Lecture 14: Single-Source Shortest Paths

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

October 31, 2023

Overview

- Dijkstra's Algorithm
- Single-Source Shortest Paths
- Weighted Shortest Paths as a BFS
- Dijkstra's Algorithm
- Acknowledgements

Single-Source Shortest Paths

- Input: Weighted directed graph $G(V, E, w)$, where $w: E \rightarrow \mathbb{R}_{>0}$, vertex $s \in V$

Adjacency list.

- Output: a shortest path from s to t for any $t \in V$

Single-Source Shortest Paths

- Input: Weighted directed graph $G(V, E, w)$, where $w: E \rightarrow \mathbb{R}_{>0}$, vertex $s \in V$

Adjacency list.

- Output: a shortest path from s to t for any $t \in V$
- Think of graph as the network of roads in a province
- Edge weights account for how long it takes to drive through that edge (i.e. traffic)

Single-Source Shortest Paths

- Input: Weighted directed graph $G(V, E, w)$, where $w: E \rightarrow \mathbb{R}_{>0}$, vertex $s \in V$

Adjacency list.

- Output: a shortest path from s to t for any $t \in V$
- How should we output all these paths?

Just as in unweighted case (BFS), could output a "directed tree" where we can read off the shortest paths.
Succinct representation of the output.

Single-Source Shortest Paths

- Input: Weighted directed graph $G(V, E, w)$, where $w: E \rightarrow \mathbb{R}_{>0}$, vertex $s \in V$

Adjacency list.

- Output: a shortest path from s to t for any $t \in V$
- How should we output all these paths?

Just as in unweighted case (BFS), could output a "directed tree" where we can read off the shortest paths.
Succinct representation of the output.

- Why can't I just use BFS?

Need to account for the weights of edges - shortest path not necessarily given by least number of edges.

Single-Source Shortest Paths

- Input: Weighted directed graph $G(V, E, w)$, where $w: E \rightarrow \mathbb{R}_{>0}$, vertex $s \in V$

Adjacency list.

- Output: a shortest path from s to t for any $t \in V$
- How should we output all these paths?

Just as in unweighted case (BFS), could output a "directed tree" where we can read off the shortest paths.
Succinct representation of the output.

- Why can't I just use BFS?

Need to account for the weights of edges - shortest path not necessarily given by least number of edges.

- Can we modify our graph so that it becomes unweighted? OUI et NON! Let's look at that now...

Shortest Paths as BFS

- Can imagine our graph as a set of water pipes

Length of pipes given by edge weights.
Assume $w: E \rightarrow \mathbb{N}$.

Shortest Paths as BFS

- Can imagine our graph as a set of water pipes

Length of pipes given by edge weights.
Assume $w: E \rightarrow \mathbb{N}$.

- When we pump water through s, spreads at uniform speed

Shortest Paths as BFS

- Can imagine our graph as a set of water pipes

Length of pipes given by edge weights.
Assume $w: E \rightarrow \mathbb{N}$.

- When we pump water through s, spreads at uniform speed
- At each time τ, if water reaches another vertex t, we record the distance $s \rightarrow t$ to be τ

Shortest Paths as BFS

- Can imagine our graph as a set of water pipes

Length of pipes given by edge weights.

$$
\text { Assume } w: E \rightarrow \mathbb{N}
$$

- When we pump water through s, spreads at uniform speed
- At each time τ, if water reaches another vertex t, we record the distance $s \rightarrow t$ to be τ
- Making above intuition algorithmic:
- Make unweighted graph $H(U, F)$ from G as follows
(1) For each $e:=(u, v) \in E$, create path of length $w(e)$ from $u \rightarrow v$ in H Add new vertices and edges appropriately.
(2) Run BFS on H, starting from s
(3) Return "compressed tree" only having vertices from V

Shortest Paths as BFS

- Can imagine our graph as a set of water pipes

Length of pipes given by edge weights.

$$
\text { Assume } w: E \rightarrow \mathbb{N} \text {. }
$$

- When we pump water through s, spreads at uniform speed
- At each time τ, if water reaches another vertex t, we record the distance $s \rightarrow t$ to be τ
- Making above intuition algorithmic:
- Make unweighted graph $H(U, F)$ from G as follows
(1) For each $e:=(u, v) \in E$, create path of length $w(e)$ from $u \rightarrow v$ in H Add new vertices and edges appropriately.
(2) Run BFS on H, starting from s
(3) Return "compressed tree" only having vertices from V
- Problem: running time of above algorithm will be linear in H, but $O(|U|+|F|)=O\left(n+\sum_{e \in E} w(e)\right)$

Dijkstra's Algorithm

- Idea: simulate physical process above directly in G

Dijkstra's Algorithm

- Idea: simulate physical process above directly in G
- Algorithm
(1) $T=\emptyset, R=\{s\}, D[u]=\infty$ for $u \neq s, D[s]=0, Q=V$
(2) While $Q \neq \emptyset$:
- let $u \in V \backslash R$ be closest vertex to $R, e=(v, u)$ be edge such that $D[v]+w(e)$ minimizes distance $s \rightarrow u$
- extract u from Q
- $T \leftarrow T+e, R \leftarrow R \cup\{u\}$
(3) return T

Dijkstra's Algorithm

- Idea: simulate physical process above directly in G
- Algorithm
(1) $T=\emptyset, R=\{s\}, D[u]=\infty$ for $u \neq s, D[s]=0, Q=V$
(2) While $Q \neq \emptyset$:
- let $u \in V \backslash R$ be closest vertex to $R, e=(v, u)$ be edge such that $D[v]+w(e)$ minimizes distance $s \rightarrow u$
- extract u from Q
- $T \leftarrow T+e, R \leftarrow R \cup\{u\}$
(3) return T
- Correctness: follows from our BFS process

Dijkstra's Algorithm

- Idea: simulate physical process above directly in G
- Algorithm
(1) $T=\emptyset, R=\{s\}, D[u]=\infty$ for $u \neq s, D[s]=0, Q=V$
(2) While $Q \neq \emptyset$:
- let $u \in V \backslash R$ be closest vertex to $R, e=(v, u)$ be edge such that $D[v]+w(e)$ minimizes distance $s \rightarrow u$
- extract u from Q
- $T \leftarrow T+e, R \leftarrow R \cup\{u\}$
(3) return T
- Correctness: follows from our BFS process
- Runtime: need to find closest vertex \& update distances fast.

How can we do that?
Via priority-queue (min heap).
Using such a priority-queue, runtime is given by $O((n+m) \log n)$.

Dijkstra - Full Implementation

- Full Algorithm
(1) Initialization:
- $T=\emptyset$, (edges of our shortest-path)
- $R=\{s\}$, (set of "reached vertices")
- $p[u]=N U L L$ for all $u \in V$ (parents)
- $D[u]=\infty$ for all $u \in V \backslash\{s\}, D[s]=0$
(distance to s)
- $Q=V$ priority-queue (min heap $w /$ values given by D)
(2) While $Q \neq \emptyset$:
- $u=\operatorname{EXTRACT}-\operatorname{MIN}(Q)$
- For $v \in N_{\text {out }}(u)$:
if $D[u]+w((u, v))<D[v]$, then:
set $D[v]=D[u]+w((u, v))$, $p[v]=u$, DECREASE-KEY (Q, v)
- $T \leftarrow T+(p[u], u), R \leftarrow R \cup\{u\}$
(3) return T

Runtime of Dijkstra's Algorithm

- Each vertex is enqueued once and dequeued once
- When vertex is dequeued, check outgoing edges and update distances (if needed)
- All queue operations implemented in $O(\log n)$ time by min-heap
- Total runtime:

$$
O\left(\left(n+\sum_{u \in V} \operatorname{deg}_{\text {out }}(u)\right) \log n\right)=O((n+m) \log n)
$$

Correctness of Dijkstra's Algorithm

- Similar analysis than the one we did for MST
- Proof of correctness by induction.
- Claim: for any $u \in R, D[u]$ is the shortest path distance from $s \rightarrow u$

Correctness of Dijkstra's Algorithm

- Proof of correctness by induction.
- Claim: for any $u \in R, D[u]$ is the shortest path distance from $s \rightarrow u$
(1) Base case: true when $R=\{s\}$

Correctness of Dijkstra's Algorithm

- Proof of correctness by induction.
- Claim: for any $u \in R, D[u]$ is the shortest path distance from $s \rightarrow u$
(1) Base case: true when $R=\{s\}$
(2) Induction step: assume invariant holds for R, and the algorithm adds u to R. Want to show that $D[u]$ is the shortest path distance $s \rightarrow u$.

Correctness of Dijkstra's Algorithm

- Proof of correctness by induction.
- Claim: for any $u \in R, D[u]$ is the shortest path distance from $s \rightarrow u$
(1) Base case: true when $R=\{s\}$
(2) Induction step: assume invariant holds for R, and the algorithm adds u to R. Want to show that $D[u]$ is the shortest path distance $s \rightarrow u$.
(3) Need to prove that

$$
D[u]=\min _{w \in R} D[w]+w((w, u))
$$

is the shortest path distance $s \rightarrow u$.

Correctness of Dijkstra's Algorithm

- Proof of correctness by induction.
- Claim: for any $u \in R, D[u]$ is the shortest path distance from $s \rightarrow u$
(1) Base case: true when $R=\{s\}$
(2) Induction step: assume invariant holds for R, and the algorithm adds u to R. Want to show that $D[u]$ is the shortest path distance $s \rightarrow u$.
(3) Need to prove that

$$
D[u]=\min _{w \in R} D[w]+w((w, u))
$$

is the shortest path distance $s \rightarrow u$.
(9) By choice of u, we have that $D[u] \leq D[v]$ for any $v \notin R$.

Correctness of Dijkstra's Algorithm

- Proof of correctness by induction.
- Claim: for any $u \in R, D[u]$ is the shortest path distance from $s \rightarrow u$
(1) Base case: true when $R=\{s\}$
(2) Induction step: assume invariant holds for R, and the algorithm adds u to R. Want to show that $D[u]$ is the shortest path distance $s \rightarrow u$.
(3) Need to prove that

$$
D[u]=\min _{w \in R} D[w]+w((w, u))
$$

is the shortest path distance $s \rightarrow u$.
(9) By choice of u, we have that $D[u] \leq D[v]$ for any $v \notin R$.
(5) Since $D[u]$ is the distance of some $s \rightarrow u$ path, we know it is at least the shortest path distance.

Correctness of Dijkstra's Algorithm

- Proof of correctness by induction.
- Claim: for any $u \in R, D[u]$ is the shortest path distance from $s \rightarrow u$
(1) Base case: true when $R=\{s\}$
(2) Induction step: assume invariant holds for R, and the algorithm adds u to R. Want to show that $D[u]$ is the shortest path distance $s \rightarrow u$.
(3) Need to prove that

$$
D[u]=\min _{w \in R} D[w]+w((w, u))
$$

is the shortest path distance $s \rightarrow u$.
(9) By choice of u, we have that $D[u] \leq D[v]$ for any $v \notin R$.
(5) Since $D[u]$ is the distance of some $s \rightarrow u$ path, we know it is at least the shortest path distance.
(0) For the converse, consider any $s \rightarrow u$ path P. Since $s \in R$ and $u \notin R$, there is edge $(x, v) \in P$ where $x \in R$ and $v \notin R$.
(R is a cut)

$$
\Rightarrow \ell(P) \geq D[x]+w((x, v))
$$

as $D[x]$ is shortest $s \rightarrow x$ distance, since $x \in R$

Correctness of Dijkstra's (continued)

- We have

$$
\ell(P) \geq D[x]+w((x, v))
$$

OBS: here we used non-negative edge weights.

Correctness of Dijkstra's (continued)

- We have

$$
\ell(P) \geq D[x]+w((x, v))
$$

OBS: here we used non-negative edge weights.

- But we know that

$$
D[x]+w(x, v) \geq D[v] \geq D[u]
$$

as u was chosen by the algorithm.

Correctness of Dijkstra's (continued)

- We have

$$
\ell(P) \geq D[x]+w((x, v))
$$

OBS: here we used non-negative edge weights.

- But we know that

$$
D[x]+w(x, v) \geq D[v] \geq D[u]
$$

as u was chosen by the algorithm.

- Thus, we have

$$
\ell(P) \geq D[u]
$$

Since the above holds for any $s \rightarrow u$ path, $D[u]$ is the shortest path distance.

Shortest Path Tree

- Just like we did for BFS and DFS, the set of edges ($p[u], u$) form a (directed) tree.

Shortest Path Tree

- Just like we did for BFS and DFS, the set of edges ($p[u], u$) form a (directed) tree.
- Since such edges (by construction) satisfy

$$
D[u]=D[p[u]]+w(p[u], u)
$$

and we just proved that $D[u]$ is the shortest $s \rightarrow u$ path distance, this tree stores all shortest path distances from s !

Acknowledgement

- Based on Prof. Lau's Lecture 9
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L09.pdf
- Also based on [Kleinberg Tardos 2006, Chapter 4]
- For refresher on min heaps, see [CLRS 2009, Chapter 6.5]

References I

B
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press
Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

