Lecture 15: All-pairs shortest paths

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 2, 2023

Overview

- Single-Source Shortest Paths with Arbitrary Weights
- How Dijkstra goes wrong
- Negative Cycles
- Bellman-Ford: Dynamic Programming for the rescue!
- Shortest Path Tree
- All-Pairs Shortest Paths
- Floyd-Warshall: "mo' paths mo' subproblems"
- Acknowledgements

Single-Source Shortest Paths

- Input: Input: Weighted directed graph $G(V, E, w)$, where $w: E \rightarrow \mathbb{R}$, vertex $s \in V$

Adjacency list. Note that weights can be arbitrary.

- Output: a shortest path from s to t for any $t \in V$

Single-Source Shortest Paths

- Input: Input: Weighted directed graph $G(V, E, w)$, where $w: E \rightarrow \mathbb{R}$, vertex $s \in V$

Adjacency list. Note that weights can be arbitrary.

- Output: a shortest path from s to t for any $t \in V$
- Why not Dijkstra?
- Negative weights \Rightarrow may have negative cycles.

Single-Source Shortest Paths

- Input: Input: Weighted directed graph $G(V, E, w)$, where $w: E \rightarrow \mathbb{R}$, vertex $s \in V$

Adjacency list. Note that weights can be arbitrary.

- Output: a shortest path from s to t for any $t \in V$
- Why not Dijkstra?
- Negative weights \Rightarrow may have negative cycles.
- Even without negative cycles Dijkstra will fail, since we violate the property of the distance!

Negative Cycles

- With negative edges, we may have negative cycles
- In this case, "shortest paths" will have length $-\infty$ (i.e., not well defined)

Negative Cycles

- With negative edges, we may have negative cycles
- In this case, "shortest paths" will have length $-\infty$ (i.e., not well defined)
- If we have no negative cycles, then shortest path distance well defined (as cycles don't help you "go faster")

Negative Cycles

- With negative edges, we may have negative cycles
- In this case, "shortest paths" will have length $-\infty$ (i.e., not well defined)
- If we have no negative cycles, then shortest path distance well defined (as cycles don't help you "go faster")
- Can we devise an efficient algorithm that solves the following problem:
- If G has a negative cycle, output FAIL (output the cycle)
- Else, solve the single-source shortest paths problem
- Single-Source Shortest Paths with Arbitrary Weights
- How Dijkstra goes wrong
- Negative Cycles
- Bellman-Ford: Dynamic Programming for the rescue!
- Shortest Path Tree
- All-Pairs Shortest Paths
- Floyd-Warshall: "mo' paths mo' subproblems"
- Acknowledgements

Bellman-Ford

- Template:
(1) Subproblems
$D[v, i]:=$ shortest $s \rightarrow v$ path distance using at most i edges
(2) Base case: $D[s, 0]=0$, and $D[v, 0]=\infty$, for all $v \neq s$
(3) Recurrence:

$$
D[v, i+1]=\min \left\{D[v, i], \min _{u \in N_{i n}(v)}(D[u, i]+w(u, v))\right\}
$$

(9) Output: $D[v, n-1]$ for all $v \in V$

Bellman-Ford

- Template:
(1) Subproblems
$D[v, i]:=$ shortest $s \rightarrow v$ path distance using at most i edges
(2) Base case: $D[s, 0]=0$, and $D[v, 0]=\infty$, for all $v \neq s$
(3) Recurrence:

$$
D[v, i+1]=\min \left\{D[v, i], \min _{u \in N_{i n}(v)}(D[u, i]+w(u, v))\right\}
$$

(4) Output: $D[v, n-1]$ for all $v \in V$

- Why do we only need to check $n-1$ times?

If graph has no negative cycle, then shortest walk must be simple path $\Rightarrow \leq n-1$ edges.

Bellman-Ford

- Algorithm:
(1) Initialization: $D[s, i]=0, D[v, i]=\infty$ for all $v \neq s$ and $i \in[0, n-1]$ $p[v]=N U L L$ for all $v \in V$
(2) for $i \in[n-1]$:

$$
\begin{aligned}
& \text { for }(u, v) \in E \text { : } \\
& \quad \text { if } D[u, i-1]+w(u, v)<D[v, i]: \\
& \quad D[v, i+1]=D[v, i]=D[u, i-1]+w(u, v) \\
& \quad p[v]=u
\end{aligned}
$$

(3) Output: $D[v, n-1]$ for all $v \in V$

Bellman-Ford

- Algorithm:
(1) Initialization: $D[s, i]=0, D[v, i]=\infty$ for all $v \neq s$ and $i \in[0, n-1]$ $p[v]=N U L L$ for all $v \in V$
(2) for $i \in[n-1]$:

$$
\begin{aligned}
& \text { for }(u, v) \in E: \\
& \quad \text { if } D[u, i-1]+w(u, v)<D[v, i]: \\
& \quad D[v, i+1]=D[v, i]=D[u, i-1]+w(u, v) \\
& \quad p[v]=u
\end{aligned}
$$

(3) Output: $D[v, n-1]$ for all $v \in V$

- Running time:
- Initialization: $O(n)$
- First for loop runs for $O(n)$ iterations. Each iteration takes $O(m)$ operations, as the for loop on edges takes $O(m)$.
- Total: $O(n m)$

Bellman-Ford

- Algorithm:
(1) Initialization: $D[s, i]=0, D[v, i]=\infty$ for all $v \neq s$ and $i \in[0, n-1]$ $p[v]=N U L L$ for all $v \in V$
(2) for $i \in[n-1]$:

$$
\begin{aligned}
& \text { for }(u, v) \in E: \\
& \quad \text { if } D[u, i-1]+w(u, v)<D[v, i]: \\
& \quad D[v, i+1]=D[v, i]=D[u, i-1]+w(u, v) \\
& \quad p[v]=u
\end{aligned}
$$

(3) Output: $D[v, n-1]$ for all $v \in V$

- Running time:
- Initialization: $O(n)$
- First for loop runs for $O(n)$ iterations. Each iteration takes $O(m)$ operations, as the for loop on edges takes $O(m)$.
- Total: $O(n m)$
- Space Complexity: $O\left(n^{2}\right)$

Bellman-Ford

- Algorithm:
(1) Initialization: $D[s, i]=0, D[v, i]=\infty$ for all $v \neq s$ and $i \in[0, n-1]$ $p[v]=N U L L$ for all $v \in V$
(2) for $i \in[n-1]$:

$$
\begin{aligned}
& \text { for }(u, v) \in E \text { : } \\
& \quad \text { if } D[u, i-1]+w(u, v)<D[v, i]: \\
& \quad D[v, i+1]=D[v, i]=D[u, i-1]+w(u, v) \\
& \quad p[v]=u
\end{aligned}
$$

(3) Output: $D[v, n-1]$ for all $v \in V$

- Running time:
- Initialization: $O(n)$
- First for loop runs for $O(n)$ iterations. Each iteration takes $O(m)$ operations, as the for loop on edges takes $O(m)$.
- Total: $O(n m)$
- Space Complexity: $O\left(n^{2}\right)$
- Can reduce space used to be $O(n)$ by not keeping track of i (exercise)

Shortest Path Tree

- As in BFS and Dijkstra, would like to return succinct data structure will all shortest paths

Shortest Path Tree

- As in BFS and Dijkstra, would like to return succinct data structure will all shortest paths
- Bellman-Ford has many iterations, not clear whether edges ($p[u], u$) will form a tree.

Shortest Path Tree

- As in BFS and Dijkstra, would like to return succinct data structure will all shortest paths
- Bellman-Ford has many iterations, not clear whether edges $(p[u], u)$ will form a tree.
- However, if we have a cycle "it must be making some path shorter" which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by $(p[u], u)$, then Γ must be a negative cycle.

Shortest Path Tree

- However, if we have a cycle "it must be making some path shorter" which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by $(p[u], u)$, then 「 must be a negative cycle.

