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Single-Source Shortest Paths

Input: Weighted directed graph G (V ,E ,w), where w : E → R>0,
vertex s ∈ V

Adjacency list.

Output: a shortest path from s to t for any t ∈ V

How should we output all these paths?

Just as in unweighted case (BFS), could output a “directed tree”
where we can read off the shortest paths.

Succinct representation of the output.

Why can’t I just use BFS?
Need to account for the weights of edges - shortest path not
necessarily given by least number of edges.

Can we modify our graph so that it becomes unweighted?

OUI et NON! Let’s look at that now...
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Shortest Paths as BFS

Can imagine our graph as a set of water pipes

Length of pipes given by edge weights.
Assume w : E → N.

When we pump water through s, spreads at uniform speed

At each time τ , if water reaches another vertex t, we record the
distance s → t to be τ

Making above intuition algorithmic:
Make unweighted graph H(U,F ) from G as follows

1 For each e := (u, v) ∈ E , create path of length w(e) from u → v in H
Add new vertices and edges appropriately.

2 Run BFS on H, starting from s
3 Return “compressed tree” only having vertices from V

Problem: running time of above algorithm will be linear in H, but
O(|U|+ |F |) = O

(
n +

∑
e∈E w(e)

)
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Dijkstra’s Algorithm

Idea: simulate physical process above directly in G

Algorithm
1 T = ∅, R = {s}, D[u] = ∞ for u ̸= s, D[s] = 0, Q = V
2 While Q ̸= ∅:

let u ∈ V \ R be closest vertex to R, e = (v , u) be edge such that

D[v ] + w(e) minimizes distance s → u

extract u from Q
T ← T + e, R ← R ∪ {u}

3 return T

Correctness: follows from our BFS process

Runtime: need to find closest vertex & update distances fast.

How can we do that?
Via priority-queue (min heap).

Using such a priority-queue, runtime is given by O((n +m) log n).
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Dijkstra - Full Implementation

Full Algorithm
1 Initialization:

T = ∅, (edges of our shortest-path)
R = {s}, (set of “reached vertices”)
p[u] = NULL for all u ∈ V (parents)
D[u] =∞ for all u ∈ V \ {s}, D[s] = 0 (distance to s)
Q = V priority-queue (min heap w/ values given by D)

2 While Q ̸= ∅:
u = EXTRACT-MIN(Q)
For v ∈ Nout(u):

if D[u] + w((u, v)) < D[v ], then:
set D[v ] = D[u] + w((u, v)),
p[v ] = u,
DECREASE-KEY(Q, v)

T ← T + (p[u], u), R ← R ∪ {u}
3 return T
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Runtime of Dijkstra’s Algorithm

Each vertex is enqueued once and dequeued once

When vertex is dequeued, check outgoing edges and update distances
(if needed)

All queue operations implemented in O(log n) time by min-heap

Total runtime:

O

((
n +

∑
u∈V

degout(u)

)
log n

)
= O((n +m) log n)
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Correctness of Dijkstra’s Algorithm
Similar analysis than the one we did for MST

Proof of correctness by induction.
Claim: for any u ∈ R, D[u] is the shortest path distance from s → u

1 Base case: true when R = {s}
2 Induction step: assume invariant holds for R, and the algorithm adds

u to R. Want to show that D[u] is the shortest path distance s → u.
3 Need to prove that

D[u] = min
w∈R

D[w ] + w((w , u))

is the shortest path distance s → u.
4 By choice of u, we have that D[u] ≤ D[v ] for any v ̸∈ R.
5 Since D[u] is the distance of some s → u path, we know it is at least

the shortest path distance.
6 For the converse, consider any s → u path P. Since s ∈ R and u ̸∈ R,

there is edge (x , v) ∈ P where x ∈ R and v ̸∈ R. (R is a cut)

⇒ ℓ(P) ≥ D[x ] + w((x , v))

as D[x ] is shortest s → x distance, since x ∈ R
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Correctness of Dijkstra’s (continued)

We have

ℓ(P) ≥ D[x ] + w((x , v))

OBS: here we used non-negative edge weights.

But we know that

D[x ] + w(x , v) ≥ D[v ] ≥ D[u]

as u was chosen by the algorithm.

Thus, we have
ℓ(P) ≥ D[u]

Since the above holds for any s → u path, D[u] is the shortest path
distance.
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Shortest Path Tree

Just like we did for BFS and DFS, the set of edges (p[u], u) form a
(directed) tree.

Since such edges (by construction) satisfy

D[u] = D[p[u]] + w(p[u], u)

and we just proved that D[u] is the shortest s → u path distance, this
tree stores all shortest path distances from s!
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