Lecture 11: Graph Algorithms II

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 19, 2023

Overview

• Depth-First Search

- Basic Idea
- Algorithm
- DFS Tree
- Start Time and Finish Time
- Cuts
- Acknowledgements

Basic Idea

- Exploring a maze
- Would like to explore a full path of the maze, before backtracking and trying the other paths

- Input: Graph G(V, E), vertex $s \in V$
- Output: connected component of s

- Input: Graph G(V, E), vertex $s \in V$
- Output: connected component of s
- Easiest way to describe algorithm is recursively.
- Subroutine given by
- EXPLORE(*u*, visited):
 - 1 for each $v \in N(u)$:
 - If visited[v] = 0, then visited[v] = 1 and EXPLORE(v, visited).

- Input: Graph G(V, E), vertex $s \in V$
- **Output:** connected component of *s*
- EXPLORE(*u*, visited):
 - 1 for each $v \in N(u)$:

• If visited[v] = 0, then visited[v] = 1 and EXPLORE(v, visited).

- Main algorithm:
 - initialize visited[v] = 0 for all $v \in V$
 - 2 set visited[s] = 1
 - SEXPLORE(s, visited)

- Input: Graph G(V, E), vertex $s \in V$
- **Output:** connected component of *s*
- EXPLORE(*u*, visited):
 - 1 for each $v \in N(u)$:

• If visited[v] = 0, then visited[v] = 1 and EXPLORE(v, visited).

- Main algorithm:
 - 1 initialize visited[v] = 0 for all $v \in V$
 - 2 set visited[s] = 1
 - SEXPLORE(s, visited)
- Runtime analysis: initialization takes O(n) time. We call EXPLORE at most once per vertex u ∈ V, and once called, we will run through a loop of length deg(u) and perform O(1) operations before we call EXPLORE on another vertex.

$$O\left(n+\sum_{u\in V}\deg u\right)=O(n+m)$$

7/33

Connectivity

Lemma (Connectivity)

There is an s - t path in $G \Leftrightarrow visited[t] = 1$ at the end of DFS.

• Same proof idea as we did in BFS

(exercise)

(Augmented) Depth-First Search Algorithm

• EXPLORE(*u*, visited, *p*): **1** for each $v \in N(u)$: • If visited [v] = 0, then visited[v] = 1, p[v] = uand EXPLORE(v, visited, p).

Main algorithm:

- **(**) initialize visited [v] = 0 and p[v] =NULL for all $v \in V$
- 2 set visited [s] = 1
- EXPLORE(s, visited, p)

- In the same way that BFS gave us a tree, DFS will also give us a tree T, with edges (u, p(u)) for all u in the connected component of s.
- This tree has different properties than the BFS tree

In particular, *NO* shortest paths.

- In the same way that BFS gave us a tree, DFS will also give us a tree
 T, with edges (u, p(u)) for all u in the connected component of s.
- This tree has different properties than the BFS tree

In particular, NO shortest paths.

• What can we use it for?

- In the same way that BFS gave us a tree, DFS will also give us a tree T, with edges (u, p(u)) for all u in the connected component of s.
- This tree has different properties than the BFS tree

In particular, *NO* shortest paths.

- Helpful to think of this tree as giving an "orientation" of the edges of the graph
 - Starting vertex *s* is the *root* of *T*
 - A vertex u ∈ V is the parent of v if the edge {u, v} ∈ T and u closer to the root
 - Vertex u is the ancestor of v if u closer to root and u is in the s v path in T. We say v is a descendant of u and that u, v are related.
 - A *non-tree edge* {*u*, *v*} will be called *back edge* if *u* is the ancestor of *v* (or vice-versa).

- In the same way that BFS gave us a tree, DFS will also give us a tree T, with edges (u, p(u)) for all u in the connected component of s.
- This tree has different properties than the BFS tree

In particular, *NO* shortest paths.

- Helpful to think of this tree as giving an "orientation" of the edges of the graph
 - Starting vertex *s* is the *root* of *T*
 - A vertex u ∈ V is the parent of v if the edge {u, v} ∈ T and u closer to the root
 - Vertex u is the ancestor of v if u closer to root and u is in the s v path in T. We say v is a descendant of u and that u, v are related.
 - A *non-tree edge* {*u*, *v*} will be called *back edge* if *u* is the ancestor of *v* (or vice-versa).
- What are relationships between related vertices in this tree?

