
Lecture 12: Graph Algorithms III

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 24, 2023

1 / 65



Overview

Directed Graphs
Reachability
BFS/DFS trees
Directed Acyclic Graphs (DAGs) & Topological Sort
Strongly Connected Components

Acknowledgements

2 / 65



Directed Graphs

Now each edge has a direction, and we say that (u, v) goes from u
(tail) to v (head)

Useful to model situations with asymetry:

web page links
one-way streets
dependencies in parallel computation

Notation:

degin(u) = # vertices s ∈ V such that (s, u) ∈ E (in-degree/fanin)
degout(u) = # vertices t ∈ V such that (u, t) ∈ E (out-degree/fanout)

3 / 65



Directed Graphs

Now each edge has a direction, and we say that (u, v) goes from u
(tail) to v (head)

Useful to model situations with asymetry:

web page links
one-way streets
dependencies in parallel computation

Notation:

degin(u) = # vertices s ∈ V such that (s, u) ∈ E (in-degree/fanin)
degout(u) = # vertices t ∈ V such that (u, t) ∈ E (out-degree/fanout)

4 / 65



Directed Graphs

Now each edge has a direction, and we say that (u, v) goes from u
(tail) to v (head)

Useful to model situations with asymetry:

web page links
one-way streets
dependencies in parallel computation

Notation:

degin(u) = # vertices s ∈ V such that (s, u) ∈ E (in-degree/fanin)
degout(u) = # vertices t ∈ V such that (u, t) ∈ E (out-degree/fanout)

5 / 65



Reachability in Directed Graphs

Let G (V ,E ) be a directed graph and s, t ∈ V .

t is reachable from s, if there is a directed s − t path in G

G is strongly connected if ∀s, t ∈ V , we have that t is reachable from
s and s is reachable from t

S ⊂ V is strongly connected if ∀s, t ∈ S , we have s reachable from t
and t reachable from s

S ⊂ V is a strongly connected component (SCC) if S is a maximal
strongly connected set

We are interested in following reachability/structural questions:
1 Given s ∈ V what are the vertices reachable from s?
2 Is a given graph strongly connected?
3 What are all strongly connected components in a given directed graph?

Just as with undirected graphs, we will find O(n+m) time algorithms
for these and other problems.

6 / 65



Reachability in Directed Graphs

Let G (V ,E ) be a directed graph and s, t ∈ V .

t is reachable from s, if there is a directed s − t path in G

G is strongly connected if ∀s, t ∈ V , we have that t is reachable from
s and s is reachable from t

S ⊂ V is strongly connected if ∀s, t ∈ S , we have s reachable from t
and t reachable from s

S ⊂ V is a strongly connected component (SCC) if S is a maximal
strongly connected set

We are interested in following reachability/structural questions:
1 Given s ∈ V what are the vertices reachable from s?
2 Is a given graph strongly connected?
3 What are all strongly connected components in a given directed graph?

Just as with undirected graphs, we will find O(n+m) time algorithms
for these and other problems.

7 / 65



Reachability in Directed Graphs

Let G (V ,E ) be a directed graph and s, t ∈ V .

t is reachable from s, if there is a directed s − t path in G

G is strongly connected if ∀s, t ∈ V , we have that t is reachable from
s and s is reachable from t

S ⊂ V is strongly connected if ∀s, t ∈ S , we have s reachable from t
and t reachable from s

S ⊂ V is a strongly connected component (SCC) if S is a maximal
strongly connected set

We are interested in following reachability/structural questions:
1 Given s ∈ V what are the vertices reachable from s?
2 Is a given graph strongly connected?
3 What are all strongly connected components in a given directed graph?

Just as with undirected graphs, we will find O(n+m) time algorithms
for these and other problems.

8 / 65



Reachability in Directed Graphs

Let G (V ,E ) be a directed graph and s, t ∈ V .

t is reachable from s, if there is a directed s − t path in G

G is strongly connected if ∀s, t ∈ V , we have that t is reachable from
s and s is reachable from t

S ⊂ V is strongly connected if ∀s, t ∈ S , we have s reachable from t
and t reachable from s

S ⊂ V is a strongly connected component (SCC) if S is a maximal
strongly connected set

We are interested in following reachability/structural questions:
1 Given s ∈ V what are the vertices reachable from s?
2 Is a given graph strongly connected?
3 What are all strongly connected components in a given directed graph?

