
Lecture 13: Minimum Spanning Trees

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 26, 2023

1 / 41



Overview

Minimum Spanning Trees
Boruvka’s Algorithm
Prim’s Algorithm
Kruskal’s algorithm
Reverse-Delete

Acknowledgements

2 / 41



Minimum Spanning Trees (MST)

Input: undirected (connected) weighted graph G (V ,E ,w), where
w : E → R>0

Will assume n = O(m), since our graph is connected.

Output: A minimum weight spanning tree T , where

w(T ) :=
∑
e∈T

we

Cheapest way to build a connected subgraph

Observation: when we > 0, note that any optimal solution must be
an MST

Property 1: Removing edge of cycle cannot disconnect the graph.

Very tempting to choose edge of minimum weight, will this work?

3 / 41



Minimum Spanning Trees (MST)

Input: undirected (connected) weighted graph G (V ,E ,w), where
w : E → R>0

Will assume n = O(m), since our graph is connected.

Output: A minimum weight spanning tree T , where

w(T ) :=
∑
e∈T

we

Cheapest way to build a connected subgraph

Observation: when we > 0, note that any optimal solution must be
an MST

Property 1: Removing edge of cycle cannot disconnect the graph.

Very tempting to choose edge of minimum weight, will this work?

4 / 41



Minimum Spanning Trees (MST)

Input: undirected (connected) weighted graph G (V ,E ,w), where
w : E → R>0

Will assume n = O(m), since our graph is connected.

Output: A minimum weight spanning tree T , where

w(T ) :=
∑
e∈T

we

Cheapest way to build a connected subgraph

Observation: when we > 0, note that any optimal solution must be
an MST

Property 1: Removing edge of cycle cannot disconnect the graph.

Very tempting to choose edge of minimum weight, will this work?

5 / 41



Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

Let e = {u, v} be a cheapest edge, and T be an MST. If e ∈ T , we
are done, so suppose that is not the case.

Let H = T + e. Note that H contains a unique cycle (& contains e).

Let f ∈ H \ e be any other edge in the above cycle. Then we have
H − f is connected by property 1. Hence, H \ f is a spanning tree.

As e is a cheapest edge, we have

w(H \ f ) = w(H)− w(f ) = w(T ) + w(e)− w(f ) ≤ w(T )

as we assumed T is MST, we must have H \ f also MST.

6 / 41



Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

Let e = {u, v} be a cheapest edge, and T be an MST. If e ∈ T , we
are done, so suppose that is not the case.

Let H = T + e. Note that H contains a unique cycle (& contains e).

Let f ∈ H \ e be any other edge in the above cycle. Then we have
H − f is connected by property 1. Hence, H \ f is a spanning tree.

As e is a cheapest edge, we have

w(H \ f ) = w(H)− w(f ) = w(T ) + w(e)− w(f ) ≤ w(T )

as we assumed T is MST, we must have H \ f also MST.

7 / 41



Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

Let e = {u, v} be a cheapest edge, and T be an MST. If e ∈ T , we
are done, so suppose that is not the case.

Let H = T + e. Note that H contains a unique cycle (& contains e).

Let f ∈ H \ e be any other edge in the above cycle. Then we have
H − f is connected by property 1. Hence, H \ f is a spanning tree.

As e is a cheapest edge, we have

w(H \ f ) = w(H)− w(f ) = w(T ) + w(e)− w(f ) ≤ w(T )

as we assumed T is MST, we must have H \ f also MST.

8 / 41



Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

Let e = {u, v} be a cheapest edge, and T be an MST. If e ∈ T , we
are done, so suppose that is not the case.

Let H = T + e. Note that H contains a unique cycle (& contains e).

Let f ∈ H \ e be any other edge in the above cycle. Then we have
H − f is connected by property 1. Hence, H \ f is a spanning tree.

As e is a cheapest edge, we have

w(H \ f ) = w(H)− w(f ) = w(T ) + w(e)− w(f ) ≤ w(T )

as we assumed T is MST, we must have H \ f also MST.

9 / 41



Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

Let e = {u, v} be a cheapest edge, and T be an MST. If e ∈ T , we
are done, so suppose that is not the case.

Let H = T + e. Note that H contains a unique cycle (& contains e).

Let f ∈ H \ e be any other edge in the above cycle. Then we have
H − f is connected by property 1. Hence, H \ f is a spanning tree.

As e is a cheapest edge, we have

w(H \ f ) = w(H)− w(f ) = w(T ) + w(e)− w(f ) ≤ w(T )

as we assumed T is MST, we must have H \ f also MST.

