Lecture 12: Graph Algorithms III

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

October 24, 2023

Overview

- Directed Graphs
- Reachability
- BFS/DFS trees
- Directed Acyclic Graphs (DAGs) \& Topological Sort
- Strongly Connected Components
- Acknowledgements

Directed Graphs

- Now each edge has a direction, and we say that (u, v) goes from u (tail) to v (head)

Directed Graphs

- Now each edge has a direction, and we say that (u, v) goes from u (tail) to v (head)
- Useful to model situations with asymetry:
- web page links
- one-way streets
- dependencies in parallel computation

Directed Graphs

- Now each edge has a direction, and we say that (u, v) goes from u (tail) to v (head)
- Useful to model situations with asymetry:
- web page links
- one-way streets
- dependencies in parallel computation
- Notation:
- $\operatorname{deg}_{i n}(u)=\#$ vertices $s \in V$ such that $(s, u) \in E \quad$ (in-degree/fanin)
- $\operatorname{deg}_{\text {out }}(u)=\#$ vertices $t \in V$ such that $(u, t) \in E$ (out-degree/fanout)

Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is reachable from s, if there is a directed $s-t$ path in G

Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is reachable from s, if there is a directed $s-t$ path in G
- G is strongly connected if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t

Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is reachable from s, if there is a directed $s-t$ path in G
- G is strongly connected if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t
- $S \subset V$ is strongly connected if $\forall s, t \in S$, we have s reachable from t and t reachable from s

Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is reachable from s, if there is a directed $s-t$ path in G
- G is strongly connected if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t
- $S \subset V$ is strongly connected if $\forall s, t \in S$, we have s reachable from t and t reachable from s
- $S \subset V$ is a strongly connected component (SCC) if S is a maximal strongly connected set

Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is reachable from s, if there is a directed $s-t$ path in G
- G is strongly connected if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t
- $S \subset V$ is strongly connected if $\forall s, t \in S$, we have s reachable from t and t reachable from s
- $S \subset V$ is a strongly connected component (SCC) if S is a maximal strongly connected set
- We are interested in following reachability/structural questions:
(1) Given $s \in V$ what are the vertices reachable from s ?
(2) Is a given graph strongly connected?
(3) What are all strongly connected components in a given directed graph?

Reachability in Directed Graphs

Let $G(V, E)$ be a directed graph and $s, t \in V$.

- t is reachable from s, if there is a directed $s-t$ path in G
- G is strongly connected if $\forall s, t \in V$, we have that t is reachable from s and s is reachable from t
- $S \subset V$ is strongly connected if $\forall s, t \in S$, we have s reachable from t and t reachable from s
- $S \subset V$ is a strongly connected component (SCC) if S is a maximal strongly connected set
- We are interested in following reachability/structural questions:
(1) Given $s \in V$ what are the vertices reachable from s ?
(2) Is a given graph strongly connected?
(3) What are all strongly connected components in a given directed graph?
- Just as with undirected graphs, we will find $O(n+m)$ time algorithms for these and other problems.

Checking Reachability

- Input: directed graph $G(V, E), s \in V$
- Output: all vertices reachable from s

Checking Reachability

- Input: directed graph $G(V, E), s \in V$
- Output: all vertices reachable from s
- Could use either BFS or DFS for this question. We will use DFS.

Checking Reachability

- Input: directed graph $G(V, E), s \in V$
- Output: all vertices reachable from s
- EXPLORE (u, visited, p, S, F, τ):
(1) $S[u]=\tau$, and $\tau \leftarrow \tau+1$
(2) for each $v \in N_{\text {out }}(u)$:
(only outgoing neighbors)
- If visited $[v]=0$, then
visited $[v]=1, p[v]=u$ and $\operatorname{EXPLORE}(v$, visited, $p, S, F, \tau)$.
(3) $F[u]=\tau, \tau \leftarrow \tau+1$ and

Checking Reachability

- Input: directed graph $G(V, E), s \in V$
- Output: all vertices reachable from s
- EXPLORE(u, visited, $p, S, F, \tau)$:
(1) $S[u]=\tau$, and $\tau \leftarrow \tau+1$
(2) for each $v \in N_{\text {out }}(u)$:
(only outgoing neighbors)
- If visited $[v]=0$, then

$$
\operatorname{visited}[v]=1, p[v]=u
$$

$$
\text { and } \operatorname{EXPLORE}(v, \text { visited, } p, S, F, \tau)
$$

(3) $F[u]=\tau, \tau \leftarrow \tau+1$ and

- Main algorithm:
(1) initialize

$$
\operatorname{visited}[v]=0, S[v]=F[v]=\infty \text { and } p[v]=\mathrm{NULL}
$$

for all $v \in V$
(2) set visited[s] $=1$ and $\tau=1$
(3) $\operatorname{EXPLORE}(s$, visited, $p, S, F, \tau)$

