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Directed Graphs

Now each edge has a direction, and we say that (u, v) goes from u
(tail) to v (head)

Useful to model situations with asymetry:

web page links
one-way streets
dependencies in parallel computation

Notation:

degin(u) = # vertices s ∈ V such that (s, u) ∈ E (in-degree/fanin)
degout(u) = # vertices t ∈ V such that (u, t) ∈ E (out-degree/fanout)
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Reachability in Directed Graphs

Let G (V ,E ) be a directed graph and s, t ∈ V .

t is reachable from s, if there is a directed s − t path in G

G is strongly connected if ∀s, t ∈ V , we have that t is reachable from
s and s is reachable from t

S ⊂ V is strongly connected if ∀s, t ∈ S , we have s reachable from t
and t reachable from s

S ⊂ V is a strongly connected component (SCC) if S is a maximal
strongly connected set

We are interested in following reachability/structural questions:
1 Given s ∈ V what are the vertices reachable from s?
2 Is a given graph strongly connected?
3 What are all strongly connected components in a given directed graph?

Just as with undirected graphs, we will find O(n+m) time algorithms
for these and other problems.
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Checking Reachability

Input: directed graph G (V ,E ), s ∈ V

Output: all vertices reachable from s

EXPLORE(u, visited, p, S ,F , τ):
1 S [u] = τ , and τ ← τ + 1
2 for each v ∈ Nout(u): (only outgoing neighbors)

If visited[v ] = 0, then
visited[v ] = 1, p[v ] = u
and EXPLORE(v , visited, p,S ,F , τ).

3 F [u] = τ , τ ← τ + 1 and

Main algorithm:
1 initialize

visited[v ] = 0, S [v ] = F [v ] =∞ and p[v ] = NULL

for all v ∈ V
2 set visited[s] = 1 and τ = 1
3 EXPLORE(s, visited, p,S ,F , τ)

Time complexity O(n +m), and similarly to undirected case, t
reachable iff visited[t] = 1.
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Checking Reachability
Input: directed graph G (V ,E ), s ∈ V

Output: all vertices reachable from s
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Directed Cuts

Set of all visited vertices forms a “directed cut”

no outgoing edges
possibly incoming edges
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DFS Trees

Just as in undirected graph case, we have (directed and undirected)
DFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep
directions).

In undirected graph case, we have proved all non-tree edges are back
edges (last lecture)

However, in directed graph case, we can have “cross edges” and
“forward edges” (we cannot choose orientation now)

Still plenty of structure left:

Parenthesis lemma still holds!
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BFS Trees

Just as in undirected graph case, we have (directed and undirected)
BFS trees, given by edges {u, p[u]} (or (p[u], u) if we keep directions).

In undirected graph case, we have proved all non-tree edges are
between consecutive layers (last lecture)

However, in directed graph case, we can have non-tree edges between
arbitrary layers (“backward edges”)

Still, plenty of structure left

Shortest paths from source.
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Directed Acyclic Graphs (DAGs)

DAGs are directed graphs without directed cycles

Very useful in modelling dependency relations

course pre-requisites
software installation
sequence of algebraic operations

Very useful to find ordering of vertices so that all edges “go forward”

Topological Ordering
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Topological Ordering

Proposition

A directed graph is acyclic ⇔ there is a topological ordering.

(⇒) if we prove that any DAG has a vertex u with degin(u) = 0, then
can construct topological order by putting u in first position, then
iterating over graph G \ {u}
Proof of indegree zero vertex:

Suppose (for sake of contradiction) that every vertex u has
degin(u) ≥ 1.
Starting from vertex t =: u0, go to an in-neighbour u1, and then to an
in-neighbour u2 and so on. (possible since degin(ui ) > 0)
Since graph is finite, at some point must repeat a vertex ⇒ found a
cycle. (contradiction)

Can use above procedure to topologically sort a DAG (exercise)
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Constructing a Topological Ordering

Algorithm:
1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

We have 2 cases:

Correctness:
1 By lemma G is a DAG ⇒ all edges go forward in this ordering
2 G has a cycle, then there is no topological order by proposition

Running time: O(n +m) (can obtain sorted list within algorithm)
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Algorithm:

1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any (u, v) ∈ E , F [v ] < F [u] for any DFS.