(Augmented) Depth-First Search Algorithm (again)

• EXPLORE(u, visited, p, S, F, τ): $I S[u] = \tau, \text{ and } \tau \leftarrow \tau + 1$ 2 for each $v \in N(u)$: • If visited [v] = 0, then visited[v] = 1, p[v] = uand EXPLORE(v, visited, p, S, F, τ). $I \subseteq F[u] = \tau \text{ and } \tau \leftarrow \tau + 1$ • Main algorithm: initialize visited [v] = 0, $S[v] = F[v] = \infty$ and p[v] =NULL for all $v \in V$ 2 set visited[s] = 1 and $\tau = 1$

3 EXPLORE(s, visited, p, S, F, τ)

Start and Finish Time Property

Lemma (Parenthesis lemma)

For any pair $u, v \in V$, the intervals [S(u), F(u)] and [S(v), F(v)] are either disjoint or one is contained in the other (the descendant is contained in the ancestor).

• Follows easily from augmented algorithm, as we only finish an ancestor after going through all its descendants.

A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

- Suppose there is edge $\{u, v\} \in E$
- W.I.o.g. can assume u visited by DFS before v. Thus, S[u] < S[v]

A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

- Suppose there is edge $\{u, v\} \in E$
- W.I.o.g. can assume u visited by DFS before v. Thus, S[u] < S[v]
- Since $v \in N(u)$, v will be explored before EXPLORE(u) is finished, thus S[v] < F[u]

A corollary of the parenthesis lemma is the following:

Lemma (Back edge lemma)

- Suppose there is edge $\{u, v\} \in E$
- W.I.o.g. can assume u visited by DFS before v. Thus, S[u] < S[v]
- Since $v \in N(u)$, v will be explored before EXPLORE(u) is finished, thus S[v] < F[u]
- By parenthesis lemma, we must have F[v] < F[u]. Hence v is descendent of u.

• Depth-First Search

- Basic Idea
- Algorithm
- DFS Tree
- Start Time and Finish Time
- Cuts

• Acknowledgements

- A vertex u ∈ V is a cut vertex, if removing u from G (and its edges) we disconnect G (also known as articulation point/separating vertex)
- An edge {u, v} is a cut edge if removing this edge we disconnect the graph
 (also known as a bridge)

- A vertex u ∈ V is a cut vertex, if removing u from G (and its edges) we disconnect G (also known as articulation point/separating vertex)
- An edge {u, v} is a cut edge if removing this edge we disconnect the graph
 (also known as a bridge)
- We will use the DFS tree to identify all cut vertices and edges

- A vertex u ∈ V is a cut vertex, if removing u from G (and its edges) we disconnect G (also known as articulation point/separating vertex)
- An edge {u, v} is a cut edge if removing this edge we disconnect the graph
 (also known as a bridge)
- We will use the DFS tree to identify all cut vertices and edges
- **Observation:** only way vertex *u* is a cut vertex is if there are no back edges from a subtree rooted at a child of *u* to an *ancestor* of *u*

- A vertex u ∈ V is a cut vertex, if removing u from G (and its edges) we disconnect G (also known as articulation point/separating vertex)
- An edge {u, v} is a cut edge if removing this edge we disconnect the graph
 (also known as a bridge)
- We will use the DFS tree to identify all cut vertices and edges
- **Observation:** only way vertex *u* is a cut vertex is if there are no back edges from a subtree rooted at a child of *u* to an *ancestor* of *u*
- (One way to) compute the above is to keep track of "earliest" vertex in T connected by a back edge to subtree T_u

$$E[u] = \min\left\{S[u], \min_{w \in T_u} \left(S[z] \text{ s.t. } \{\substack{w,z\} \text{ back edge \& } \\ u \text{ descendant of } z}\right)\right\}$$

Let T be our DFS tree and T_u be the subtree rooted at u.

Lemma (Connected Components)

Given two vertices $u, v \in T$ such that u is an ancestor of v, then a subtree T_v of T_u is a connected component of $G \setminus \{v\}$ iff there are no back edges from T_v to an ancestor of u in T.