Checking Reachability

- Input: directed graph $G(V, E), s \in V$
- Output: all vertices reachable from s
- EXPLORE(u, visited, $p, S, F, \tau)$:
(1) $S[u]=\tau$, and $\tau \leftarrow \tau+1$
(2) for each $v \in N_{\text {out }}(u)$:
(only outgoing neighbors)
- If visited $[v]=0$, then

$$
\operatorname{visited}[v]=1, p[v]=u
$$ and $\operatorname{EXPLORE}(v$, visited, $p, S, F, \tau)$.

(3) $F[u]=\tau, \tau \leftarrow \tau+1$ and

- Main algorithm:
(1) initialize

$$
\operatorname{visited}[v]=0, S[v]=F[v]=\infty \text { and } p[v]=\mathrm{NULL}
$$

for all $v \in V$
(2) set visited $[s]=1$ and $\tau=1$
(3) EXPLORE (s, visited, p, S, F, τ)

- Time complexity $O(n+m)$, and similarly to undirected case, t reachable iff visited $[t]=1$.

Directed Cuts

- Set of all visited vertices forms a "directed cut"
- no outgoing edges
- possibly incoming edges
- Directed Graphs
- Reachability
- BFS/DFS trees
- Directed Acyclic Graphs (DAGs) \& Topological Sort
- Strongly Connected Components
- Acknowledgements

DFS Trees

- Just as in undirected graph case, we have (directed and undirected) DFS trees, given by edges $\{u, p[u]\}$ (or $(p[u], u)$ if we keep directions).

DFS Trees

- Just as in undirected graph case, we have (directed and undirected) DFS trees, given by edges $\{u, p[u]\}$ (or $(p[u], u)$ if we keep directions).
- In undirected graph case, we have proved all non-tree edges are back edges (last lecture)

DFS Trees

- Just as in undirected graph case, we have (directed and undirected) DFS trees, given by edges $\{u, p[u]\}$ (or $(p[u], u)$ if we keep directions).
- In undirected graph case, we have proved all non-tree edges are back edges (last lecture)
- However, in directed graph case, we can have "cross edges" and "forward edges" (we cannot choose orientation now)

DFS Trees

- Just as in undirected graph case, we have (directed and undirected) DFS trees, given by edges $\{u, p[u]\}$ (or $(p[u], u)$ if we keep directions).
- In undirected graph case, we have proved all non-tree edges are back edges (last lecture)
- However, in directed graph case, we can have "cross edges" and "forward edges" (we cannot choose orientation now)
- Still plenty of structure left:

Parenthesis lemma still holds!

BFS Trees

- Just as in undirected graph case, we have (directed and undirected) BFS trees, given by edges $\{u, p[u]\}$ (or ($p[u], u$) if we keep directions).

BFS Trees

- Just as in undirected graph case, we have (directed and undirected) BFS trees, given by edges $\{u, p[u]\}$ (or ($p[u], u$) if we keep directions).
- In undirected graph case, we have proved all non-tree edges are between consecutive layers (last lecture)

BFS Trees

- Just as in undirected graph case, we have (directed and undirected) BFS trees, given by edges $\{u, p[u]\}$ (or ($p[u], u$) if we keep directions).
- In undirected graph case, we have proved all non-tree edges are between consecutive layers (last lecture)
- However, in directed graph case, we can have non-tree edges between arbitrary layers
("backward edges")

BFS Trees

- Just as in undirected graph case, we have (directed and undirected) BFS trees, given by edges $\{u, p[u]\}$ (or ($p[u], u$) if we keep directions).
- In undirected graph case, we have proved all non-tree edges are between consecutive layers (last lecture)
- However, in directed graph case, we can have non-tree edges between arbitrary layers
("backward edges")
- Still, plenty of structure left

Shortest paths from source.

- Directed Graphs
- Reachability
- BFS/DFS trees
- Directed Acyclic Graphs (DAGs) \& Topological Sort
- Strongly Connected Components
- Acknowledgements

Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs without directed cycles

Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs without directed cycles
- Very useful in modelling dependency relations
- course pre-requisites
- software installation
- sequence of algebraic operations

Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs without directed cycles
- Very useful in modelling dependency relations
- course pre-requisites
- software installation
- sequence of algebraic operations
- Very useful to find ordering of vertices so that all edges "go forward"

Topological Ordering

Topological Ordering

Proposition

A directed graph is acyclic \Leftrightarrow there is a topological ordering.

