u] + 1

29 / 39

Bipartite Graphs

Bipartite Graph: we say that G (V ,E) is a bipartite graph if we can
partition V = L ⊔ R such that:

1 L ∩ R = ∅
2 E only has edges of the form {u, v} where u ∈ L and v ∈ R

Can use BFS algorithm to check whether graph is bipartite

Simply run BFS and partition V = L ⊔ R with:

L := {u ∈ V | ℓ(u) ≡ 0 mod 2} and R := {u ∈ V | ℓ(u) ≡ 1 mod 2}
Run BFS again and check if there is an edge between two vertices of
L or two vertices of R.

If there is, return non-bipartite
Else, return bipartite

30 / 39

Bipartite Graphs

Bipartite Graph: we say that G (V ,E) is a bipartite graph if we can
partition V = L ⊔ R such that:

1 L ∩ R = ∅
2 E only has edges of the form {u, v} where u ∈ L and v ∈ R

Can use BFS algorithm to check whether graph is bipartite

Simply run BFS and partition V = L ⊔ R with:

L := {u ∈ V | ℓ(u) ≡ 0 mod 2} and R := {u ∈ V | ℓ(u) ≡ 1 mod 2}
Run BFS again and check if there is an edge between two vertices of
L or two vertices of R.

If there is, return non-bipartite
Else, return bipartite

31 / 39

Bipartite Graphs

Bipartite Graph: we say that G (V ,E) is a bipartite graph if we can
partition V = L ⊔ R such that:

1 L ∩ R = ∅
2 E only has edges of the form {u, v} where u ∈ L and v ∈ R

Can use BFS algorithm to check whether graph is bipartite

Simply run BFS and partition V = L ⊔ R with:

L := {u ∈ V | ℓ(u) ≡ 0 mod 2} and R := {u ∈ V | ℓ(u) ≡ 1 mod 2}

Run BFS again and check if there is an edge between two vertices of
L or two vertices of R.

If there is, return non-bipartite
Else, return bipartite

32 / 39

Bipartite Graphs

Bipartite Graph: we say that G (V ,E) is a bipartite graph if we can
partition V = L ⊔ R such that:

1 L ∩ R = ∅
2 E only has edges of the form {u, v} where u ∈ L and v ∈ R

Can use BFS algorithm to check whether graph is bipartite

Simply run BFS and partition V = L ⊔ R with:

L := {u ∈ V | ℓ(u) ≡ 0 mod 2} and R := {u ∈ V | ℓ(u) ≡ 1 mod 2}
Run BFS again and check if there is an edge between two vertices of
L or two vertices of R.

If there is, return non-bipartite
Else, return bipartite

33 / 39

Correctness of Algorithm

Easy to see that algorithm always correct when we return bipartite, as
we checked there are no edges within L or R

Hard case: is the algorithm correct when we return NO?

Graph bipartite ⇔ NO odd cycles

Let T be BFS tree of G with root s.

Suppose we find an edge between vertices u, v ∈ L (w.l.o.g.)
Let w be lowest common ancestor of u, v in T , and let Puw ,Pwv be
the paths u − w and w − v in T .
Consider cycle C := {u, v} ∪ Puw ∪ Pwv .
Since ℓ(u), ℓ(v) ≡ 0 mod 2 and |Puw | = ℓ(u)− ℓ(w),
|Pwv | = ℓ(v)− ℓ(w), we have

|Puw | ≡ |Pwv | ≡ −ℓ(w) mod 2

Thus |Puw |+ |Pwv |+ 1 ≡ 1 mod 2 ⇒ C is odd cycle.

34 / 39

Correctness of Algorithm

Easy to see that algorithm always correct when we return bipartite, as
we checked there are no edges within L or R

Hard case: is the algorithm correct when we return NO?

Graph bipartite ⇔ NO odd cycles1

Let T be BFS tree of G with root s.

Suppose we find an edge between vertices u, v ∈ L (w.l.o.g.)
Let w be lowest common ancestor of u, v in T , and let Puw ,Pwv be
the paths u − w and w − v in T .
Consider cycle C := {u, v} ∪ Puw ∪ Pwv .
Since ℓ(u), ℓ(v) ≡ 0 mod 2 and |Puw | = ℓ(u)− ℓ(w),
|Pwv | = ℓ(v)− ℓ(w), we have

|Puw | ≡ |Pwv | ≡ −ℓ(w) mod 2

Thus |Puw |+ |Pwv |+ 1 ≡ 1 mod 2 ⇒ C is odd cycle.

1MATH 239/249
35 / 39

Correctness of Algorithm

Easy to see that algorithm always correct when we return bipartite, as
we checked there are no edges within L or R

Hard case: is the algorithm correct when we return NO?

Graph bipartite ⇔ NO odd cycles

Let T be BFS tree of G with root s.

Suppose we find an edge between vertices u, v ∈ L (w.l.o.g.)
Let w be lowest common ancestor of u, v in T , and let Puw ,Pwv be
the paths u − w and w − v in T .
Consider cycle C := {u, v} ∪ Puw ∪ Pwv .
Since ℓ(u), ℓ(v) ≡ 0 mod 2 and |Puw | = ℓ(u)− ℓ(w),
|Pwv | = ℓ(v)− ℓ(w), we have

|Puw | ≡ |Pwv | ≡ −ℓ(w) mod 2

Thus |Puw |+ |Pwv |+ 1 ≡ 1 mod 2 ⇒ C is odd cycle.

36 / 39

Remarks

Above can be modified to give algorithmic proof that graph is
bipartite iff no odd cycles

linear time algorithm to find odd cycle of undirected graph

Having odd cycle is a “short proof” of non-bipartiteness (and easy!)

37 / 39

Acknowledgement

Based on Prof. Lau’s lecture 05

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L05.pdf

38 / 39

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L05.pdf

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

39 / 39

	Graph Definitions Recap & Graph Connectivity Problems
	Definitions
	Connectivity Problems

	Search Techniques I: Breadth-First Search (BFS)
	Shortest Paths
	Bipartite Graphs

	Acknowledgements