Just as with undirected graphs, we will find O(n+m) time algorithms
for these and other problems.

9 / 65



Reachability in Directed Graphs

Let G (V ,E ) be a directed graph and s, t ∈ V .

t is reachable from s, if there is a directed s − t path in G

G is strongly connected if ∀s, t ∈ V , we have that t is reachable from
s and s is reachable from t

S ⊂ V is strongly connected if ∀s, t ∈ S , we have s reachable from t
and t reachable from s

S ⊂ V is a strongly connected component (SCC) if S is a maximal
strongly connected set

We are interested in following reachability/structural questions:
1 Given s ∈ V what are the vertices reachable from s?
2 Is a given graph strongly connected?
3 What are all strongly connected components in a given directed graph?

Just as with undirected graphs, we will find O(n+m) time algorithms
for these and other problems.

10 / 65



Reachability in Directed Graphs

Let G (V ,E ) be a directed graph and s, t ∈ V .

t is reachable from s, if there is a directed s − t path in G

G is strongly connected if ∀s, t ∈ V , we have that t is reachable from
s and s is reachable from t

S ⊂ V is strongly connected if ∀s, t ∈ S , we have s reachable from t
and t reachable from s

S ⊂ V is a strongly connected component (SCC) if S is a maximal
strongly connected set

We are interested in following reachability/structural questions:
1 Given s ∈ V what are the vertices reachable from s?
2 Is a given graph strongly connected?
3 What are all strongly connected components in a given directed graph?

Just as with undirected graphs, we will find O(n+m) time algorithms
for these and other problems.

11 / 65



Checking Reachability

Input: directed graph G (V ,E ), s ∈ V

Output: all vertices reachable from s

EXPLORE(u, visited, p, S ,F , τ):
1 S [u] = τ , and τ ← τ + 1
2 for each v ∈ Nout(u): (only outgoing neighbors)

If visited[v ] = 0, then
visited[v ] = 1, p[v ] = u
and EXPLORE(v , visited, p,S ,F , τ).

3 F [u] = τ , τ ← τ + 1 and

Main algorithm:
1 initialize

visited[v ] = 0, S [v ] = F [v ] =∞ and p[v ] = NULL

for all v ∈ V
2 set visited[s] = 1 and τ = 1
3 EXPLORE(s, visited, p,S ,F , τ)

Time complexity O(n +m), and similarly to undirected case, t
reachable iff visited[t] = 1.

12 / 65



Checking Reachability
Input: directed graph G (V ,E ), s ∈ V

Output: all vertices reachable from s

Could use either BFS or DFS for this question. We will use DFS.

EXPLORE(u, visited, p, S ,F , τ):
1 S [u] = τ , and τ ← τ + 1
2 for each v ∈ Nout(u): (only outgoing neighbors)

If visited[v ] = 0, then
visited[v ] = 1, p[v ] = u
and EXPLORE(v , visited, p,S ,F , τ).

3 F [u] = τ , τ ← τ + 1 and

Main algorithm:
1 initialize

visited[v ] = 0, S [v ] = F [v ] =∞ and p[v ] = NULL

for all v ∈ V
2 set visited[s] = 1 and τ = 1
3 EXPLORE(s, visited, p,S ,F , τ)

Time complexity O(n +m), and similarly to undirected case, t
reachable iff visited[t] = 1.

13 / 65



Checking Reachability

Input: directed graph G (V ,E ), s ∈ V

Output: all vertices reachable from s

EXPLORE(u, visited, p, S ,F , τ):
1 S [u] = τ , and τ ← τ + 1
2 for each v ∈ Nout(u): (only outgoing neighbors)

If visited[v ] = 0, then
visited[v ] = 1, p[v ] = u
and EXPLORE(v , visited, p, S ,F , τ).