Topological Ordering

Proposition

A directed graph is acyclic \Leftrightarrow there is a topological ordering.

- (\Leftarrow) given topological ordering, no edge goes backwards, therefore no cycles

Topological Ordering

Proposition

A directed graph is acyclic \Leftrightarrow there is a topological ordering.

- (\Rightarrow) if we prove that any DAG has a vertex u with $\operatorname{deg}_{i n}(u)=0$, then can construct topological order by putting u in first position, then iterating over graph $G \backslash\{u\}$

Topological Ordering

Proposition

A directed graph is acyclic \Leftrightarrow there is a topological ordering.

- (\Rightarrow) if we prove that any DAG has a vertex u with $\operatorname{deg}_{i n}(u)=0$, then can construct topological order by putting u in first position, then iterating over graph $G \backslash\{u\}$
- Proof of indegree zero vertex:
- Suppose (for sake of contradiction) that every vertex u has $\operatorname{deg}_{i n}(u) \geq 1$.
- Starting from vertex $t=: u_{0}$, go to an in-neighbour u_{1}, and then to an in-neighbour u_{2} and so on. (possible since $\operatorname{deg}_{i n}\left(u_{i}\right)>0$)
- Since graph is finite, at some point must repeat a vertex \Rightarrow found a cycle.

Topological Ordering

Proposition

A directed graph is acyclic \Leftrightarrow there is a topological ordering.

- (\Rightarrow) if we prove that any DAG has a vertex u with $\operatorname{deg}_{i n}(u)=0$, then can construct topological order by putting u in first position, then iterating over graph $G \backslash\{u\}$
- Proof of indegree zero vertex:
- Suppose (for sake of contradiction) that every vertex u has $\operatorname{deg}_{i n}(u) \geq 1$.
- Starting from vertex $t=: u_{0}$, go to an in-neighbour u_{1}, and then to an in-neighbour u_{2} and so on. (possible since $\operatorname{deg}_{i n}\left(u_{i}\right)>0$)
- Since graph is finite, at some point must repeat a vertex \Rightarrow found a cycle. (contradiction)
- Can use above procedure to topologically sort a DAG

Constructing a Topological Ordering

- Algorithm:
(1) Run DFS on the whole graph
(2) Output the ordering with decreasing finishing time
(3) Check if this is a topological ordering. If not, return not acyclic.

Constructing a Topological Ordering

- Algorithm:
(1) Run DFS on the whole graph
(2) Output the ordering with decreasing finishing time
(3) Check if this is a topological ordering. If not, return not acyclic.
- Why does this work?
(parenthesis lemma)

Constructing a Topological Ordering

- Algorithm:
(1) Run DFS on the whole graph
(2) Output the ordering with decreasing finishing time
(3) Check if this is a topological ordering. If not, return not acyclic.
- Why does this work?
(parenthesis lemma)

Lemma

If G is a $D A G$, then for any $(u, v) \in E, F[v]<F[u]$ for any DFS.

Constructing a Topological Ordering

- Algorithm:
(1) Run DFS on the whole graph
(2) Output the ordering with decreasing finishing time
(3) Check if this is a topological ordering. If not, return not acyclic.
- Why does this work?
(parenthesis lemma)

Lemma

If G is a $D A G$, then for any $(u, v) \in E, F[v]<F[u]$ for any DFS.

- We have 2 cases:
- Case 1: $S[v]<S[u]$.
- Since graph is a DAG (no cycles) u not reachable from v
- Hence u not descendant of v. By parenthesis property, must have

$$
[S[v], F[v]] \cap[S[u], F[u]]=\emptyset \Rightarrow F[v]<F[u]
$$

Constructing a Topological Ordering

- Algorithm:
(1) Run DFS on the whole graph
(2) Output the ordering with decreasing finishing time
(3) Check if this is a topological ordering. If not, return not acyclic.
- Why does this work?
(parenthesis lemma)

Lemma

If G is a $D A G$, then for any $(u, v) \in E, F[v]<F[u]$ for any DFS.

