Lecture 15: All-pairs shortest paths

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 2, 2023

1/48



Overview

@ Single-Source Shortest Paths with Arbitrary Weights
o How Dijkstra goes wrong
o Negative Cycles
o Bellman-Ford: Dynamic Programming for the rescue!
o Shortest Path Tree

o All-Pairs Shortest Paths
o Floyd-Warshall: “mo’ paths mo’ subproblems”

@ Acknowledgements

2/48



Single-Source Shortest Paths

o Input: Input: Weighted directed graph G(V, E, w), where
w:E — R, vertexse V

Adjacency list. Note that weights can be arbitrary.
@ Output: a shortest path from s to t for any t € V

3/48



Single-Source Shortest Paths

o Input: Input: Weighted directed graph G(V, E, w), where
w:E — R, vertexse V

Adjacency list. Note that weights can be arbitrary.
@ Output: a shortest path from s to t for any t € V
@ Why not Dijkstra?

o Negative weights = may have negative cycles.

4/48



Single-Source Shortest Paths

Input: Input: Weighted directed graph G(V, E, w), where
w:E — R, vertexse V

Adjacency list. Note that weights can be arbitrary.
QOutput: a shortest path from s to t for any t € V
Why not Dijkstra?

Negative weights = may have negative cycles.

Even without negative cycles Dijkstra will fail, since we violate the
property of the distance!

5/48



Negative Cycles

@ With negative edges, we may have negative cycles

@ In this case, “shortest paths” will have length —oo (i.e., not well
defined)

6/48



Negative Cycles

@ With negative edges, we may have negative cycles

@ In this case, “shortest paths” will have length —oo (i.e., not well
defined)

@ If we have no negative cycles, then shortest path distance well defined
(as cycles don't help you “go faster”)

7/48



Negative Cycles

@ With negative edges, we may have negative cycles

@ In this case, “shortest paths” will have length —oo (i.e., not well
defined)

@ If we have no negative cycles, then shortest path distance well defined
(as cycles don't help you “go faster”)

@ Can we devise an efficient algorithm that solves the following
problem:

o If G has a negative cycle, output FAIL (output the cycle)
o Else, solve the single-source shortest paths problem

8/48



@ Single-Source Shortest Paths with Arbitrary Weights

e Bellman-Ford: Dynamic Programming for the rescue!

@ All-Pairs Shortest Paths

@ Acknowledgements

9/48



Bellman-Ford

o Template:
© Subproblems
D[v,i] := shortest s — v path distance using at most / edges
@ Base case: D[s,0] =0, and D[v,0] = oo, for all v # s
© Recurrence:

Dlv,i+ 1] = min {D[v, i, UGTIEH?V)(D[U, i1+ w(u, v))}

@ Output: D[v,n—1] forall v e V

10/48



Bellman-Ford

o Template:
© Subproblems
D[v,i] := shortest s — v path distance using at most / edges
@ Base case: D[s,0] =0, and D[v,0] = oo, for all v # s
© Recurrence:

Dlv,i+ 1] = min {D[v, i, UETIERV)(D[U, i1+ w(u, v))}

@ Output: D[v,n—1] forall v e V
@ Why do we only need to check n — 1 times?

If graph has no negative cycle, then shortest walk must be simple
path = < n—1 edges.

11/48



Bellman-Ford

o Algorithm:

@ Initialization: D[s,i] =0, D[v,i] = oo for all v # s and i € [0,n — 1]

plv] = NULL for all v e V
Q forie[n—1]
for (u,v) € E:
if D[u,i — 1] + w(u,v) < D|[v, i]:
Dlv,i+ 1] = D|v,i] = Dlu,i — 1] + w(u, v)
plv] =u
© Output: D[v,n—1] forallve V

12/48



Bellman-Ford

o Algorithm:
@ Initialization: D[s,i] =0, D[v,i] = oo for all v # s and i € [0,n — 1]
plv] = NULL for all v e V
Q forie[n—1]
for (u,v) € E:
if D[u,i — 1] + w(u,v) < D|[v, i]:
Dlv,i+ 1] = D|v,i] = Dlu,i — 1] + w(u, v)
plv] =u
© Output: D[v,n—1] forallve V
@ Running time:
o Initialization: O(n)
o First for loop runs for O(n) iterations. Each iteration takes O(m)
operations, as the for loop on edges takes O(m).
o Total: O(nm)

13/48



Bellman-Ford

o Algorithm:
@ Initialization: D[s,i] =0, D[v,i] = oo for all v # s and i € [0,n — 1]
plv] = NULL for all v e V
Q forie[n—1]
for (u,v) € E:
if D[u,i — 1] + w(u,v) < D|[v, i]:
Dlv,i+ 1] = D|v,i] = Dlu,i — 1] + w(u, v)
plv] =u
© Output: D[v,n—1] forallve V
@ Running time:
o Initialization: O(n)
o First for loop runs for O(n) iterations. Each iteration takes O(m)
operations, as the for loop on edges takes O(m).
o Total: O(nm)

e Space Complexity: O(n?)