3 F [u] = τ , τ ← τ + 1 and

Main algorithm:
1 initialize

visited[v ] = 0, S [v ] = F [v ] =∞ and p[v ] = NULL

for all v ∈ V
2 set visited[s] = 1 and τ = 1
3 EXPLORE(s, visited, p,S ,F , τ)

Time complexity O(n +m), and similarly to undirected case, t
reachable iff visited[t] = 1.

14 / 65



Checking Reachability

Input: directed graph G (V ,E ), s ∈ V

Output: all vertices reachable from s

EXPLORE(u, visited, p, S ,F , τ):
1 S [u] = τ , and τ ← τ + 1
2 for each v ∈ Nout(u): (only outgoing neighbors)

If visited[v ] = 0, then
visited[v ] = 1, p[v ] = u
and EXPLORE(v , visited, p, S ,F , τ).

3 F [u] = τ , τ ← τ + 1 and

Main algorithm:
1 initialize

visited[v ] = 0, S [v ] = F [v ] =∞ and p[v ] = NULL

for all v ∈ V
2 set visited[s] = 1 and τ = 1
3 EXPLORE(s, visited, p,S ,F , τ)

Time complexity O(n +m), and similarly to undirected case, t
reachable iff visited[t] = 1.

15 / 65



Checking Reachability

Input: directed graph G (V ,E ), s ∈ V

Output: all vertices reachable from s

EXPLORE(u, visited, p, S ,F , τ):
1 S [u] = τ , and τ ← τ + 1
2 for each v ∈ Nout(u): (only outgoing neighbors)

If visited[v ] = 0, then
visited[v ] = 1, p[v ] = u
and EXPLORE(v , visited, p, S ,F , τ).

3 F [u] = τ , τ ← τ + 1 and

Main algorithm:
1 initialize

visited[v ] = 0, S [v ] = F [v ] =∞ and p[v ] = NULL

for all v ∈ V
2 set visited[s] = 1 and τ = 1
3 EXPLORE(s, visited, p,S ,F , τ)

Time complexity O(n +m), and similarly to undirected case, t
reachable iff visited[t] = 1.

16 / 65



Directed Cuts

Set of all visited vertices forms a “directed cut”

no outgoing edges
possibly incoming edges

17 / 65



Directed Graphs
Reachability
BFS/DFS trees
Directed Acyclic Graphs (DAGs) & Topological Sort
Strongly Connected Components

Acknowledgements

18 / 65



DFS Trees

Just as in undirected graph case, we have (directed and undirected)
DFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep
directions).

In undirected graph case, we have proved all non-tree edges are back
edges (last lecture)

However, in directed graph case, we can have “cross edges” and
“forward edges” (we cannot choose orientation now)

Still plenty of structure left:

Parenthesis lemma still holds!

19 / 65



DFS Trees

Just as in undirected graph case, we have (directed and undirected)
DFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep
directions).

In undirected graph case, we have proved all non-tree edges are back
edges (last lecture)

However, in directed graph case, we can have “cross edges” and
“forward edges” (we cannot choose orientation now)

Still plenty of structure left:

Parenthesis lemma still holds!

20 / 65



DFS Trees

Just as in undirected graph case, we have (directed and undirected)
DFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep
directions).

In undirected graph case, we have proved all non-tree edges are back
edges (last lecture)

However, in directed graph case, we can have “cross edges” and
“forward edges” (we cannot choose orientation now)

Still plenty of structure left:

Parenthesis lemma still holds!

21 / 65



DFS Trees

Just as in undirected graph case, we have (directed and undirected)
DFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep
directions).

In undirected graph case, we have proved all non-tree edges are back
edges (last lecture)

However, in directed graph case, we can have “cross edges” and
“forward edges” (we cannot choose orientation now)

Still plenty of structure left:

Parenthesis lemma still holds!

22 / 65



BFS Trees

Just as in undirected graph case, we have (directed and undirected)
BFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep directions).

In undirected graph case, we have proved all non-tree edges are
between consecutive layers (last lecture)

However, in directed graph case, we can have non-tree edges between
arbitrary layers (“backward edges”)

Still, plenty of structure left

Shortest paths from source.

23 / 65



BFS Trees

Just as in undirected graph case, we have (directed and undirected)
BFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep directions).

In undirected graph case, we have proved all non-tree edges are
between consecutive layers (last lecture)

However, in directed graph case, we can have non-tree edges between
arbitrary layers (“backward edges”)

Still, plenty of structure left

Shortest paths from source.

24 / 65



BFS Trees

Just as in undirected graph case, we have (directed and undirected)
BFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep directions).

In undirected graph case, we have proved all non-tree edges are
between consecutive layers (last lecture)

However, in directed graph case, we can have non-tree edges between
arbitrary layers (“backward edges”)

Still, plenty of structure left

Shortest paths from source.

25 / 65



BFS Trees

Just as in undirected graph case, we have (directed and undirected)
BFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep directions).

In undirected graph case, we have proved all non-tree edges are
between consecutive layers (last lecture)

However, in directed graph case, we can have non-tree edges between
arbitrary layers (“backward edges”)

Still, plenty of structure left

Shortest paths from source.

26 / 65



Directed Graphs
Reachability
BFS/DFS trees
Directed Acyclic Graphs (DAGs) & Topological Sort
Strongly Connected Components

Acknowledgements

27 / 65



Directed Acyclic Graphs (DAGs)

DAGs are directed graphs without directed cycles

Very useful in modelling dependency relations

course pre-requisites
software installation
sequence of algebraic operations

Very useful to find ordering of vertices so that all edges “go forward”

Topological Ordering

28 / 65



Directed Acyclic Graphs (DAGs)

DAGs are directed graphs without directed cycles

Very useful in modelling dependency relations

course pre-requisites
software installation
sequence of algebraic operations

Very useful to find ordering of vertices so that all edges “go forward”

Topological Ordering

29 / 65



Directed Acyclic Graphs (DAGs)

DAGs are directed graphs without directed cycles

Very useful in modelling dependency relations

course pre-requisites
software installation
sequence of algebraic operations

Very useful to find ordering of vertices so that all edges “go forward”

Topological Ordering

30 / 65



Topological Ordering

Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

(⇒) if we prove that any DAG has a vertex u with degin(u) = 0, then
can construct topological order by putting u in first position, then
iterating over graph G \ {u}
Proof of indegree zero vertex:

Suppose (for sake of contradiction) that every vertex u has
degin(u) ≥ 1.
Starting from vertex t =: u0, go to an in-neighbour u1, and then to an
in-neighbour u2 and so on. (possible since degin(ui ) > 0)
Since graph is finite, at some point must repeat a vertex ⇒ found a
cycle. (contradiction)

Can use above procedure to topologically sort a DAG (exercise)

31 / 65



Topological Ordering

Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

(⇐) given topological ordering, no edge goes backwards, therefore no
cycles

(⇒) if we prove that any DAG has a vertex u with degin(u) = 0, then
can construct topological order by putting u in first position, then
iterating over graph G \ {u}
Proof of indegree zero vertex:

Suppose (for sake of contradiction) that every vertex u has
degin(u) ≥ 1.
Starting from vertex t =: u0, go to an in-neighbour u1, and then to an
in-neighbour u2 and so on. (possible since degin(ui ) > 0)
Since graph is finite, at some point must repeat a vertex ⇒ found a
cycle. (contradiction)

Can use above procedure to topologically sort a DAG (exercise)

32 / 65



Topological Ordering

Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

(⇒) if we prove that any DAG has a vertex u with degin(u) = 0, then
can construct topological order by putting u in first position, then
iterating over graph G \ {u}

Proof of indegree zero vertex:
Suppose (for sake of contradiction) that every vertex u has
degin(u) ≥ 1.
Starting from vertex t =: u0, go to an in-neighbour u1, and then to an
in-neighbour u2 and so on. (possible since degin(ui ) > 0)
Since graph is finite, at some point must repeat a vertex ⇒ found a
cycle. (contradiction)

Can use above procedure to topologically sort a DAG (exercise)

33 / 65



Topological Ordering

Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

(⇒) if we prove that any DAG has a vertex u with degin(u) = 0, then
can construct topological order by putting u in first position, then
iterating over graph G \ {u}
Proof of indegree zero vertex:

Suppose (for sake of contradiction) that every vertex u has
degin(u) ≥ 1.
Starting from vertex t =: u0, go to an in-neighbour u1, and then to an
in-neighbour u2 and so on. (possible since degin(ui ) > 0)
Since graph is finite, at some point must repeat a vertex ⇒ found a
cycle. (contradiction)

Can use above procedure to topologically sort a DAG (exercise)

34 / 65



Topological Ordering

Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

(⇒) if we prove that any DAG has a vertex u with degin(u) = 0, then
can construct topological order by putting u in first position, then
iterating over graph G \ {u}
Proof of indegree zero vertex:

Suppose (for sake of contradiction) that every vertex u has
degin(u) ≥ 1.
Starting from vertex t =: u0, go to an in-neighbour u1, and then to an
in-neighbour u2 and so on. (possible since degin(ui ) > 0)
Since graph is finite, at some point must repeat a vertex ⇒ found a
cycle. (contradiction)

Can use above procedure to topologically sort a DAG (exercise)

35 / 65



Constructing a Topological Ordering

Algorithm:
1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

We have 2 cases:

Correctness:
1 By lemma G is a DAG ⇒ all edges go forward in this ordering
2 G has a cycle, then there is no topological order by proposition

Running time: O(n +m) (can obtain sorted list within algorithm)

36 / 65



Constructing a Topological Ordering

Algorithm:
1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

We have 2 cases:

Correctness:
1 By lemma G is a DAG ⇒ all edges go forward in this ordering
2 G has a cycle, then there is no topological order by proposition

Running time: O(n +m) (can obtain sorted list within algorithm)

37 / 65



Constructing a Topological Ordering

Algorithm:
1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any (u, v) ∈ E , F [v ] < F [u] for any DFS.

We have 2 cases:

Correctness:
1 By lemma G is a DAG ⇒ all edges go forward in this ordering
2 G has a cycle, then there is no topological order by proposition

Running time: O(n +m) (can obtain sorted list within algorithm)

38 / 65



Constructing a Topological Ordering
Algorithm:

1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any (u, v) ∈ E , F [v ] < F [u] for any DFS.

We have 2 cases:
Case 1: S [v ] < S [u].
Since graph is a DAG (no cycles) u not reachable from v
Hence u not descendant of v . By parenthesis property, must have

[S [v ],F [v ]] ∩ [S [u],F [u]] = ∅ ⇒ F [v ] < F [u]

Correctness:
1 By lemma G is a DAG ⇒ all edges go forward in this ordering
2 G has a cycle, then there is no topological order by proposition

Running time: O(n +m) (can obtain sorted list within algorithm)

39 / 65



Constructing a Topological Ordering
Algorithm:

1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any (u, v) ∈ E , F [v ] < F [u] for any DFS.

We have 2 cases:
Case 2: S [v ] > S [u].
Since visited[v ] = 0 when we start u and (u, v) ∈ E , v will be a
descendant of u in DFS tree.
Parenthesis lemma implies [S [v ],F [v ]] ⊂ [S [u],F [u]]

Correctness:
1 By lemma G is a DAG ⇒ all edges go forward in this ordering
2 G has a cycle, then there is no topological order by proposition

Running time: O(n +m) (can obtain sorted list within algorithm)

40 / 65



Constructing a Topological Ordering

Algorithm:
1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any (u, v) ∈ E , F [v ] < F [u] for any DFS.

We have 2 cases:

Correctness:
1 By lemma G is a DAG ⇒ all edges go forward in this ordering
2 G has a cycle, then there is no topological order by proposition

Running time: O(n +m) (can obtain sorted list within algorithm)

41 / 65



Constructing a Topological Ordering

Algorithm:
1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any (u, v) ∈ E , F [v ] < F [u] for any DFS.

We have 2 cases:

Correctness:
1 By lemma G is a DAG ⇒ all edges go forward in this ordering
2 G has a cycle, then there is no topological order by proposition

Running time: O(n +m) (can obtain sorted list within algorithm)

42 / 65



Directed Graphs
Reachability
BFS/DFS trees
Directed Acyclic Graphs (DAGs) & Topological Sort
Strongly Connected Components

Acknowledgements

43 / 65



Strongly Connected Components (SCCs)

Input: directed graph G (V ,E )

Output: Strongly connected components of G

Observation 1: SCCs are vertex disjoint

Exercise: Prove this

Observation 2: general directed graph is a DAG on its SCCs!