- We have 2 cases:
- Case 2: $S[v]>S[u]$.
- Since visited $[v]=0$ when we start u and $(u, v) \in E, v$ will be a descendant of u in DFS tree.
- Parenthesis lemma implies $[S[v], F[v]] \subset[S[u], F[u]]$

Constructing a Topological Ordering

- Algorithm:
(1) Run DFS on the whole graph
(2) Output the ordering with decreasing finishing time
(3) Check if this is a topological ordering. If not, return not acyclic.
- Why does this work?
(parenthesis lemma)

Lemma

If G is a $D A G$, then for any $(u, v) \in E, F[v]<F[u]$ for any DFS.

- Correctness:
(1) By lemma G is a DAG \Rightarrow all edges go forward in this ordering
(2) G has a cycle, then there is no topological order by proposition

Constructing a Topological Ordering

- Algorithm:
(1) Run DFS on the whole graph
(2) Output the ordering with decreasing finishing time
(3) Check if this is a topological ordering. If not, return not acyclic.
- Why does this work?
(parenthesis lemma)

Lemma

If G is a $D A G$, then for any $(u, v) \in E, F[v]<F[u]$ for any DFS.

- Correctness:
(1) By lemma G is a DAG \Rightarrow all edges go forward in this ordering
(2) G has a cycle, then there is no topological order by proposition
- Running time: $O(n+m) \quad$ (can obtain sorted list within algorithm)
- Directed Graphs
- Reachability
- BFS/DFS trees
- Directed Acyclic Graphs (DAGs) \& Topological Sort
- Strongly Connected Components
- Acknowledgements

Strongly Connected Components (SCCs)

- Input: directed graph $G(V, E)$
- Output: Strongly connected components of G

Strongly Connected Components (SCCs)

- Input: directed graph $G(V, E)$
- Output: Strongly connected components of G
- Observation 1: SCCs are vertex disjoint

picture from
[DPV 3.4]

Exercise: Prove this

Strongly Connected Components (SCCs)

- Input: directed graph $G(V, E)$
- Output: Strongly connected components of G
- Observation 1: SCCs are vertex disjoint

picture from
[DPV 3.4]

Exercise: Prove this

- Observation 2: general directed graph is a DAG on its SCCs!

Strongly Connected Components (SCCs)

- Input: directed graph $G(V, E)$
- Output: Strongly connected components of G
- Observation 1: SCCs are vertex disjoint

(b)

picture from
[DPV 3.4]

Exercise: Prove this

- Observation 2: general directed graph is a DAG on its SCCs!
- Can we find a "topological sorting" of the SCCs? Need to find one component...

Strongly Connected Components

- Idea 1: If we started a DFS/BFS in a "sink component" 「 (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \backslash \Gamma$.

Can we find such a component?

Strongly Connected Components

- Idea 1: If we started a DFS/BFS in a "sink component" 「 (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \backslash \Gamma$.

Can we find such a component?

- Attempt 1: "topological sort" the components.
(1) If components are a DAG, then must have a sink.

Strongly Connected Components

- Idea 1: If we started a DFS/BFS in a "sink component" 「 (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \backslash \Gamma$.

Can we find such a component?

- Attempt 1: "topological sort" the components.
(1) If components are a DAG, then must have a sink.
(2) From DAG discussion, node with earlierst finish time will be a sink.

Strongly Connected Components

- Idea 1: If we started a DFS/BFS in a "sink component" Γ (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \backslash \Gamma$.

Can we find such a component?

- Attempt 1: "topological sort" the components.
(1) If components are a DAG, then must have a sink.
(2) From DAG discussion, node with earlierst finish time will be a sink.
(3) run DFS and obtain ordering in increasing finishing time, let s be element with earliest finish time

Strongly Connected Components

- Idea 1: If we started a DFS/BFS in a "sink component" Γ (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \backslash \Gamma$.

Can we find such a component?

- Attempt 1: "topological sort" the components.
(1) If components are a DAG, then must have a sink.
(2) From DAG discussion, node with earlierst finish time will be a sink.
(3) run DFS and obtain ordering in increasing finishing time, let s be element with earliest finish time
(9) apply idea 1 to s, and obtain its SCC

Strongly Connected Components

- Idea 1: If we started a DFS/BFS in a "sink component" 「 (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \backslash \Gamma$.

Can we find such a component?

- Attempt 1: "topological sort" the components.
(1) If components are a DAG, then must have a sink.
(2) From DAG discussion, node with earlierst finish time will be a sink.
(3) run DFS and obtain ordering in increasing finishing time, let s be element with earliest finish time
(4) apply idea 1 to s, and obtain its SCC

Doesn't work: node of earliest finishing time need not be in sink component.