10 / 41



Cheapest Edge on a Vertex

Lemma (Cheapest Edge on a Vertex)

For each u ∈ V , there is an MST containing cheapest edge incident on u.

Proof is identical to previous lemma.

11 / 41



Greedy Algorithms

Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST

Find cheapest edge e = {u, v}, and “contract” vertices u, v ,
obtaining a graph with one less vertex.

Boruvka’s algorithm:
1 Perform the following operations until we have one vertex left

for each vertex in the graph, find its edge of minimum cost.
build a forest with these selected edges
contract the connected components of this forest

each iteration of the above algorithm (Boruvka step), takes O(m)
time to complete

each Boruvka step at least halves the number of vertices

Running time: O(m log n).

12 / 41



Greedy Algorithms

Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST

Find cheapest edge e = {u, v}, and “contract” vertices u, v ,
obtaining a graph with one less vertex.

Boruvka’s algorithm:
1 Perform the following operations until we have one vertex left

for each vertex in the graph, find its edge of minimum cost.
build a forest with these selected edges1

contract the connected components of this forest

each iteration of the above algorithm (Boruvka step), takes O(m)
time to complete

each Boruvka step at least halves the number of vertices

Running time: O(m log n).

1For simplicity, assuming weights are distinct, so we don’t need to break ties
13 / 41



Greedy Algorithms

Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST

Find cheapest edge e = {u, v}, and “contract” vertices u, v ,
obtaining a graph with one less vertex.

Boruvka’s algorithm:
1 Perform the following operations until we have one vertex left

for each vertex in the graph, find its edge of minimum cost.
build a forest with these selected edges
contract the connected components of this forest

each iteration of the above algorithm (Boruvka step), takes O(m)
time to complete

each Boruvka step at least halves the number of vertices

Running time: O(m log n).

14 / 41



Greedy Algorithms

Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST

Find cheapest edge e = {u, v}, and “contract” vertices u, v ,
obtaining a graph with one less vertex.

Boruvka’s algorithm:
1 Perform the following operations until we have one vertex left

for each vertex in the graph, find its edge of minimum cost.
build a forest with these selected edges
contract the connected components of this forest

each iteration of the above algorithm (Boruvka step), takes O(m)
time to complete

each Boruvka step at least halves the number of vertices

Running time: O(m log n).

15 / 41



Greedy Algorithms

Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST

Find cheapest edge e = {u, v}, and “contract” vertices u, v ,
obtaining a graph with one less vertex.

Boruvka’s algorithm:
1 Perform the following operations until we have one vertex left

for each vertex in the graph, find its edge of minimum cost.
build a forest with these selected edges
contract the connected components of this forest

each iteration of the above algorithm (Boruvka step), takes O(m)
time to complete

each Boruvka step at least halves the number of vertices

Running time: O(m log n).

16 / 41



Cheapest Edge in a Cut

Cut: a cut in a graph is a bipartition of the vertex set

V = S ⊔ (S \ V )

The edges of the cut, denoted δ(S), is the set of edges e = {u, v}
with u ∈ S and v ̸∈ S

δ(S) = {{u, v} ∈ E | u ∈ S , v ̸∈ S}

17 / 41



Cheapest Edge in a Cut

Cut: a cut in a graph is a bipartition of the vertex set

V = S ⊔ (S \ V )

The edges of the cut, denoted δ(S), is the set of edges e = {u, v}
with u ∈ S and v ̸∈ S

δ(S) = {{u, v} ∈ E | u ∈ S , v ̸∈ S}

Lemma (Cheapest Edge in Cut)

For every nonempty subset ∅ ≠ S ⊂ V , there is a MST containing
cheapest edge in cut (S ,V \ S).

18 / 41



Cut Property Lemma
We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F ⊆ E be a forest which is part of some MST of G . For every
nonempty subset ∅ ≠ S ⊂ V with δ(S) ∩ F = ∅, there is a MST
containing F and the cheapest edge in cut (S ,V \ S).

Proof by exchange argument: let T be a MST which contains F , and
let e be cheapest edge in δ(S).

If e ∈ T we are done, so assume e ̸∈ T .

Note that T + e must contain exactly one cycle, and this cycle
contains e. Moreover, this cycle contains another edge from δ(S), as
T connects the graph. Let f ̸= e be this other edge.