Can we find a “topological sorting” of the SCCs? Need to find one
component...

44 / 65



Strongly Connected Components (SCCs)

Input: directed graph G (V ,E )

Output: Strongly connected components of G

Observation 1: SCCs are vertex disjoint

Exercise: Prove this

Observation 2: general directed graph is a DAG on its SCCs!

Can we find a “topological sorting” of the SCCs? Need to find one
component...

45 / 65



Strongly Connected Components (SCCs)

Input: directed graph G (V ,E )

Output: Strongly connected components of G

Observation 1: SCCs are vertex disjoint

Exercise: Prove this

Observation 2: general directed graph is a DAG on its SCCs!

Can we find a “topological sorting” of the SCCs? Need to find one
component...

46 / 65



Strongly Connected Components (SCCs)

Input: directed graph G (V ,E )

Output: Strongly connected components of G

Observation 1: SCCs are vertex disjoint

Exercise: Prove this

Observation 2: general directed graph is a DAG on its SCCs!

Can we find a “topological sorting” of the SCCs? Need to find one
component...

47 / 65



Strongly Connected Components

Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.

2 From DAG discussion, node with earlierst finish time will be a sink.
3 run DFS and obtain ordering in increasing finishing time, let s be

element with earliest finish time
4 apply idea 1 to s, and obtain its SCC

Observation 3: note that node with largest finishing time will be in a
source component!

48 / 65



Strongly Connected Components

Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.

2 From DAG discussion, node with earlierst finish time will be a sink.
3 run DFS and obtain ordering in increasing finishing time, let s be

element with earliest finish time
4 apply idea 1 to s, and obtain its SCC

Observation 3: note that node with largest finishing time will be in a
source component!

49 / 65



Strongly Connected Components

Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.
2 From DAG discussion, node with earlierst finish time will be a sink.

3 run DFS and obtain ordering in increasing finishing time, let s be
element with earliest finish time

4 apply idea 1 to s, and obtain its SCC

Observation 3: note that node with largest finishing time will be in a
source component!

50 / 65



Strongly Connected Components

Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.
2 From DAG discussion, node with earlierst finish time will be a sink.
3 run DFS and obtain ordering in increasing finishing time, let s be

element with earliest finish time

4 apply idea 1 to s, and obtain its SCC

Observation 3: note that node with largest finishing time will be in a
source component!

51 / 65



Strongly Connected Components

Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.
2 From DAG discussion, node with earlierst finish time will be a sink.
3 run DFS and obtain ordering in increasing finishing time, let s be

element with earliest finish time
4 apply idea 1 to s, and obtain its SCC

Observation 3: note that node with largest finishing time will be in a
source component!

52 / 65



Strongly Connected Components

Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.
2 From DAG discussion, node with earlierst finish time will be a sink.
3 run DFS and obtain ordering in increasing finishing time, let s be

element with earliest finish time
4 apply idea 1 to s, and obtain its SCC

Doesn’t work: node of earliest finishing time need not be in sink
component.

Observation 3: note that node with largest finishing time will be in a
source component!

53 / 65



Strongly Connected Components

Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.
2 From DAG discussion, node with earlierst finish time will be a sink.
3 run DFS and obtain ordering in increasing finishing time, let s be

element with earliest finish time
4 apply idea 1 to s, and obtain its SCC

Observation 3: note that node with largest finishing time will be in a
source component!

54 / 65



Strongly Connected Components

Lemma

If Γ and Γ′ are two SCCs and we have edges from Γ to Γ′, then largest
finish time of Γ is larger than largest finish time of Γ′.

Proof: two cases

Case 1: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ

Since vertices in Γ ⊔ Γ′ are reachable from u, all vertices in Γ ⊔ Γ′ will
be finished before u, so largest finishing time will be of u

Case 2: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ′

Since vertices from Γ unreachable from Γ′, DFS needs to finish
exploring Γ′ before starting any vertex in Γ.