Cut vertex lemmas

Let T be our DFS tree and T_u be the subtree rooted at u.

Lemma (Connected Components)

Given two vertices $u, v \in T$ such that u is an ancestor of v, then a subtree T_v of T_u is a connected component of $G \setminus \{v\}$ iff there are no back edges from T_v to an ancestor of u in T.

Lemma (Cut vertex - non-root)

For non-root vertex $u \in T$, u is a cut vertex iff there is subtree $T_v \subset T_u$ with v descendant of u, with no back edges to an ancestor of u.

Cut vertex lemmas

Let T be our DFS tree and T_u be the subtree rooted at u.

Lemma (Connected Components)

Given two vertices $u, v \in T$ such that u is an ancestor of v, then a subtree T_v of T_u is a connected component of $G \setminus \{v\}$ iff there are no back edges from T_v to an ancestor of u in T.

Lemma (Cut vertex - non-root)

For non-root vertex $u \in T$, u is a cut vertex iff there is subtree $T_v \subset T_u$ with v descendant of u, with no back edges to an ancestor of u.

Lemma (Cut vertex - root)

If $s \in T$ is the root of T, then s is a cut vertext iff s has two children.

(Augmented) DFS Algorithm (again, for real?)

• EXPLORE(u, visited, p, S, F,
$$\tau$$
, E):
• $S[u] = \tau$, and $\tau \leftarrow \tau + 1$
• for each $v \in N(u)$:
• If visited[v] = 0, then
visited[v] = 1, p[v] = u
and EXPLORE(v, visited, p, S, F, τ , E).
• $F[u] = \tau$, $\tau \leftarrow \tau + 1$ and
 $E[u] = \min \left\{ S[u], \min_{\{uw\} \text{back edge}} S[w], \min_{v \text{ child of } u} E[v] \right\}$

- Main algorithm:
 - initialize visited[v] = 0, $S[v] = F[v] = E[v] = \infty$ and p[v] =NULL for all $v \in V$
 - 2 set visited[s] = 1 and $\tau = 1$
 - S EXPLORE(s, visited, p, S, F, τ, E)

Correctness of augmented algorithm

- All that is left to prove is that above algorithm computes E[u] correctly for each $u \in V$
- Can prove this by induction on depth of the tree, starting from the leaves. We will make sure to prove that E[u] computes the starting time of the earliest direct neighbor of T_u .
- Inductive step: if have computed E[v] correctly for every non-root of T_u , then step 3 of the EXPLORE algorithm will correctly compute E[u]

Finding cut vertices

Lemma

Vertex $u \in T$ is not a cut vertex iff S[u] > E[v] for all children v of u in T.

- E[v] captures the start time of the earliest vertex which directly connects to T_v (via a back edge)
- w ∈ T_v and w, v ∈ T_u ⇒ E[w] ≥ E[v], as back edge from T_w to ancestor of u is a back edge from T_v to ancestor of u hence
- $S[u] > E[v] \Rightarrow$ there is a back edge from T_v is an ancestor of u
- By previous bullet, enough to focus on children of u
- If every children v of u has E[v] < S[u], then T_v is connected in $G \setminus \{u\}$. Thus u not cut vertex.

Finding cut vertices

Lemma

Vertex $u \in T$ is not a cut vertex iff S[u] > E[v] for all children v of u in T.

- E[v] captures the start time of the earliest vertex which directly connects to T_v (via a back edge)
- w ∈ T_v and w, v ∈ T_u ⇒ E[w] ≥ E[v], as back edge from T_w to ancestor of u is a back edge from T_v to ancestor of u hence
- $S[u] > E[v] \Rightarrow$ there is a back edge from T_v is an ancestor of u
- By previous bullet, enough to focus on children of u
- If every children v of u has E[v] < S[u], then T_v is connected in $G \setminus \{u\}$. Thus u not cut vertex.
- other direction analogous

Acknowledgement

- Based on Prof. Lau's lecture 06
 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L06.pdf
- For non-recursive version of DFS, see [Kleinberg Tardos 2006]

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)
 Introduction to Algorithms, third edition.
 MIT Press Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley