
Lecture 11: Graph Algorithms II

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 19, 2023

1 / 33



Overview

Depth-First Search
Basic Idea
Algorithm
DFS Tree
Start Time and Finish Time
Cuts

Acknowledgements

2 / 33



Basic Idea

Exploring a maze

Would like to explore a full path of the maze, before backtracking and
trying the other paths

3 / 33



Depth-First Search Algorithm
Input: Graph G (V ,E ), vertex s ∈ V

Output: connected component of s

EXPLORE(u, visited):
1 for each v ∈ N(u):

If visited[v ] = 0, then visited[v ] = 1 and EXPLORE(v , visited).

Main algorithm:
1 initialize visited[v ] = 0 for all v ∈ V
2 set visited[s] = 1
3 EXPLORE(s, visited)

Runtime analysis: initialization takes O(n) time. We call EXPLORE
at most once per vertex u ∈ V , and once called, we will run through
a loop of length deg(u) and perform O(1) operations before we call
EXPLORE on another vertex.

O

(
n +

∑
u∈V

deg u

)
= O(n +m)

4 / 33



Depth-First Search Algorithm
Input: Graph G (V ,E ), vertex s ∈ V
Output: connected component of s
Easiest way to describe algorithm is recursively.
Subroutine given by
EXPLORE(u, visited):

1 for each v ∈ N(u):
If visited[v ] = 0, then visited[v ] = 1 and EXPLORE(v , visited).

Main algorithm:
1 initialize visited[v ] = 0 for all v ∈ V
2 set visited[s] = 1
3 EXPLORE(s, visited)

Runtime analysis: initialization takes O(n) time. We call EXPLORE
at most once per vertex u ∈ V , and once called, we will run through
a loop of length deg(u) and perform O(1) operations before we call
EXPLORE on another vertex.

O

(
n +

∑
u∈V

deg u

)
= O(n +m)

5 / 33



Depth-First Search Algorithm
Input: Graph G (V ,E ), vertex s ∈ V

Output: connected component of s

EXPLORE(u, visited):
1 for each v ∈ N(u):

If visited[v ] = 0, then visited[v ] = 1 and EXPLORE(v , visited).

Main algorithm:
1 initialize visited[v ] = 0 for all v ∈ V
2 set visited[s] = 1
3 EXPLORE(s, visited)

Runtime analysis: initialization takes O(n) time. We call EXPLORE
at most once per vertex u ∈ V , and once called, we will run through
a loop of length deg(u) and perform O(1) operations before we call
EXPLORE on another vertex.

O

(
n +

∑
u∈V

deg u

)
= O(n +m)

6 / 33



Depth-First Search Algorithm
Input: Graph G (V ,E ), vertex s ∈ V

Output: connected component of s

EXPLORE(u, visited):
1 for each v ∈ N(u):

If visited[v ] = 0, then visited[v ] = 1 and EXPLORE(v , visited).

Main algorithm:
1 initialize visited[v ] = 0 for all v ∈ V
2 set visited[s] = 1
3 EXPLORE(s, visited)

Runtime analysis: initialization takes O(n) time. We call EXPLORE
at most once per vertex u ∈ V , and once called, we will run through
a loop of length deg(u) and perform O(1) operations before we call
EXPLORE on another vertex.

O

(
n +

∑
u∈V

deg u

)
= O(n +m)

7 / 33



Connectivity

Lemma (Connectivity)

There is an s − t path in G ⇔ visited[t] = 1 at the end of DFS.

Same proof idea as we did in BFS (exercise)

8 / 33



(Augmented) Depth-First Search Algorithm

EXPLORE(u, visited, p):
1 for each v ∈ N(u):

If visited[v ] = 0, then
visited[v ] = 1, p[v ] = u
and EXPLORE(v , visited, p).

Main algorithm:
1 initialize visited[v ] = 0 and p[v ] = NULL for all v ∈ V
2 set visited[s] = 1
3 EXPLORE(s, visited, p)

9 / 33



DFS Tree

In the same way that BFS gave us a tree, DFS will also give us a tree
T , with edges (u, p(u)) for all u in the connected component of s.

This tree has different properties than the BFS tree

In particular, NO shortest paths.

What can we use it for?

Helpful to think of this tree as giving an “orientation” of the edges of
the graph

Starting vertex s is the root of T
A vertex u ∈ V is the parent of v if the edge {u, v} ∈ T and u closer
to the root
Vertex u is the ancestor of v if u closer to root and u is in the s − v
path in T . We say v is a descendant of u and that u, v are related.
A non-tree edge {u, v} will be called back edge if u is the ancestor of v
(or vice-versa).

What are relationships between related vertices in this tree?

10 / 33



DFS Tree

In the same way that BFS gave us a tree, DFS will also give us a tree
T , with edges (u, p(u)) for all u in the connected component of s.

This tree has different properties than the BFS tree

In particular, NO shortest paths.

What can we use it for?

Helpful to think of this tree as giving an “orientation” of the edges of
the graph

Starting vertex s is the root of T
A vertex u ∈ V is the parent of v if the edge {u, v} ∈ T and u closer
to the root
Vertex u is the ancestor of v if u closer to root and u is in the s − v
path in T . We say v is a descendant of u and that u, v are related.
A non-tree edge {u, v} will be called back edge if u is the ancestor of v
(or vice-versa).

What are relationships between related vertices in this tree?

11 / 33



DFS Tree

In the same way that BFS gave us a tree, DFS will also give us a tree
T , with edges (u, p(u)) for all u in the connected component of s.

This tree has different properties than the BFS tree

In particular, NO shortest paths.

What can we use it for?

Helpful to think of this tree as giving an “orientation” of the edges of
the graph

Starting vertex s is the root of T
A vertex u ∈ V is the parent of v if the edge {u, v} ∈ T and u closer
to the root
Vertex u is the ancestor of v if u closer to root and u is in the s − v
path in T . We say v is a descendant of u and that u, v are related.
A non-tree edge {u, v} will be called back edge if u is the ancestor of v
(or vice-versa).

What are relationships between related vertices in this tree?

12 / 33



DFS Tree

In the same way that BFS gave us a tree, DFS will also give us a tree
T , with edges (u, p(u)) for all u in the connected component of s.

This tree has different properties than the BFS tree

In particular, NO shortest paths.

What can we use it for?

Helpful to think of this tree as giving an “orientation” of the edges of
the graph

Starting vertex s is the root of T
A vertex u ∈ V is the parent of v if the edge {u, v} ∈ T and u closer
to the root
Vertex u is the ancestor of v if u closer to root and u is in the s − v
path in T . We say v is a descendant of u and that u, v are related.
A non-tree edge {u, v} will be called back edge if u is the ancestor of v
(or vice-versa).

What are relationships between related vertices in this tree?

13 / 33



(Augmented) Depth-First Search Algorithm (again)

EXPLORE(u, visited, p, S ,F , τ):
1 S [u] = τ , and τ ← τ + 1
2 for each v ∈ N(u):

If visited[v ] = 0, then
visited[v ] = 1, p[v ] = u
and EXPLORE(v , visited, p, S ,F , τ).

3 F [u] = τ and τ ← τ + 1

Main algorithm:
1 initialize visited[v ] = 0, S [v ] = F [v ] =∞ and p[v ] = NULL for all

v ∈ V
2 set visited[s] = 1 and τ = 1
3 EXPLORE(s, visited, p,S ,F , τ)

14 / 33



Start and Finish Time Property

Lemma (Parenthesis lemma)

For any pair u, v ∈ V , the intervals [S(u),F (u)] and [S(v),F (v)] are
either disjoint or one is contained in the other (the descendant is
contained in the ancestor).

Follows easily from augmented algorithm, as we only finish an
ancestor after going through all its descendants.

15 / 33



DFS Tree Properties

A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

In an undirected graph G , all non-DFS-tree edges are back edges.

Suppose there is edge {u, v} ∈ E

W.l.o.g. can assume u visited by DFS before v . Thus, S [u] < S [v ]

Since v ∈ N(u), v will be explored before EXPLORE(u) is finished,
thus S [v ] < F [u]

By parenthesis lemma, we must have F [v ] < F [u]. Hence v is
descendent of u.

16 / 33



DFS Tree Properties

A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

In an undirected graph G , all non-DFS-tree edges are back edges.

Suppose there is edge {u, v} ∈ E

W.l.o.g. can assume u visited by DFS before v . Thus, S [u] < S [v ]

Since v ∈ N(u), v will be explored before EXPLORE(u) is finished,
thus S [v ] < F [u]

By parenthesis lemma, we must have F [v ] < F [u]. Hence v is
descendent of u.

17 / 33



DFS Tree Properties

A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

In an undirected graph G , all non-DFS-tree edges are back edges.

Suppose there is edge {u, v} ∈ E

W.l.o.g. can assume u visited by DFS before v . Thus, S [u] < S [v ]

Since v ∈ N(u), v will be explored before EXPLORE(u) is finished,
thus S [v ] < F [u]

By parenthesis lemma, we must have F [v ] < F [u]. Hence v is
descendent of u.

18 / 33



DFS Tree Properties

A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

In an undirected graph G , all non-DFS-tree edges are back edges.

Suppose there is edge {u, v} ∈ E

W.l.o.g. can assume u visited by DFS before v . Thus, S [u] < S [v ]

Since v ∈ N(u), v will be explored before EXPLORE(u) is finished,
thus S [v ] < F [u]

By parenthesis lemma, we must have F [v ] < F [u]. Hence v is
descendent of u.

19 / 33



Depth-First Search
Basic Idea
Algorithm
DFS Tree
Start Time and Finish Time
Cuts

Acknowledgements

20 / 33



Definitions

A vertex u ∈ V is a cut vertex, if removing u from G (and its edges)
we disconnect G (also known as articulation point/separating vertex)

An edge {u, v} is a cut edge if removing this edge we disconnect the
graph (also known as a bridge)

We will use the DFS tree to identify all cut vertices and edges

Observation: only way vertex u is a cut vertex is if there are no back
edges from a subtree rooted at a child of u to an ancestor of u

(One way to) compute the above is to keep track of “earliest” vertex
in T connected by a back edge to subtree Tu

E [u] = min

{
S [u], min

w∈Tu

(
S [z ] s.t. {w ,z} back edge &

u descendant of z

)}

21 / 33



Definitions

A vertex u ∈ V is a cut vertex, if removing u from G (and its edges)
we disconnect G (also known as articulation point/separating vertex)

An edge {u, v} is a cut edge if removing this edge we disconnect the
graph (also known as a bridge)

We will use the DFS tree to identify all cut vertices and edges

Observation: only way vertex u is a cut vertex is if there are no back
edges from a subtree rooted at a child of u to an ancestor of u

(One way to) compute the above is to keep track of “earliest” vertex
in T connected by a back edge to subtree Tu

E [u] = min

{
S [u], min

w∈Tu

(
S [z ] s.t. {w ,z} back edge &

u descendant of z

)}

22 / 33



Definitions

A vertex u ∈ V is a cut vertex, if removing u from G (and its edges)
we disconnect G (also known as articulation point/separating vertex)

An edge {u, v} is a cut edge if removing this edge we disconnect the
graph (also known as a bridge)

We will use the DFS tree to identify all cut vertices and edges

Observation: only way vertex u is a cut vertex is if there are no back
edges from a subtree rooted at a child of u to an ancestor of u

(One way to) compute the above is to keep track of “earliest” vertex
in T connected by a back edge to subtree Tu

E [u] = min

{
S [u], min

w∈Tu

(
S [z ] s.t. {w ,z} back edge &

u descendant of z

)}

23 / 33



Definitions

A vertex u ∈ V is a cut vertex, if removing u from G (and its edges)
we disconnect G (also known as articulation point/separating vertex)

An edge {u, v} is a cut edge if removing this edge we disconnect the
graph (also known as a bridge)

We will use the DFS tree to identify all cut vertices and edges

Observation: only way vertex u is a cut vertex is if there are no back
edges from a subtree rooted at a child of u to an ancestor of u

(One way to) compute the above is to keep track of “earliest” vertex
in T connected by a back edge to subtree Tu

E [u] = min

{
S [u], min

w∈Tu

(
S [z ] s.t. {w ,z} back edge &

u descendant of z

)}

24 / 33



Cut vertex lemmas

Let T be our DFS tree and Tu be the subtree rooted at u.

Lemma (Connected Components)

Given two vertices u, v ∈ T such that u is an ancestor of v , then a subtree
Tv of Tu is a connected component of G \ {v} iff there are no back edges
from Tv to an ancestor of u in T .

