Lecture 14: Single-Source Shortest Paths

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 31, 2023

1/32



Overview

@ Dijkstra’s Algorithm
o Single-Source Shortest Paths
o Weighted Shortest Paths as a BFS
e Dijkstra’s Algorithm

@ Acknowledgements

2/32



Single-Source Shortest Paths

o Input: Weighted directed graph G(V, E, w), where w : E — Ry,
vertex s € V

Adjacency list.
@ Output: a shortest path from s to t for any t € V

3/32



Single-Source Shortest Paths

e Input: Weighted directed graph G(V, E,w), where w : E — R+,

vertex s € V
Adjacency list.

@ Output: a shortest path from s to t for any t € V

@ Think of graph as the network of roads in a province

o Edge weights account for how long it takes to drive through that edge
(i.e. traffic)

4/32



Single-Source Shortest Paths

o Input: Weighted directed graph G(V, E, w), where w : E — Ry,
vertex s € V
Adjacency list.
@ Output: a shortest path from s to t for any t € V
@ How should we output all these paths?

Just as in unweighted case (BFS), could output a “directed tree'
where we can read off the shortest paths.

Succinct representation of the output.

5/32



Single-Source Shortest Paths

o Input: Weighted directed graph G(V, E, w), where w : E — Ry,
vertex s € V

Adjacency list.
@ Output: a shortest path from s to t for any t € V
@ How should we output all these paths?

Just as in unweighted case (BFS), could output a “directed tree”
where we can read off the shortest paths.

Succinct representation of the output.

@ Why can’t | just use BFS?
Need to account for the weights of edges - shortest path not
necessarily given by least number of edges.

6/32



Single-Source Shortest Paths

o Input: Weighted directed graph G(V, E, w), where w : E — Ry,
vertex s € V

Adjacency list.
@ Output: a shortest path from s to t for any t € V
@ How should we output all these paths?

Just as in unweighted case (BFS), could output a “directed tree”
where we can read off the shortest paths.

Succinct representation of the output.

@ Why can’t | just use BFS?
Need to account for the weights of edges - shortest path not
necessarily given by least number of edges.

@ Can we modify our graph so that it becomes unweighted?
OUI et NON! Let's look at that now...

7/32



Shortest Paths as BFS

@ Can imagine our graph as a set of water pipes
Length of pipes given by edge weights.
Assume w : E — N.

8/32



Shortest Paths as BFS

@ Can imagine our graph as a set of water pipes
Length of pipes given by edge weights.
Assume w : E — N.

@ When we pump water through s, spreads at uniform speed

9/32



Shortest Paths as BFS

@ Can imagine our graph as a set of water pipes
Length of pipes given by edge weights.
Assume w : E — N.
@ When we pump water through s, spreads at uniform speed

@ At each time 7, if water reaches another vertex t, we record the
distance s — t to be 7

10/32



Shortest Paths as BFS

@ Can imagine our graph as a set of water pipes
Length of pipes given by edge weights.
Assume w : E — N.
@ When we pump water through s, spreads at uniform speed

@ At each time 7, if water reaches another vertex t, we record the
distance s — t to be 7
@ Making above intuition algorithmic:
o Make unweighted graph H(U, F) from G as follows

@ For each e := (u,v) € E, create path of length w(e) from u — v in H
Add new vertices and edges appropriately.

@ Run BFS on H, starting from s

© Return “compressed tree” only having vertices from V

11/32



Shortest Paths as BFS

Can imagine our graph as a set of water pipes

Length of pipes given by edge weights.
Assume w : E — N.

When we pump water through s, spreads at uniform speed

At each time 7, if water reaches another vertex t, we record the
distance s — t to be 7

Making above intuition algorithmic:
o Make unweighted graph H(U, F) from G as follows

@ For each e := (u,v) € E, create path of length w(e) from u — v in H
Add new vertices and edges appropriately.

@ Run BFS on H, starting from s

© Return “compressed tree” only having vertices from V

Problem: running time of above algorithm will be linear in H, but
O(|Ul +[Fl) = O (n+ X cp w(e))

12/32



Dijkstra’s Algorithm

o ldea: simulate physical process above directly in G

13/32



Dijkstra’s Algorithm

o ldea: simulate physical process above directly in G
@ Algorithm
Q@ 7T=0,R={s}, Dlul=ccforu+#s, D[s]=0, Q=V
@ While Q # 0:
@ let u € V\ R be closest vertex to R, e = (v, u) be edge such that
D[v] + w(e) minimizes distance s — u

@ extract u from @
o T+ T+e R+ RU{u}

©Q retun T

14/32



Dijkstra’s Algorithm

o ldea: simulate physical process above directly in G
@ Algorithm
Q@ 7T=0,R={s}, Dlul=ccforu+#s, D[s]=0, Q=V
@ While Q # 0:
@ let u € V\ R be closest vertex to R, e = (v, u) be edge such that
D[v] + w(e) minimizes distance s — u

@ extract u from @
o T+ T+e R+ RU{u}

©Q retun T

@ Correctness: follows from our BFS process

15/32



Dijkstra’s Algorithm

o ldea: simulate physical process above directly in G
@ Algorithm
Q@ 7T=0,R={s}, Dlul=ccforu+#s, D[s]=0, Q=V
@ While Q # 0:
@ let u € V\ R be closest vertex to R, e = (v, u) be edge such that
D[v] + w(e) minimizes distance s — u
@ extract u from @
o T+ T+e R+ RU{u}
© return T
@ Correctness: follows from our BFS process

Runtime: need to find closest vertex & update distances fast.
How can we do that?
Via priority-queue (min heap).
Using such a priority-queue, runtime is given by O((n+ m)log n).

16 /32



Dijkstra - Full Implementation

o Full Algorithm
© Initialization:

o T =0, (edges of our shortest-path)
o R={s}, (set of “reached vertices")
o plu] = NULL for all u € V (parents)
@ D[u] = oo forall ue V\{s}, D[s]=0 (distance to s)
e Q =V priority-queue (min heap w/ values given by D)

@ While Q # 0:
e u=EXTRACT-MIN(Q)
o For v € Nou(u):

if D[u] + w((u, v)) < D[v], then:

se[t ]Dlv] = D[u] + w((u, v)),
DECREASE-KEY(Q, v)
o T+ T+(plul,u), R+ RU{u}

Q retun T

17/32



Runtime of Dijkstra’s Algorithm

@ Each vertex is enqueued once and dequeued once

@ When vertex is dequeued, check outgoing edges and update distances
(if needed)

@ All queue operations implemented in O(log n) time by min-heap

o Total runtime:

o ((n + Z degout(u)> log n) = O((n+ m)log n)

ueV

18/32



Correctness of Dijkstra's Algorithm

@ Similar analysis than the one we did for MST

@ Proof of correctness by induction.
e Claim: for any u € R, D[u] is the shortest path distance from s — u

19/32



Correctness of Dijkstra's Algorithm

@ Proof of correctness by induction.
e Claim: for any u € R, D[u] is the shortest path distance from s — u
© Base case: true when R = {s}

20/32



Correctness of Dijkstra's Algorithm

@ Proof of correctness by induction.
e Claim: for any u € R, D[u] is the shortest path distance from s — u

© Base case: true when R = {s}
@ Induction step: assume invariant holds for R, and the algorithm adds
u to R. Want to show that D[u] is the shortest path distance s — u.

21/32



Correctness of Dijkstra’s Algorithm

@ Proof of correctness by induction.
e Claim: for any u € R, D[u] is the shortest path distance from s — u

© Base case: true when R = {s}

@ Induction step: assume invariant holds for R, and the algorithm adds
u to R. Want to show that D[u] is the shortest path distance s — u.