14 /48



Bellman-Ford

o Algorithm:
@ Initialization: D[s,i] =0, D[v,i] = oo for all v # s and i € [0,n — 1]
plv] = NULL for all v e V
Q forie[n—1]
for (u,v) € E:
if D[u,i — 1] + w(u,v) < D|[v, i]:
Dlv,i+ 1] = D|v,i] = Dlu,i — 1] + w(u, v)
plv] =u
© Output: D[v,n—1] forallve V
@ Running time:
o Initialization: O(n)
o First for loop runs for O(n) iterations. Each iteration takes O(m)
operations, as the for loop on edges takes O(m).
o Total: O(nm)

e Space Complexity: O(n?)
@ Can reduce space used to be O(n) by not keeping track of i (exercise)

15/48



Shortest Path Tree

@ As in BFS and Dijkstra, would like to return succinct data structure
will all shortest paths

16 /48



Shortest Path Tree

@ As in BFS and Dijkstra, would like to return succinct data structure
will all shortest paths

@ Bellman-Ford has many iterations, not clear whether edges (p[u], v)
will form a tree.

17/48



Shortest Path Tree
@ As in BFS and Dijkstra, would like to return succinct data structure
will all shortest paths

@ Bellman-Ford has many iterations, not clear whether edges (p[u], v)
will form a tree.

@ However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle T in the parent subgraph given by (p|[u], u),
then I must be a negative cycle.

18/48



Shortest Path Tree

@ However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle I in the parent subgraph given by (p[u], u),
then I must be a negative cycle.

o Let ' =(v1,vp, -, vk), completed at path length i.

19/48



Shortest Path Tree

@ However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle I in the parent subgraph given by (p[u], u),
then I must be a negative cycle.

o Let ' =(v1,vp, -, vk), completed at path length i.
e For 1 <j < k must have

Dlvjs1, 1] = Dlv;, if] + w(v}, vj41)

for some IJ/ <ias p[vit1] = vi.

20/48



Shortest Path Tree

@ However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle I in the parent subgraph given by (p[u], u),
then I must be a negative cycle.

o Let ' =(v1,vp, -, vk), completed at path length i.
e For 1 <j < k must have

Dlvjs1, 1] = Dlv;, if] + w(v}, vj41)

for some IJ/ <ias p[vit1] = vi.
e Since distances only decrease as path length increases, by our
algorithm, we have Dlv;, i/] < D[v;,i — 1] < Dlv;, ] and thus

Dlvji1,i] 2 Dlvj, i = 1] + w(vj, vj11)

21/48



Shortest Path Tree

@ However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle I in the parent subgraph given by (p[u], u),
then I must be a negative cycle.

o Let ' =(v1,vp, -, vk), completed at path length i.
e For 1 <j < k must have

Dlvjs1, 1] = Dlv;, if] + w(v}, vj41)

for some IJ/ <ias p[vit1] = vi.
e Since distances only decrease as path length increases, by our
algorithm, we have Dlv;, i/] < D[v;,i — 1] < Dlv;, ] and thus

Dlvji1,i] 2 Dlvj, i = 1] + w(vj, vj11)
e As cycle formed at length / we have to update D[vy, i], which means

D[v1,i —1] > D[vk,i — 1] + w(vk, v1) > D[vk, i] + w(vk, v1)

22/48



Shortest Path Tree

@ Summing up inequalities, we have:

D[v1,1—1]+2 Dlvjy1,i] > ZD[VN 1]+Z w(vj, vjr1)+w(vi, vi)
j=1

which implies

k k
> Dlv;,i1>>_ Dly,i 1]+Z w(vj, vjt1) + w(vi, v1)
j=2 j=2

23/48



Shortest Path Tree

@ Summing up inequalities, we have:

D[v1,1—1]+2 Dlvjy1,i] > ZD[VN 1]+Z w(vj, vjr1)+w(vi, vi)

j=1

which implies

k k
> Dlv,il > Dlvi 1]+Z w(vj, Vi) + w(vi, vi)
=2 =2

@ Using the fact that D[v;,i — 1] > D|v;, i], we obtain

k—1

Z w(vj, vit1) + w(vk,v1) <0
i=1

24/48



Finding Negative Cycles

@ So, how is Bellman-Ford finding a negative cycle, when it exists?

25 /48



Finding Negative Cycles

@ So, how is Bellman-Ford finding a negative cycle, when it exists?

@ Need to prove that after n — 1 iterations, we will find a negative cycle,
if one exists (otherwise we already know our algorithm is correct)

26/48



Finding Negative Cycles

@ So, how is Bellman-Ford finding a negative cycle, when it exists?

@ Need to prove that after n — 1 iterations, we will find a negative cycle,
if one exists (otherwise we already know our algorithm is correct)

o If we have negative cycles, expect D[v, k] -+ —o0 as k — oo

Will go through negative cycle multiple times.

27 /48



Finding Negative Cycles

@ So, how is Bellman-Ford finding a negative cycle, when it exists?

@ Need to prove that after n — 1 iterations, we will find a negative cycle,
if one exists (otherwise we already know our algorithm is correct)

o If we have negative cycles, expect D[v, k] -+ —o0 as k — oo
Will go through negative cycle multiple times.

e If we have no negative cycles, then D[v,n] = D[v,n—1] forall v € V

28/48



Finding Negative Cycles

So, how is Bellman-Ford finding a negative cycle, when it exists?

Need to prove that after n — 1 iterations, we will find a negative cycle,
if one exists (otherwise we already know our algorithm is correct)

If we have negative cycles, expect D[v, k] - —o0 as k — oo

Will go through negative cycle multiple times.

If we have no negative cycles, then D[v,n| = D[v,n—1] for all v € V

Thus, to compute negative cycles, just need to check if
Dlv,n—1] = D[v, n]

29/48



Negative Cycle Lemmas

If G has negative cycle in SCC containing s, then for some v € V,

Dlv, k] - —o0 as k — oo

30/48



Negative Cycle Lemmas

If G has negative cycle in SCC containing s, then for some v € V,

Dlv,k] = —o0 as k — o0

Proof: by definition of D[v, k] and our recurrence, we are always
computing the min distance of s — v paths of length k. Since we can take
the negative cycle multiple times as k — oo there will always be a path of

smaller length.

31/48



Negative Cycle Lemmas

If G has negative cycle in SCC containing s, then for some v € V,

Dlv, k] = —o0 as k — oo

If graph has no negative cycles, then

Dlv,n] = D[v,n—1], for all v € V.

32/48



Negative Cycle Lemmas

If G has negative cycle in SCC containing s, then for some v € V,

Dlv, k] = —o0 as k — o0

If graph has no negative cycles, then

D[v,n] = D[v,n—1], for all v € V.

Proof: every cycle is non-negative, so it doesn't help. Any walk with
length n must contain a cycle, thus not optimal. So we won't update D in
the n" iteration.

33/48



Negative Cycle Lemmas

If G has negative cycle in SCC containing s, then for some v € V,

Dlv, k] - —oc0 as k — oo

If D[v,n] = D[v,n —1] for all v € V/, then G has no negative cycle. I

Proof: By recurrence, and the assumption, we will prove that
D[v,n+ t] = D[v,n—1] for all t > 0. Then first lemma will finish it.

D[v,n+ t + 1] = min {D[v, n+t, uerpvjnn(v)(D[v, n+t] + w(u, v))}
= min {D[v, n—1], uerpvjnn(v)(D[v, n—1] 4+ w(u, v))}
= D|v,n] = D[v,n — 1]

Since no distance — —o0o, G has no negative cycles.
34/48



Full Bellman-Ford

e Algorithm:
@ Initialization: D[s,i] =0, D[v,i] = oo for all v # s and i € [0, n]
plv] = NULL for all v e V
Q for i € [n]:
for (u,v) € E:
if D[u,i — 1] + w(u,v) < D|[v, i]:
Dlv,i+ 1] = D|v,i] = Dlu,i — 1] + w(u, v)
plv] =u
@ If D[v,n—1] = D[v, n] for all v € V output: D[v,n—1] forallve V
© Else, output FAIL.

35/48



Full Bellman-Ford

e Algorithm:
@ Initialization: D[s,i] =0, D[v,i] = oo for all v # s and i € [0, n]
plv] = NULL for all v e V
Q for i € [n]:
for (u,v) € E:
if D[u,i — 1] + w(u,v) < D|[v, i]:
Dlv,i+ 1] = D|v,i] = Dlu,i — 1] + w(u, v)
plv] =u
@ If D[v,n—1] = D[v, n] for all v € V output: D[v,n—1] forallve V
© Else, output FAIL.

