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Graphs - Definition

A graph G (V ,E ) is the following data:
1 a set of vertices V (usually V = [n])

2 a set of edges (directed or undirected) E (usually |E | = m)

if undirected, edges will be sets {u, v}, where u, v ∈ V , thus E ⊂
(
[n]
2

)

if directed, edges will be tuples (u, v), thus E ⊂ V 2

Note that in directed case order matters!

3 Graph representations: let G ([n],E ) be a graph

1 Adjacency matrix: n × n matrix A where

Aij = 1 iff {i , j} ∈ E (undirected)

Aij = 1 iff (i , j) ∈ E (directed)

2 Adjacency list:
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Graph Connectivity

Given a graph G (V ,E ), two vertices u, v ∈ V are connected in G if
there is a path from u to v

A subset S ⊂ V is connected if, for any u, v ∈ S , we have that u and v
are connected
A graph is connected if V is connected
A connected component is a maximally connected subset of vertices

Important basic questions: given a graph G
1 is G connected?
2 can we find all the connected components of G?
3 given u, v ∈ V , are they connected?
4 given u, v ∈ V , can we output a shortest path between u, v?
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Breadth-First Search

Input: graph G (V ,E ), vertex s ∈ V (adjacency list)

Output: all vertices in G reachable from s

BFS Algorithm:
1 Initialization:

array visited[v ] = 0 for all v ∈ V .
queue Q = ∅

2 Start:

ENQUEUE(Q, s)
visited[s] = 1

3 While Q ̸= ∅:
u = DEQUEUE(Q)
for each neighbor v of u:
if visited[v ] = 0 then ENQUEUE(Q, v) and visited[v ] = 1
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Runtime Analysis

initialization costs O(n)

each vertex v is enqueued at most once

if we traverse it and visited[v ] = 0

when we dequeue a vertex v , run loop for deg(v) iterations

Thus, running time is:

O

(
n +

∑
v∈V

deg(v)

)
= O(m + n)
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Correctness & Structural Lemma

Lemma (Connectivity)

G has an s − t path iff visited[t] = 1 at the end of BFS algorithm.

Correctness of algorithm follows from lemma

Bonus: can also answer

if graph is connected: visited[v ] = 1 for all v ∈ V
connected component containing s: return all vertices v ∈ V with
visited[v ] = 1
if there is s − t path for vertex t ∈ V : just check if visited[t] = 1

Can find all connected components:

once BFS finishes, scan visited array to find a vertex u that hasn’t been
visited yet,
run BFS starting from this vertex u
iterate until all vertices are visited
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BFS Tree

From our proof of lemma, can trace path from s to t for every visited
vertex

1 Let the “parent of v ,” denoted p[v ], be the vertex u ∈ V such that the
BFS algorithm sets visited[v ] = 1 while looping through u.

2 Let T ⊂ E be the set of edges {v , p[v ]}
3 Let U ⊂ V be the connected component of s

The graph (U,T ) is a tree, called the BFS tree

Why is it a tree?

(U,T ) is connected and and |T | = |U| − 1 by our proof of the lemma
edges cannot form a cycle, since each parent must appear before its
children in the algorithm
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Augmented Breadth-First Search

(Augmented) BFS Algorithm:
1 Initialization:

array visited[v ] = 0 for all v ∈ V .
queue Q = ∅
array p[v ] =NULL for all v ∈ V

2 Start:

ENQUEUE(Q, s)
visited[s] = 1

3 While Q ̸= ∅:
u = DEQUEUE(Q)
for each neighbor v of u:
if visited[v ] = 0 then:

ENQUEUE(Q, v)
visited[v ] = 1
p[v ] = u
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BFS & Shortest Paths

Another useful property of the BFS algorithm is that we obtain
shortest paths between s and any other vertex u ∈ V !1

Idea: can simply add “levels” to the BFS algorithm.

Each vertex v gets a level ℓ(v). (initially set to ∞)
Set ℓ(s) = 0, and whenever add v to queue, set ℓ(v) = ℓ(p[v ]) + 1
Induction: level of a vertex equals its distance to s, since each vertex .

1For unweighted graphs.
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Augmented Breadth-First Search
(Augmented) BFS Algorithm:

1 Initialization:

array visited[v ] = 0 for all v ∈ V .
queue Q = ∅
array p[v ] =NULL for all v ∈ V
array ℓ[v ] = ∞ for all v ∈ V

2 Start:

ENQUEUE(Q, s)
visited[s] = 1
ℓ[s] = 0

3 While Q ̸= ∅:
u = DEQUEUE(Q)
for each neighbor v of u:
if visited[v ] = 0 then:

ENQUEUE(Q, v)
visited[v ] = 1
p[v ] = u
ℓ[v ] = ℓ[u] + 1
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Bipartite Graphs

Bipartite Graph: we say that G (V ,E ) is a bipartite graph if we can
partition V = L ⊔ R such that:

1 L ∩ R = ∅
2 E only has edges of the form {u, v} where u ∈ L and v ∈ R

Can use BFS algorithm to check whether graph is bipartite

Simply run BFS and partition V = L ⊔ R with:

L := {u ∈ V | ℓ(u) ≡ 0 mod 2} and R := {u ∈ V | ℓ(u) ≡ 1 mod 2}
Run BFS again and check if there is an edge between two vertices of
L or two vertices of R.

If there is, return non-bipartite
Else, return bipartite
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Correctness of Algorithm

Easy to see that algorithm always correct when we return bipartite, as
we checked there are no edges within L or R

Hard case: is the algorithm correct when we return NO?

Graph bipartite ⇔ NO odd cycles

Let T be BFS tree of G with root s.

Suppose we find an edge between vertices u, v ∈ L (w.l.o.g.)
Let w be lowest common ancestor of u, v in T , and let Puw ,Pwv be
the paths u − w and w − v in T .
Consider cycle C := {u, v} ∪ Puw ∪ Pwv .
Since ℓ(u), ℓ(v) ≡ 0 mod 2 and |Puw | = ℓ(u)− ℓ(w),
|Pwv | = ℓ(v)− ℓ(w), we have

|Puw | ≡ |Pwv | ≡ −ℓ(w) mod 2

Thus |Puw |+ |Pwv |+ 1 ≡ 1 mod 2 ⇒ C is odd cycle.
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1MATH 239/249
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Remarks

Above can be modified to give algorithmic proof that graph is
bipartite iff no odd cycles

linear time algorithm to find odd cycle of undirected graph

Having odd cycle is a “short proof” of non-bipartiteness (and easy!)
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