By minimality of e, we have

w(T + e − f ) = w(T ) + w(e)− w(f ) ≤ w(t)

F ⊂ T + e − f , since F ⊂ T and F ∩ δ(S) = ∅

19 / 41



Cut Property Lemma
We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F ⊆ E be a forest which is part of some MST of G . For every
nonempty subset ∅ ≠ S ⊂ V with δ(S) ∩ F = ∅, there is a MST
containing F and the cheapest edge in cut (S ,V \ S).

Proof by exchange argument: let T be a MST which contains F , and
let e be cheapest edge in δ(S).

If e ∈ T we are done, so assume e ̸∈ T .

Note that T + e must contain exactly one cycle, and this cycle
contains e. Moreover, this cycle contains another edge from δ(S), as
T connects the graph. Let f ̸= e be this other edge.

By minimality of e, we have

w(T + e − f ) = w(T ) + w(e)− w(f ) ≤ w(t)

F ⊂ T + e − f , since F ⊂ T and F ∩ δ(S) = ∅

20 / 41



Cut Property Lemma
We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F ⊆ E be a forest which is part of some MST of G . For every
nonempty subset ∅ ≠ S ⊂ V with δ(S) ∩ F = ∅, there is a MST
containing F and the cheapest edge in cut (S ,V \ S).

Proof by exchange argument: let T be a MST which contains F , and
let e be cheapest edge in δ(S).

If e ∈ T we are done, so assume e ̸∈ T .

Note that T + e must contain exactly one cycle, and this cycle
contains e. Moreover, this cycle contains another edge from δ(S), as
T connects the graph. Let f ̸= e be this other edge.

By minimality of e, we have

w(T + e − f ) = w(T ) + w(e)− w(f ) ≤ w(t)

F ⊂ T + e − f , since F ⊂ T and F ∩ δ(S) = ∅

21 / 41



Cut Property Lemma
We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F ⊆ E be a forest which is part of some MST of G . For every
nonempty subset ∅ ≠ S ⊂ V with δ(S) ∩ F = ∅, there is a MST
containing F and the cheapest edge in cut (S ,V \ S).

Proof by exchange argument: let T be a MST which contains F , and
let e be cheapest edge in δ(S).

If e ∈ T we are done, so assume e ̸∈ T .

Note that T + e must contain exactly one cycle, and this cycle
contains e. Moreover, this cycle contains another edge from δ(S), as
T connects the graph. Let f ̸= e be this other edge.

By minimality of e, we have

w(T + e − f ) = w(T ) + w(e)− w(f ) ≤ w(t)

F ⊂ T + e − f , since F ⊂ T and F ∩ δ(S) = ∅

22 / 41



Cut Property Lemma
We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F ⊆ E be a forest which is part of some MST of G . For every
nonempty subset ∅ ≠ S ⊂ V with δ(S) ∩ F = ∅, there is a MST
containing F and the cheapest edge in cut (S ,V \ S).

Proof by exchange argument: let T be a MST which contains F , and
let e be cheapest edge in δ(S).

If e ∈ T we are done, so assume e ̸∈ T .

Note that T + e must contain exactly one cycle, and this cycle
contains e. Moreover, this cycle contains another edge from δ(S), as
T connects the graph. Let f ̸= e be this other edge.

By minimality of e, we have

w(T + e − f ) = w(T ) + w(e)− w(f ) ≤ w(t)

F ⊂ T + e − f , since F ⊂ T and F ∩ δ(S) = ∅

23 / 41



Cut Property Lemma
We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F ⊆ E be a forest which is part of some MST of G . For every
nonempty subset ∅ ≠ S ⊂ V with δ(S) ∩ F = ∅, there is a MST
containing F and the cheapest edge in cut (S ,V \ S).

Proof by exchange argument: let T be a MST which contains F , and
let e be cheapest edge in δ(S).

If e ∈ T we are done, so assume e ̸∈ T .

Note that T + e must contain exactly one cycle, and this cycle
contains e. Moreover, this cycle contains another edge from δ(S), as
T connects the graph. Let f ̸= e be this other edge.

By minimality of e, we have

w(T + e − f ) = w(T ) + w(e)− w(f ) ≤ w(t)

F ⊂ T + e − f , since F ⊂ T and F ∩ δ(S) = ∅
24 / 41



Prim’s algorithm

Idea: start from arbitrary vertex s and grow connected component
one vertex at a time

Algorithm
1 F = ∅, S = {s}
2 While S ̸= V :

let e = {u, v} ∈ δ(S) be a cheapest edge, with u ∈ S , v ̸∈ S
F ← F + e, S ← S ∪ {v}

3 return F

Correctness: follows from cut property lemma

Runtime: need to find cheapest edge fast. How can we do that? Via
priority-queue (a balanced BST).
Using such a priority-queue, runtime is given by O(m log n).