- Let $\Gamma=\left(v_{1}, v_{2}, \cdots, v_{k}\right)$, completed at path length i.

Shortest Path Tree

- However, if we have a cycle "it must be making some path shorter" which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by $(p[u], u)$, then 「 must be a negative cycle.

- Let $\Gamma=\left(v_{1}, v_{2}, \cdots, v_{k}\right)$, completed at path length i.
- For $1 \leq j<k$ must have

$$
D\left[v_{j+1}, i\right]=D\left[v_{j}, i_{j}^{\prime}\right]+w\left(v_{j}, v_{j+1}\right)
$$

for some $i_{j}^{\prime}<i$ as $p\left[v_{i+1}\right]=v_{i}$.

Shortest Path Tree

- However, if we have a cycle "it must be making some path shorter" which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by $(p[u], u)$, then Γ must be a negative cycle.

- Let $\Gamma=\left(v_{1}, v_{2}, \cdots, v_{k}\right)$, completed at path length i.
- For $1 \leq j<k$ must have

$$
D\left[v_{j+1}, i\right]=D\left[v_{j}, i_{j}^{\prime}\right]+w\left(v_{j}, v_{j+1}\right)
$$

for some $i_{j}^{\prime}<i$ as $p\left[v_{i+1}\right]=v_{i}$.

- Since distances only decrease as path length increases, by our algorithm, we have $D\left[v_{j}, i_{j}^{\prime}\right] \leq D\left[v_{j}, i-1\right] \leq D\left[v_{j}, i\right]$ and thus

$$
D\left[v_{j+1}, i\right] \geq D\left[v_{j}, i-1\right]+w\left(v_{j}, v_{j+1}\right)
$$

Shortest Path Tree

- However, if we have a cycle "it must be making some path shorter" which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by $(p[u], u)$, then Γ must be a negative cycle.

- Let $\Gamma=\left(v_{1}, v_{2}, \cdots, v_{k}\right)$, completed at path length i.
- For $1 \leq j<k$ must have

$$
D\left[v_{j+1}, i\right]=D\left[v_{j}, i_{j}^{\prime}\right]+w\left(v_{j}, v_{j+1}\right)
$$

for some $i_{j}^{\prime}<i$ as $p\left[v_{i+1}\right]=v_{i}$.

- Since distances only decrease as path length increases, by our algorithm, we have $D\left[v_{j}, i_{j}^{\prime}\right] \leq D\left[v_{j}, i-1\right] \leq D\left[v_{j}, i\right]$ and thus

$$
D\left[v_{j+1}, i\right] \geq D\left[v_{j}, i-1\right]+w\left(v_{j}, v_{j+1}\right)
$$

- As cycle formed at length i we have to update $D\left[v_{1}, i\right]$, which means

$$
D\left[v_{1}, i-1\right]>D\left[v_{k}, i-1\right]+w\left(v_{k}, v_{1}\right) \geq D\left[v_{k}, i\right]+w\left(v_{k}, v_{1}\right)
$$

Shortest Path Tree

- Summing up inequalities, we have:

$$
D\left[v_{1}, i-1\right]+\sum_{j=1}^{k-1} D\left[v_{j+1}, i\right]>\sum_{j=1}^{k} D\left[v_{j}, i-1\right]+\sum_{i=1}^{k-1} w\left(v_{j}, v_{j+1}\right)+w\left(v_{k}, v_{1}\right)
$$

which implies

$$
\sum_{j=2}^{k} D\left[v_{j}, i\right]>\sum_{j=2}^{k} D\left[v_{j}, i-1\right]+\sum_{i=1}^{k-1} w\left(v_{j}, v_{j+1}\right)+w\left(v_{k}, v_{1}\right)
$$