Strongly Connected Components

- Idea 1: If we started a DFS/BFS in a "sink component" Γ (with no outgoing edges), then we will certainly find only Γ and then we can recurse on $G \backslash \Gamma$.

Can we find such a component?

- Attempt 1: "topological sort" the components.
(1) If components are a DAG, then must have a sink.
(2) From DAG discussion, node with earlierst finish time will be a sink.
(3) run DFS and obtain ordering in increasing finishing time, let s be element with earliest finish time
(9) apply idea 1 to s, and obtain its SCC
- Observation 3: note that node with largest finishing time will be in a source component!

Strongly Connected Components

Lemma

If Γ and Γ^{\prime} are two SCCs and we have edges from Γ to Γ^{\prime}, then largest finish time of Γ is larger than largest finish time of Γ^{\prime}.

Strongly Connected Components

Lemma

If Γ and Γ^{\prime} are two SCCs and we have edges from Γ to Γ^{\prime}, then largest finish time of Γ is larger than largest finish time of Γ^{\prime}.

- Proof: two cases

Strongly Connected Components

Lemma

If Γ and Γ^{\prime} are two SCCs and we have edges from Γ to Γ^{\prime}, then largest finish time of Γ is larger than largest finish time of Γ^{\prime}.

- Proof: two cases
- Case 1: first visited vertex $u \in \Gamma \sqcup \Gamma^{\prime}$ is in Γ
- Since vertices in $\Gamma \sqcup \Gamma^{\prime}$ are reachable from u, all vertices in $\Gamma \sqcup \Gamma^{\prime}$ will be finished before u, so largest finishing time will be of u

Strongly Connected Components

Lemma

If Γ and Γ^{\prime} are two SCCs and we have edges from Γ to Γ^{\prime}, then largest finish time of Γ is larger than largest finish time of Γ^{\prime}.

- Proof: two cases
- Case 1: first visited vertex $u \in \Gamma \sqcup \Gamma^{\prime}$ is in Γ
- Since vertices in $\Gamma \sqcup \Gamma^{\prime}$ are reachable from u, all vertices in $\Gamma \sqcup \Gamma^{\prime}$ will be finished before u, so largest finishing time will be of u
- Case 2: first visited vertex $u \in \Gamma \sqcup \Gamma^{\prime}$ is in Γ^{\prime}
- Since vertices from Γ unreachable from Γ^{\prime}, DFS needs to finish exploring Γ^{\prime} before starting any vertex in Γ.

Strongly Connected Components

- Were looking for sinks, but found sources... how to deal with it?

Strongly Connected Components

- Were looking for sinks, but found sources... how to deal with it?
- Reverse the edges of the graph! Then sources become sinks (and vice-versa)!

Strongly Connected Components

- Were looking for sinks, but found sources... how to deal with it?
- Reverse the edges of the graph! Then sources become sinks (and vice-versa)!
- Let G^{R} be the graph obtained from G by reverting all edges G and G^{R} have same SCCs!!

Strongly Connected Components

- Were looking for sinks, but found sources... how to deal with it?
- Reverse the edges of the graph! Then sources become sinks (and vice-versa)!
- Let G^{R} be the graph obtained from G by reverting all edges G and G^{R} have same SCCs!!

ATHMOMEGIBIUSECI		

- Can follow the ordering of the finishing times of DFS applied to G^{R} to get our sink components in G! (or vice-versa!)

Strongly Connected Components - Algorithm

- Input: directed graph $G(V, E)$
- Output: Strongly connected components of G
- Algorithm:
(1) Run DFS on G using arbitrary ordering of vertices
(2) Order vertices by decreasing order of finishing times, label vertices by u_{1}, \ldots, u_{n} with $F\left[u_{i}\right]>F\left[u_{i+1}\right]$
(3) Reverse G to obtain G^{R}
(3) Follow ordering in Step 2 to explore G^{R} and cut out one SCC at a time
- Let $\gamma=1$
(counts \# SCCs)
- For $1 \leq i \leq n$ do:

If visited $\left[u_{i}\right]=0$, then: $\operatorname{DFS}\left(G^{R}, u_{i}\right)$ and mark all vertices reachable from u_{i} in G^{R} to be in component $\boldsymbol{\Gamma}_{\gamma}$. Then set $\gamma \leftarrow \gamma+1$

Acknowledgement

- Based on Prof. Lau's lecture 07
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L07.pdf

References I

B
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press
Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

