Lecture 13: Minimum Spanning Trees

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 26, 2023

1/41

Overview

@ Minimum Spanning Trees
Boruvka's Algorithm
Prim’s Algorithm
Kruskal's algorithm
Reverse-Delete

@ Acknowledgements

2/41

Minimum Spanning Trees (MST)

@ Input: undirected (connected) weighted graph G(V, E, w), where
w:E—Ryg

Will assume n = O(m), since our graph is connected.

@ QOutput: A minimum weight spanning tree T, where

w(T):= Z We

ecT

3/41

Minimum Spanning Trees (MST)

Input: undirected (connected) weighted graph G(V/, E, w), where
w:E—Ryg

Will assume n = O(m), since our graph is connected.

Output: A minimum weight spanning tree T, where

w(T):= Z We

ecT

Cheapest way to build a connected subgraph

Observation: when we > 0, note that any optimal solution must be
an MST

Property 1: Removing edge of cycle cannot disconnect the graph.

4/41

Minimum Spanning Trees (MST)

Input: undirected (connected) weighted graph G(V/, E, w), where
w:E—Ryg

Will assume n = O(m), since our graph is connected.

Output: A minimum weight spanning tree T, where

w(T):= Z We

ecT

Cheapest way to build a connected subgraph

Observation: when we > 0, note that any optimal solution must be
an MST

Property 1: Removing edge of cycle cannot disconnect the graph.

Very tempting to choose edge of minimum weight, will this work?

5/41

Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

6/41

Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

@ Let e = {u, v} be a cheapest edge, and T be an MST. If e € T, we
are done, so suppose that is not the case.

7/4

Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

@ Let e = {u, v} be a cheapest edge, and T be an MST. If e € T, we
are done, so suppose that is not the case.

@ Let H= T + e. Note that H contains a unique cycle (& contains e).

8/41

Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

@ Let e = {u, v} be a cheapest edge, and T be an MST. If e € T, we
are done, so suppose that is not the case.

@ Let H= T + e. Note that H contains a unique cycle (& contains e).

o Let f € H\ e be any other edge in the above cycle. Then we have
H — f is connected by property 1. Hence, H \ f is a spanning tree.

9/41

Cheapest Edge Lemma

Lemma (Cheapest Edge)

There is an MST which contains an edge of minimum weight.

@ Let e = {u, v} be a cheapest edge, and T be an MST. If e € T, we
are done, so suppose that is not the case.

@ Let H= T + e. Note that H contains a unique cycle (& contains e).

o Let f € H\ e be any other edge in the above cycle. Then we have
H — f is connected by property 1. Hence, H \ f is a spanning tree.

@ As e is a cheapest edge, we have
w(H\ f) = w(H) — w(f) = w(T) + w(e) — w(f) < w(T)

as we assumed T is MST, we must have H \ f also MST.

10/41

Cheapest Edge on a Vertex

Lemma (Cheapest Edge on a Vertex)

For each u € V, there is an MST containing cheapest edge incident on u.

@ Proof is identical to previous lemma.

11/41

Greedy Algorithms

@ Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST

Find cheapest edge e = {u, v}, and “contract” vertices u, v,
obtaining a graph with one less vertex.

12/41

Greedy Algorithms

@ Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST

Find cheapest edge e = {u, v}, and “contract” vertices u, v,
obtaining a graph with one less vertex.
o Boruvka’s algorithm:
© Perform the following operations until we have one vertex left

o for each vertex in the graph, find its edge of minimum cost.
o build a forest with these selected edges’
@ contract the connected components of this forest

For simplicity, assuming weights are distinct, so we don't need to break ties
13/41

Greedy Algorithms

@ Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST

Find cheapest edge e = {u, v}, and “contract” vertices u, v,
obtaining a graph with one less vertex.
@ Boruvka’s algorithm:
@ Perform the following operations until we have one vertex left

o for each vertex in the graph, find its edge of minimum cost.
@ build a forest with these selected edges
@ contract the connected components of this forest

@ each iteration of the above algorithm (Boruvka step), takes O(m)
time to complete

14 /41

Greedy Algorithms

@ Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST
Find cheapest edge e = {u, v}, and “contract” vertices u, v,
obtaining a graph with one less vertex.
@ Boruvka’s algorithm:

@ Perform the following operations until we have one vertex left

o for each vertex in the graph, find its edge of minimum cost.
@ build a forest with these selected edges
@ contract the connected components of this forest

@ each iteration of the above algorithm (Boruvka step), takes O(m)
time to complete

@ each Boruvka step at least halves the number of vertices

15 /41

Greedy Algorithms

@ Note that the cheapest edge lemmas give an efficient algorithm
(greedy) to construct an MST
Find cheapest edge e = {u, v}, and “contract” vertices u, v,
obtaining a graph with one less vertex.
@ Boruvka’s algorithm:

@ Perform the following operations until we have one vertex left

o for each vertex in the graph, find its edge of minimum cost.
@ build a forest with these selected edges
@ contract the connected components of this forest

@ each iteration of the above algorithm (Boruvka step), takes O(m)
time to complete

@ each Boruvka step at least halves the number of vertices

@ Running time: O(mlogn).