55 / 65



Strongly Connected Components

Lemma

If Γ and Γ′ are two SCCs and we have edges from Γ to Γ′, then largest
finish time of Γ is larger than largest finish time of Γ′.

Proof: two cases

Case 1: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ

Since vertices in Γ ⊔ Γ′ are reachable from u, all vertices in Γ ⊔ Γ′ will
be finished before u, so largest finishing time will be of u

Case 2: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ′

Since vertices from Γ unreachable from Γ′, DFS needs to finish
exploring Γ′ before starting any vertex in Γ.

56 / 65



Strongly Connected Components

Lemma

If Γ and Γ′ are two SCCs and we have edges from Γ to Γ′, then largest
finish time of Γ is larger than largest finish time of Γ′.

Proof: two cases
Case 1: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ

Since vertices in Γ ⊔ Γ′ are reachable from u, all vertices in Γ ⊔ Γ′ will
be finished before u, so largest finishing time will be of u

Case 2: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ′

Since vertices from Γ unreachable from Γ′, DFS needs to finish
exploring Γ′ before starting any vertex in Γ.

57 / 65



Strongly Connected Components

Lemma

If Γ and Γ′ are two SCCs and we have edges from Γ to Γ′, then largest
finish time of Γ is larger than largest finish time of Γ′.

Proof: two cases
Case 1: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ

Since vertices in Γ ⊔ Γ′ are reachable from u, all vertices in Γ ⊔ Γ′ will
be finished before u, so largest finishing time will be of u

Case 2: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ′

Since vertices from Γ unreachable from Γ′, DFS needs to finish
exploring Γ′ before starting any vertex in Γ.

58 / 65



Strongly Connected Components
Were looking for sinks, but found sources... how to deal with it?

Reverse the edges of the graph! Then sources become sinks (and
vice-versa)!

Let GR be the graph obtained from G by reverting all edges

G and GR have same SCCs!!

Can follow the ordering of the finishing times of DFS applied to GR

to get our sink components in G ! (or vice-versa!)

59 / 65



Strongly Connected Components
Were looking for sinks, but found sources... how to deal with it?

Reverse the edges of the graph! Then sources become sinks (and
vice-versa)!

Let GR be the graph obtained from G by reverting all edges

G and GR have same SCCs!!

Can follow the ordering of the finishing times of DFS applied to GR

to get our sink components in G ! (or vice-versa!)

60 / 65



Strongly Connected Components
Were looking for sinks, but found sources... how to deal with it?

Reverse the edges of the graph! Then sources become sinks (and
vice-versa)!

Let GR be the graph obtained from G by reverting all edges

G and GR have same SCCs!!

Can follow the ordering of the finishing times of DFS applied to GR

to get our sink components in G ! (or vice-versa!)

61 / 65



Strongly Connected Components
Were looking for sinks, but found sources... how to deal with it?

Reverse the edges of the graph! Then sources become sinks (and
vice-versa)!

Let GR be the graph obtained from G by reverting all edges

G and GR have same SCCs!!

Can follow the ordering of the finishing times of DFS applied to GR

to get our sink components in G ! (or vice-versa!)
62 / 65



Strongly Connected Components - Algorithm

Input: directed graph G (V ,E )

Output: Strongly connected components of G

Algorithm:
1 Run DFS on G using arbitrary ordering of vertices
2 Order vertices by decreasing order of finishing times, label vertices by

u1, . . . , un with F [ui ] > F [ui+1]
3 Reverse G to obtain GR

4 Follow ordering in Step 2 to explore GR and cut out one SCC at a time

Let γ = 1 (counts # SCCs)
For 1 ≤ i ≤ n do:
If visited[ui ] = 0, then: DFS(GR , ui ) and mark all vertices reachable
from ui in GR to be in component Γγ . Then set γ ← γ + 1

63 / 65



Acknowledgement

Based on Prof. Lau’s lecture 07

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L07.pdf

64 / 65

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L07.pdf


References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

65 / 65


	Directed Graphs
	Reachability
	BFS/DFS trees
	Directed Acyclic Graphs (DAGs) & Topological Sort
	Strongly Connected Components

	Acknowledgements