25 / 41



Prim’s algorithm

Idea: start from arbitrary vertex s and grow connected component
one vertex at a time

Algorithm
1 F = ∅, S = {s}
2 While S ̸= V :

let e = {u, v} ∈ δ(S) be a cheapest edge, with u ∈ S , v ̸∈ S
F ← F + e, S ← S ∪ {v}

3 return F

Correctness: follows from cut property lemma

Runtime: need to find cheapest edge fast. How can we do that? Via
priority-queue (a balanced BST).
Using such a priority-queue, runtime is given by O(m log n).

26 / 41



Prim’s algorithm

Idea: start from arbitrary vertex s and grow connected component
one vertex at a time

Algorithm
1 F = ∅, S = {s}
2 While S ̸= V :

let e = {u, v} ∈ δ(S) be a cheapest edge, with u ∈ S , v ̸∈ S
F ← F + e, S ← S ∪ {v}

3 return F

Correctness: follows from cut property lemma

Runtime: need to find cheapest edge fast. How can we do that? Via
priority-queue (a balanced BST).
Using such a priority-queue, runtime is given by O(m log n).

27 / 41



Prim’s algorithm

Idea: start from arbitrary vertex s and grow connected component
one vertex at a time

Algorithm
1 F = ∅, S = {s}
2 While S ̸= V :

let e = {u, v} ∈ δ(S) be a cheapest edge, with u ∈ S , v ̸∈ S
F ← F + e, S ← S ∪ {v}

3 return F

Correctness: follows from cut property lemma

Runtime: need to find cheapest edge fast. How can we do that? Via
priority-queue (a balanced BST).
Using such a priority-queue, runtime is given by O(m log n).

28 / 41



Prim - Full Implementation

Full Algorithm
1 F = ∅, S = {s}, p[u] = NULL for all u ∈ V

D[u] =∞ for all u ∈ V \ {s}, D[s] = 0 (distance to set S)
Q = V priority-queue (balanced BST with keys given by D)

2 While Q ̸= ∅:
u = EXTRACT-MIN(Q)
For v ∈ N(u):

if wuv < D[v ], then:
set D[v ] = wuv ,
p[v ] = u and do
DECREASE-KEY(Q, v)

F ← F + {u, p[u]}, S ← S ∪ {u}
3 return F

29 / 41



Kruskal’s Algorithm

Idea: consider edges from cheapest to most expensive, and add edge
to the solution as long as it doesn’t create a cycle

Algorithm
1 F = ∅
2 Sort edges in non-decreasing weights, so w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
3 For 1 ≤ i ≤ m:

If F ∪ {ei} doesn’t create a cycle, then F ← F ∪ {ei}
4 return F

Correctness: follows from cut property lemma

Running Time: need to check if the two endpoints of edges ei
belong to same component in forest F .

UNION-FIND

30 / 41



Kruskal’s Algorithm

Idea: consider edges from cheapest to most expensive, and add edge
to the solution as long as it doesn’t create a cycle

Algorithm
1 F = ∅
2 Sort edges in non-decreasing weights, so w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
3 For 1 ≤ i ≤ m:

If F ∪ {ei} doesn’t create a cycle, then F ← F ∪ {ei}
4 return F

Correctness: follows from cut property lemma

Running Time: need to check if the two endpoints of edges ei
belong to same component in forest F .

UNION-FIND

31 / 41



Kruskal’s Algorithm

Idea: consider edges from cheapest to most expensive, and add edge
to the solution as long as it doesn’t create a cycle

Algorithm
1 F = ∅
2 Sort edges in non-decreasing weights, so w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
3 For 1 ≤ i ≤ m:

If F ∪ {ei} doesn’t create a cycle, then F ← F ∪ {ei}
4 return F

Correctness: follows from cut property lemma

Running Time: need to check if the two endpoints of edges ei
belong to same component in forest F .

UNION-FIND

32 / 41



Kruskal’s Algorithm

Idea: consider edges from cheapest to most expensive, and add edge
to the solution as long as it doesn’t create a cycle

Algorithm
1 F = ∅
2 Sort edges in non-decreasing weights, so w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
3 For 1 ≤ i ≤ m:

If F ∪ {ei} doesn’t create a cycle, then F ← F ∪ {ei}
4 return F

Correctness: follows from cut property lemma

Running Time: need to check if the two endpoints of edges ei
belong to same component in forest F .