16 /41

Cheapest Edge in a Cut

@ Cut: a cut in a graph is a bipartition of the vertex set
V=SU(Ss\Vv)

The edges of the cut, denoted §(S), is the set of edges e = {u, v}
withue Sandvegs$S

5(S)={{u,v} € E|ueS,vegSs}

17/41

Cheapest Edge in a Cut

@ Cut: a cut in a graph is a bipartition of the vertex set
V=Su(s\Vv)

The edges of the cut, denoted §(S), is the set of edges e = {u, v}
withue Sandvegs

5(S)={{u,v}€E|ueS,v¢gS}

Lemma (Cheapest Edge in Cut)

For every nonempty subset () #S C V, there is a MST containing
cheapest edge in cut (S, V'\ S).

18/41

Cut Property Lemma

We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F C E be a forest which is part of some MST of G. For every
nonempty subset) # S C V with §(S) N F = (), there is a MST
containing F and the cheapest edge in cut (S,V \ S).

19/41

Cut Property Lemma

We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F C E be a forest which is part of some MST of G. For every
nonempty subset) # S C V with §(S) N F = (), there is a MST
containing F and the cheapest edge in cut (S,V \ S).

@ Proof by exchange argument: let T be a MST which contains F, and
let e be cheapest edge in §(5).

20/41

Cut Property Lemma

We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F C E be a forest which is part of some MST of G. For every
nonempty subset) # S C V with §(S) N F = (), there is a MST
containing F and the cheapest edge in cut (S,V \ S).

@ Proof by exchange argument: let T be a MST which contains F, and
let e be cheapest edge in §(S).

o If e € T we are done, so assume e ¢ T.

21/41

Cut Property Lemma

We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F C E be a forest which is part of some MST of G. For every
nonempty subset) # S C V with §(S) N F = (), there is a MST
containing F and the cheapest edge in cut (S,V \ S).

@ Proof by exchange argument: let T be a MST which contains F, and
let e be cheapest edge in §(S).

o If e € T we are done, so assume e ¢ T.

@ Note that T + e must contain exactly one cycle, and this cycle
contains e. Moreover, this cycle contains another edge from §(S), as
T connects the graph. Let f # e be this other edge.

22/41

Cut Property Lemma

We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F C E be a forest which is part of some MST of G. For every
nonempty subset) # S C V with §(S) N F = (), there is a MST
containing F and the cheapest edge in cut (S,V \ S).

@ Proof by exchange argument: let T be a MST which contains F, and
let e be cheapest edge in §(S).

o If e € T we are done, so assume e ¢ T.

@ Note that T + e must contain exactly one cycle, and this cycle
contains e. Moreover, this cycle contains another edge from §(S), as
T connects the graph. Let f # e be this other edge.

@ By minimality of e, we have

w(T+e—1)=w(T)+ w(e) — w(f) < w(t)

23/41

Cut Property Lemma

We will prove the following more general lemma.

Lemma (Cut Property Lemma)

Let F C E be a forest which is part of some MST of G. For every
nonempty subset) # S C V with §(S) N F = (), there is a MST
containing F and the cheapest edge in cut (S,V \ S).

@ Proof by exchange argument: let T be a MST which contains F, and
let e be cheapest edge in §(S).

o If e € T we are done, so assume e ¢ T.

@ Note that T + e must contain exactly one cycle, and this cycle
contains e. Moreover, this cycle contains another edge from §(S), as
T connects the graph. Let f # e be this other edge.

@ By minimality of e, we have

w(T+e—f)=w(T)+ w(e) — w(f) < w(t)
e FCT+e—f,since FCTand FNJS)=0

24 /41

Prim's algorithm

o ldea: start from arbitrary vertex s and grow connected component
one vertex at a time

25/41

Prim's algorithm

o ldea: start from arbitrary vertex s and grow connected component
one vertex at a time

@ Algorithm
Q@ F=0,S={s}
@ While S # V:

o let e = {u, v} € 6(S) be a cheapest edge, with u€ S, v¢ S
@ F«—F+e S+ Su{v}

© return F

26/41

Prim's algorithm

o ldea: start from arbitrary vertex s and grow connected component
one vertex at a time

@ Algorithm
Q@ F=0,S={s}
@ While S # V:

o let e = {u, v} € 6(S) be a cheapest edge, with u€ S, v¢ S
@ F«—F+e S+ Su{v}

© return F
o Correctness: follows from cut property lemma

27 /41

Prim's algorithm

o ldea: start from arbitrary vertex s and grow connected component
one vertex at a time

@ Algorithm
Q F=0,5S={s}
@ While S # V:

o let e = {u, v} € 6(S) be a cheapest edge, with u€ S, v¢ S
@ F«—F+e S+ Su{v}

© return F
o Correctness: follows from cut property lemma

@ Runtime: need to find cheapest edge fast. How can we do that? Via
priority-queue (a balanced BST).
Using such a priority-queue, runtime is given by O(mlog n).