We have 2 cases:
Case 1: S [v ] < S [u].
Since graph is a DAG (no cycles) u not reachable from v
Hence u not descendant of v . By parenthesis property, must have

[S [v ],F [v ]] ∩ [S [u],F [u]] = ∅ ⇒ F [v ] < F [u]

Correctness:
1 By lemma G is a DAG ⇒ all edges go forward in this ordering
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Algorithm:

1 Run DFS on the whole graph
2 Output the ordering with decreasing finishing time
3 Check if this is a topological ordering. If not, return not acyclic.

Why does this work? (parenthesis lemma)

Lemma

If G is a DAG, then for any (u, v) ∈ E , F [v ] < F [u] for any DFS.

We have 2 cases:
Case 2: S [v ] > S [u].
Since visited[v ] = 0 when we start u and (u, v) ∈ E , v will be a
descendant of u in DFS tree.
Parenthesis lemma implies [S [v ],F [v ]] ⊂ [S [u],F [u]]
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1 By lemma G is a DAG ⇒ all edges go forward in this ordering
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Strongly Connected Components (SCCs)

Input: directed graph G (V ,E )

Output: Strongly connected components of G

Observation 1: SCCs are vertex disjoint

Exercise: Prove this

Observation 2: general directed graph is a DAG on its SCCs!

Can we find a “topological sorting” of the SCCs? Need to find one
component...
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Strongly Connected Components

Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.

2 From DAG discussion, node with earlierst finish time will be a sink.
3 run DFS and obtain ordering in increasing finishing time, let s be

element with earliest finish time
4 apply idea 1 to s, and obtain its SCC

Observation 3: note that node with largest finishing time will be in a
source component!
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Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.
2 From DAG discussion, node with earlierst finish time will be a sink.
3 run DFS and obtain ordering in increasing finishing time, let s be

element with earliest finish time
4 apply idea 1 to s, and obtain its SCC

Doesn’t work: node of earliest finishing time need not be in sink
component.

Observation 3: note that node with largest finishing time will be in a
source component!
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Idea 1: If we started a DFS/BFS in a “sink component” Γ (with no
outgoing edges), then we will certainly find only Γ and then we can
recurse on G \ Γ.

Can we find such a component?

Attempt 1: “topological sort” the components.
1 If components are a DAG, then must have a sink.
2 From DAG discussion, node with earlierst finish time will be a sink.
3 run DFS and obtain ordering in increasing finishing time, let s be

element with earliest finish time
4 apply idea 1 to s, and obtain its SCC

Observation 3: note that node with largest finishing time will be in a
source component!

54 / 65



Strongly Connected Components

Lemma

If Γ and Γ′ are two SCCs and we have edges from Γ to Γ′, then largest
finish time of Γ is larger than largest finish time of Γ′.

Proof: two cases

Case 1: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ

Since vertices in Γ ⊔ Γ′ are reachable from u, all vertices in Γ ⊔ Γ′ will
be finished before u, so largest finishing time will be of u

Case 2: first visited vertex u ∈ Γ ⊔ Γ′ is in Γ′

Since vertices from Γ unreachable from Γ′, DFS needs to finish
exploring Γ′ before starting any vertex in Γ.
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Strongly Connected Components
Were looking for sinks, but found sources... how to deal with it?

Reverse the edges of the graph! Then sources become sinks (and
vice-versa)!

Let GR be the graph obtained from G by reverting all edges

G and GR have same SCCs!!

Can follow the ordering of the finishing times of DFS applied to GR

to get our sink components in G ! (or vice-versa!)
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Reverse the edges of the graph! Then sources become sinks (and
vice-versa)!

Let GR be the graph obtained from G by reverting all edges

G and GR have same SCCs!!
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Strongly Connected Components - Algorithm

Input: directed graph G (V ,E )

Output: Strongly connected components of G

Algorithm:
1 Run DFS on G using arbitrary ordering of vertices
2 Order vertices by decreasing order of finishing times, label vertices by

u1, . . . , un with F [ui ] > F [ui+1]
3 Reverse G to obtain GR

4 Follow ordering in Step 2 to explore GR and cut out one SCC at a time

Let γ = 1 (counts # SCCs)
For 1 ≤ i ≤ n do:
If visited[ui ] = 0, then: DFS(GR , ui ) and mark all vertices reachable
from ui in GR to be in component Γγ . Then set γ ← γ + 1
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