© Need to prove that

D[u] = min Dw] + w((w, u))

is the shortest path distance s — u.

22/32



Correctness of Dijkstra’s Algorithm

@ Proof of correctness by induction.
e Claim: for any u € R, D[u] is the shortest path distance from s — u

© Base case: true when R = {s}

@ Induction step: assume invariant holds for R, and the algorithm adds
u to R. Want to show that D[u] is the shortest path distance s — u.

© Need to prove that

D[u] = min Dw] + w((w, u))

is the shortest path distance s — u.
@ By choice of u, we have that D[u] < D[v] for any v ¢ R.

23/32



Correctness of Dijkstra’s Algorithm

@ Proof of correctness by induction.
e Claim: for any u € R, D[u] is the shortest path distance from s — u
© Base case: true when R = {s}
@ Induction step: assume invariant holds for R, and the algorithm adds
u to R. Want to show that D[u] is the shortest path distance s — u.
© Need to prove that

D[u] = min Dw] + w((w, u))

is the shortest path distance s — u.

By choice of u, we have that D[u] < D][v] for any v &€ R.

Since D[u] is the distance of some s — u path, we know it is at least
the shortest path distance.

00

24/32



Correctness of Dijkstra’s Algorithm

@ Proof of correctness by induction.
e Claim: for any u € R, D[u] is the shortest path distance from s — u
© Base case: true when R = {s}
@ Induction step: assume invariant holds for R, and the algorithm adds
u to R. Want to show that D[u] is the shortest path distance s — u.
© Need to prove that

D[u] = min Dw] + w((w, u))

is the shortest path distance s — u.

By choice of u, we have that D[u] < D][v] for any v &€ R.

Since D[u] is the distance of some s — u path, we know it is at least

the shortest path distance.

@ For the converse, consider any s — u path P. Since s € R and u ¢ R,
there is edge (x,v) € P where x € R and v ¢ R. (R is a cut)

00

= ((P) = DIx] + w((x, v))
as D[x] is shortest s — x distance, since x € R

25/32



Correctness of Dijkstra’s (continued)

@ We have

{(P) = D[x] + w((x,v))

OBS: here we used non-negative edge weights.

26/32



Correctness of Dijkstra’s (continued)

@ We have

{(P) = DIx] + w((x,v))
OBS: here we used non-negative edge weights.

@ But we know that
D[x] + w(x,v) = D[v] > D[u]

as u was chosen by the algorithm.

27/32



Correctness of Dijkstra’s (continued)

@ We have

{(P) = DIx] + w((x,v))
OBS: here we used non-negative edge weights.

@ But we know that
D[x] + w(x,v) = D[v] > D[u]

as u was chosen by the algorithm.

@ Thus, we have
¢(P) > DJ[u]

Since the above holds for any s — u path, D[u] is the shortest path
distance.

28/32



Shortest Path Tree

@ Just like we did for BFS and DFS, the set of edges (p[u], u) form a
(directed) tree.

29/32



Shortest Path Tree

@ Just like we did for BFS and DFS, the set of edges (p[u], u) form a
(directed) tree.

@ Since such edges (by construction) satisfy
D[u] = D[p[u]] + w(p[u], u)

and we just proved that D[u] is the shortest s — u path distance, this
tree stores all shortest path distances from s!

30/32



Acknowledgement

@ Based on Prof. Lau's Lecture 9
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L09.pdf

@ Also based on [Kleinberg Tardos 2006, Chapter 4]

@ For refresher on min heaps, see [CLRS 2009, Chapter 6.5]

31/32


https://cs.uwaterloo.ca/~lapchi/cs341/notes/L09.pdf

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

ﬁ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

32/32



	Dijkstra's Algorithm
	Single-Source Shortest Paths
	Weighted Shortest Paths as a BFS
	Dijkstra's Algorithm

	Acknowledgements