25 / 33



Cut vertex lemmas

Let T be our DFS tree and Tu be the subtree rooted at u.

Lemma (Connected Components)

Given two vertices u, v ∈ T such that u is an ancestor of v , then a subtree
Tv of Tu is a connected component of G \ {v} iff there are no back edges
from Tv to an ancestor of u in T .

Lemma (Cut vertex - non-root)

For non-root vertex u ∈ T , u is a cut vertex iff there is subtree Tv ⊂ Tu

with v descendant of u, with no back edges to an ancestor of u.

26 / 33



Cut vertex lemmas

Let T be our DFS tree and Tu be the subtree rooted at u.

Lemma (Connected Components)

Given two vertices u, v ∈ T such that u is an ancestor of v , then a subtree
Tv of Tu is a connected component of G \ {v} iff there are no back edges
from Tv to an ancestor of u in T .

Lemma (Cut vertex - non-root)

For non-root vertex u ∈ T , u is a cut vertex iff there is subtree Tv ⊂ Tu

with v descendant of u, with no back edges to an ancestor of u.

Lemma (Cut vertex - root)

If s ∈ T is the root of T , then s is a cut vertext iff s has two children.

27 / 33



(Augmented) DFS Algorithm (again, for real?)

EXPLORE(u, visited, p, S ,F , τ,E ):
1 S [u] = τ , and τ ← τ + 1
2 for each v ∈ N(u):

If visited[v ] = 0, then
visited[v ] = 1, p[v ] = u
and EXPLORE(v , visited, p, S ,F , τ,E).

3 F [u] = τ , τ ← τ + 1 and

E [u] = min

{
S [u], min

{uw}back edge
S [w ], min

v child of u
E [v ]

}
Main algorithm:

1 initialize visited[v ] = 0, S [v ] = F [v ] = E [v ] =∞ and p[v ] = NULL for
all v ∈ V

2 set visited[s] = 1 and τ = 1
3 EXPLORE(s, visited, p,S ,F , τ,E )

28 / 33



Correctness of augmented algorithm

All that is left to prove is that above algorithm computes E [u]
correctly for each u ∈ V

Can prove this by induction on depth of the tree, starting from the
leaves. We will make sure to prove that E [u] computes the starting
time of the earliest direct neighbor of Tu.

Inductive step: if have computed E [v ] correctly for every non-root of
Tu, then step 3 of the EXPLORE algorithm will correctly compute
E [u]

29 / 33



Finding cut vertices

Lemma

Vertex u ∈ T is not a cut vertex iff S [u] > E [v ] for all children v of u in T .

E [v ] captures the start time of the earliest vertex which directly
connects to Tv (via a back edge)

w ∈ Tv and w , v ∈ Tu ⇒ E [w ] ≥ E [v ], as back edge from Tw to
ancestor of u is a back edge from Tv to ancestor of u hence

S [u] > E [v ]⇒ there is a back edge from Tv is an ancestor of u

By previous bullet, enough to focus on children of u

If every children v of u has E [v ] < S [u], then Tv is connected in
G \ {u}. Thus u not cut vertex.

other direction analogous

30 / 33



Finding cut vertices

Lemma

Vertex u ∈ T is not a cut vertex iff S [u] > E [v ] for all children v of u in T .

E [v ] captures the start time of the earliest vertex which directly
connects to Tv (via a back edge)

w ∈ Tv and w , v ∈ Tu ⇒ E [w ] ≥ E [v ], as back edge from Tw to
ancestor of u is a back edge from Tv to ancestor of u hence

S [u] > E [v ]⇒ there is a back edge from Tv is an ancestor of u

By previous bullet, enough to focus on children of u

If every children v of u has E [v ] < S [u], then Tv is connected in
G \ {u}. Thus u not cut vertex.

other direction analogous

31 / 33



Acknowledgement

Based on Prof. Lau’s lecture 06

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L06.pdf

For non-recursive version of DFS, see [Kleinberg Tardos 2006]

32 / 33

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L06.pdf


References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

33 / 33


	Depth-First Search
	Basic Idea
	Algorithm
	DFS Tree
	Start Time and Finish Time
	Cuts

	Acknowledgements