UNION-FIND

33 / 41



Kruskal’s Algorithm - Full Implementation

UNION-FIND data-structure
1 MAKESET(x): creates singleton set containing just x
2 FIND(x): returns which set x belongs to
3 UNION(x , y): merge sets containing x and y

Can implement all these operations in O(log n) time when there are
at most n elements

Algorithm:

F := ∅, MAKESET(u) for each u ∈ V
Sort edges in non-decreasing weights, so w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
For 1 ≤ i ≤ m: let ei = {u, v}

If FIND(u) ̸= FIND(v) (i.e. F ∪ {ei} doesn’t create a cycle):
F ← F ∪ {ei} and UNION(u, v)

return F

Each data structure operation can be done in O(log n) time, then
total running time is O(m log n).

34 / 41



Kruskal’s Algorithm - Full Implementation

UNION-FIND data-structure
1 MAKESET(x): creates singleton set containing just x
2 FIND(x): returns which set x belongs to
3 UNION(x , y): merge sets containing x and y

Can implement all these operations in O(log n) time when there are
at most n elements1

Algorithm:

F := ∅, MAKESET(u) for each u ∈ V
Sort edges in non-decreasing weights, so w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
For 1 ≤ i ≤ m: let ei = {u, v}

If FIND(u) ̸= FIND(v) (i.e. F ∪ {ei} doesn’t create a cycle):
F ← F ∪ {ei} and UNION(u, v)

return F

Each data structure operation can be done in O(log n) time, then
total running time is O(m log n).

1And in CS 466 we see how to do it even faster! :)
35 / 41



Kruskal’s Algorithm - Full Implementation

UNION-FIND data-structure
1 MAKESET(x): creates singleton set containing just x
2 FIND(x): returns which set x belongs to
3 UNION(x , y): merge sets containing x and y

Can implement all these operations in O(log n) time when there are
at most n elements1

Algorithm:

F := ∅, MAKESET(u) for each u ∈ V
Sort edges in non-decreasing weights, so w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
For 1 ≤ i ≤ m: let ei = {u, v}

If FIND(u) ̸= FIND(v) (i.e. F ∪ {ei} doesn’t create a cycle):
F ← F ∪ {ei} and UNION(u, v)

return F

Each data structure operation can be done in O(log n) time, then
total running time is O(m log n).

1And in CS 466 we see how to do it even faster! :)
36 / 41



Kruskal’s Algorithm - Full Implementation

UNION-FIND data-structure
1 MAKESET(x): creates singleton set containing just x
2 FIND(x): returns which set x belongs to
3 UNION(x , y): merge sets containing x and y

Can implement all these operations in O(log n) time when there are
at most n elements1

Algorithm:

F := ∅, MAKESET(u) for each u ∈ V
Sort edges in non-decreasing weights, so w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
For 1 ≤ i ≤ m: let ei = {u, v}

If FIND(u) ̸= FIND(v) (i.e. F ∪ {ei} doesn’t create a cycle):
F ← F ∪ {ei} and UNION(u, v)

return F

Each data structure operation can be done in O(log n) time, then
total running time is O(m log n).

1And in CS 466 we see how to do it even faster! :)
37 / 41



Reverse-Delete Algorithm

Idea: keep removing heaviest edge as long as remaining graph still
connected.

Correctness of this algorithm follows from the following lemma

Lemma (Cycle Property)

If C is any cycle in G and e ∈ C is a most expensive edge belonging to C ,
then there is T MST of G such that e ̸∈ T .
If all edges have distinct weights, then e does not belong to any MST of G .

38 / 41



Reverse-Delete Algorithm

Idea: keep removing heaviest edge as long as remaining graph still
connected.

Correctness of this algorithm follows from the following lemma

Lemma (Cycle Property)

If C is any cycle in G and e ∈ C is a most expensive edge belonging to C ,
then there is T MST of G such that e ̸∈ T .
If all edges have distinct weights, then e does not belong to any MST of G .

39 / 41



Acknowledgement

Based on Prof. Lau’s Lecture 10

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L10.pdf

Also based on [?, Chapters 2 and 4]KT

40 / 41

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L10.pdf


References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

41 / 41


	Minimum Spanning Trees
	
	Boruvka's Algorithm
	Prim's Algorithm
	Kruskal's algorithm
	Reverse-Delete

	Acknowledgements