@ same running time as before, and space complexity

36/48



Full Bellman-Ford

e Algorithm:
@ Initialization: D[s,i] =0, D[v,i] = oo for all v # s and i € [0, n]
plv] = NULL for all v e V
Q for i € [n]:
for (u,v) € E:
if D[u,i — 1] + w(u,v) < D|[v, i]:
Dlv,i+ 1] = D|v,i] = Dlu,i — 1] + w(u, v)
plv] =u
@ If D[v,n—1] = D[v, n] for all v € V output: D[v,n—1] forallve V
© Else, output FAIL.

@ same running time as before, and space complexity

@ easy to find negative cycle (exercise)

37/48



@ All-Pairs Shortest Paths
o Floyd-Warshall: “mo’ paths mo’ subproblems”

38/48



All-Pairs Shortest Paths

@ Input: Directed, weighted graph G(V, E, w), without negative cycles
@ Output: for all pairs (u, v), the length of the shortest u — v path

39/48



All-Pairs Shortest Paths

@ Input: Directed, weighted graph G(V, E, w), without negative cycles
@ Output: for all pairs (u, v), the length of the shortest u — v path

@ Could apply n iterations of Bellman-Ford, but this would give us
O(n?m) running time

40/48



All-Pairs Shortest Paths

Input: Directed, weighted graph G(V/, E, w), without negative cycles

Output: for all pairs (u, v), the length of the shortest u — v path

Could apply n iterations of Bellman-Ford, but this would give us
O(n?m) running time

@ Can we do better?

Floyd-Warshall: O(n%)

41/48



Floyd-Warshall

Mo' money, mo' problems.

— The Mfetorisus BILG. —

42/48



Floyd-Warshall

@ Simple modification of Bellman-Ford to account for all sources
o Template:
@ Subproblems

Dlu, v, k] := shortest u — v path distance using only vertices
{1,2,...,k} as intermediate vertices.
@ Base case: D[u,v,0] = w(u,v), if (u,v) € E and Dlu, v,0] = oo,
otherwise.
© Recurrence:

Dlu,v,k + 1] = min{D[u, v, k], D[u,k + 1, k] + D[k + 1, v, k]}

@ Output: D[u,v,n] for all u,v e V

43 /48



Full Floyd-Warshall Algorithm

o Algorithm:
@ Initialize: D[u,v,0] = w(u,v), if (u,v) € E and D[u, v,0] = oo,
otherwise.
Q for k € [n]:
for u € [n]:
for v € [n]:
Compute recurrence

Dlu,v,k] = min{D[u,v, k — 1], D[u, k,k — 1] + D[k, v, k — 1])}

© Return D[u, v, n]

44/48



Full Floyd-Warshall Algorithm

o Algorithm:
@ Initialize: D[u,v,0] = w(u,v), if (u,v) € E and D[u, v,0] = oo,
otherwise.
Q for k € [n]:
for u € [n]:
for v € [n]:
Compute recurrence

Dlu,v,k] = min{D[u,v, k — 1], D[u, k,k — 1] + D[k, v, k — 1])}

© Return D[u, v, n]

@ Running Time: three nested loops, each of length n. Computing
within the loops takes O(1) time, so total running time O(n?).

45 /48



Full Floyd-Warshall Algorithm

o Algorithm:
@ Initialize: D[u,v,0] = w(u,v), if (u,v) € E and D[u, v,0] = oo,
otherwise.
Q for k € [n]:
for u € [n]:
for v € [n]:
Compute recurrence

Dlu,v,k] = min{D[u,v, k — 1], D[u, k,k — 1] + D[k, v, k — 1])}

© Return D[u, v, n]
@ Running Time: three nested loops, each of length n. Computing
within the loops takes O(1) time, so total running time O(n?).

@ Correctness: follows from correctness of recurrence, and the fact
that we have precomputed correctly.

46 /48



Acknowledgement

@ Based on Prof. Lau's Lecture 14
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L14.pdf

47/48


https://cs.uwaterloo.ca/~lapchi/cs341/notes/L14.pdf

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

ﬁ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

48/48



	Single-Source Shortest Paths with Arbitrary Weights
	How Dijkstra goes wrong
	Negative Cycles
	Bellman-Ford: Dynamic Programming for the rescue!
	Shortest Path Tree

	All-Pairs Shortest Paths
	Floyd-Warshall: ``mo' paths mo' subproblems''

	Acknowledgements