28 /41

Prim - Full Implementation

o Full Algorithm
Q@ F=0,S=1{s}, plu] = NULL for all u e V

e Dlul=cc forall ue V\{s}, D[s]=0 (distance to set S)
e @ = V priority-queue (balanced BST with keys given by D)
@ While Q # 0:

o u=EXTRACT-MIN(Q)
e For v e N(u):
if wyy < DJ[v], then:
set D[v] = wyy,
p[v] = v and do
DECREASE-KEY(Q, v)
o F+ F+{up[u]}, S+ SU{u}

@ return F

29/41

Kruskal's Algorithm

o Idea: consider edges from cheapest to most expensive, and add edge
to the solution as long as it doesn't create a cycle

30/41

Kruskal's Algorithm

o Idea: consider edges from cheapest to most expensive, and add edge
to the solution as long as it doesn't create a cycle
@ Algorithm
@ F=0
@ Sort edges in non-decreasing weights, so w(e) < w(e) < -+ < w(ey)
Q@ Forl<i<m:
If FU{e;} doesn't create a cycle, then F «+ F U {¢;}
@ return F

31/41

Kruskal's Algorithm

o Idea: consider edges from cheapest to most expensive, and add edge
to the solution as long as it doesn't create a cycle
@ Algorithm
Q@ F=0
@ Sort edges in non-decreasing weights, so w(e) < w(e) < -+ < w(ey)
Q@ Forl<i<m:
If FU{e;} doesn't create a cycle, then F «+ F U {¢;}
@ return F

o Correctness: follows from cut property lemma

32/41

Kruskal's Algorithm

o Idea: consider edges from cheapest to most expensive, and add edge
to the solution as long as it doesn't create a cycle
@ Algorithm
Q@ F=0
@ Sort edges in non-decreasing weights, so w(e) < w(e) < -+ < w(ey)
Q@ Forl<i<m:
If FU{e;} doesn't create a cycle, then F «+ F U {¢;}
@ return F
o Correctness: follows from cut property lemma

@ Running Time: need to check if the two endpoints of edges ¢;
belong to same component in forest F.

UNION-FIND

33/41

Kruskal's Algorithm - Full Implementation

@ UNION-FIND data-structure

@ MAKESET(x): creates singleton set containing just x
@ FIND(x): returns which set x belongs to
© UNION(x, y): merge sets containing x and y

34/41

Kruskal's Algorithm - Full Implementation

@ UNION-FIND data-structure
@ MAKESET(x): creates singleton set containing just x
@ FIND(x): returns which set x belongs to
© UNION(x, y): merge sets containing x and y

e Can implement all these operations in O(log n) time when there are

at most n elements!

'And in CS 466 we see how to do it even faster! :)

35/41

Kruskal's Algorithm - Full Implementation

@ UNION-FIND data-structure
@ MAKESET(x): creates singleton set containing just x
@ FIND(x): returns which set x belongs to
© UNION(x, y): merge sets containing x and y
e Can implement all these operations in O(log n) time when there are
at most n elements!
@ Algorithm:
o F:=0, MAKESET (u) for each u e V
o Sort edges in non-decreasing weights, so w(er) < w(e) < -+ < w(ep)
o For1< i< m: let ¢ ={u,v}
If FIND(u) # FIND(v) (i.e. FU{ei} doesn't create a cycle):
F < FU{e} and UNION(u,v)
e return F

'And in CS 466 we see how to do it even faster! :)
36 /41

Kruskal's Algorithm - Full Implementation

@ UNION-FIND data-structure
@ MAKESET(x): creates singleton set containing just x
@ FIND(x): returns which set x belongs to
© UNION(x, y): merge sets containing x and y
e Can implement all these operations in O(log n) time when there are
at most n elements!
@ Algorithm:
o F:=0, MAKESET (u) for each u e V
o Sort edges in non-decreasing weights, so w(er) < w(e) < -+ < w(ep)
o For1< i< m: let ¢ ={u,v}
If FIND(u) # FIND(v) (i.e. FU{ei} doesn't create a cycle):
F < FU{e} and UNION(u,v)
e return F
e Each data structure operation can be done in O(log n) time, then
total running time is O(mlog n).

'And in CS 466 we see how to do it even faster! :)
37/41

Reverse-Delete Algorithm

o ldea: keep removing heaviest edge as long as remaining graph still
connected.

38/41

Reverse-Delete Algorithm

o ldea: keep removing heaviest edge as long as remaining graph still
connected.

@ Correctness of this algorithm follows from the following lemma

Lemma (Cycle Property)

If C is any cycle in G and e € C is a most expensive edge belonging to C,
then there is T MST of G such thate & T.
If all edges have distinct weights, then e does not belong to any MST of G.

39/41

Acknowledgement

@ Based on Prof. Lau's Lecture 10
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L10.pdf
@ Also based on [?, Chapters 2 and 4]KT

40 /41

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L10.pdf

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

ﬁ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

41/41

	Minimum Spanning Trees
	
	Boruvka's Algorithm
	Prim's Algorithm
	Kruskal's algorithm
	Reverse-Delete

	Acknowledgements