Shortest Path Tree

- Summing up inequalities, we have:

$$
D\left[v_{1}, i-1\right]+\sum_{j=1}^{k-1} D\left[v_{j+1}, i\right]>\sum_{j=1}^{k} D\left[v_{j}, i-1\right]+\sum_{i=1}^{k-1} w\left(v_{j}, v_{j+1}\right)+w\left(v_{k}, v_{1}\right)
$$

which implies

$$
\sum_{j=2}^{k} D\left[v_{j}, i\right]>\sum_{j=2}^{k} D\left[v_{j}, i-1\right]+\sum_{i=1}^{k-1} w\left(v_{j}, v_{j+1}\right)+w\left(v_{k}, v_{1}\right)
$$

- Using the fact that $D\left[v_{j}, i-1\right] \geq D\left[v_{j}, i\right]$, we obtain

$$
\sum_{i=1}^{k-1} w\left(v_{j}, v_{j+1}\right)+w\left(v_{k}, v_{1}\right)<0
$$

Finding Negative Cycles

- So, how is Bellman-Ford finding a negative cycle, when it exists?

Finding Negative Cycles

- So, how is Bellman-Ford finding a negative cycle, when it exists?
- Need to prove that after $n-1$ iterations, we will find a negative cycle, if one exists (otherwise we already know our algorithm is correct)

Finding Negative Cycles

- So, how is Bellman-Ford finding a negative cycle, when it exists?
- Need to prove that after $n-1$ iterations, we will find a negative cycle, if one exists (otherwise we already know our algorithm is correct)
- If we have negative cycles, expect $D[v, k] \rightarrow-\infty$ as $k \rightarrow \infty$

Will go through negative cycle multiple times.

Finding Negative Cycles

- So, how is Bellman-Ford finding a negative cycle, when it exists?
- Need to prove that after $n-1$ iterations, we will find a negative cycle, if one exists (otherwise we already know our algorithm is correct)
- If we have negative cycles, expect $D[v, k] \rightarrow-\infty$ as $k \rightarrow \infty$

Will go through negative cycle multiple times.

- If we have no negative cycles, then $D[v, n]=D[v, n-1]$ for all $v \in V$

Finding Negative Cycles

- So, how is Bellman-Ford finding a negative cycle, when it exists?
- Need to prove that after $n-1$ iterations, we will find a negative cycle, if one exists (otherwise we already know our algorithm is correct)
- If we have negative cycles, expect $D[v, k] \rightarrow-\infty$ as $k \rightarrow \infty$

Will go through negative cycle multiple times.

- If we have no negative cycles, then $D[v, n]=D[v, n-1]$ for all $v \in V$
- Thus, to compute negative cycles, just need to check if $D[v, n-1]=D[v, n]$

Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some $v \in V$,

$$
D[v, k] \rightarrow-\infty \text { as } k \rightarrow \infty
$$

Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some $v \in V$,

$$
D[v, k] \rightarrow-\infty \text { as } k \rightarrow \infty
$$

Proof: by definition of $D[v, k]$ and our recurrence, we are always computing the min distance of $s \rightarrow v$ paths of length k. Since we can take the negative cycle multiple times as $k \rightarrow \infty$ there will always be a path of smaller length.

Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some $v \in V$,

$$
D[v, k] \rightarrow-\infty \text { as } k \rightarrow \infty
$$

Lemma

If graph has no negative cycles, then

$$
D[v, n]=D[v, n-1], \text { for all } v \in V
$$

Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some $v \in V$,

$$
D[v, k] \rightarrow-\infty \text { as } k \rightarrow \infty
$$

Lemma

If graph has no negative cycles, then

$$
D[v, n]=D[v, n-1], \text { for all } v \in V
$$

Proof: every cycle is non-negative, so it doesn't help. Any walk with length n must contain a cycle, thus not optimal. So we won't update D in the $n^{\text {th }}$ iteration.

Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some $v \in V$,

$$
D[v, k] \rightarrow-\infty \text { as } k \rightarrow \infty
$$

Lemma

If $D[v, n]=D[v, n-1]$ for all $v \in V$, then G has no negative cycle.
Proof: By recurrence, and the assumption, we will prove that $D[v, n+t]=D[v, n-1]$ for all $t \geq 0$. Then first lemma will finish it.

$$
\begin{aligned}
D[v, n+t+1] & =\min \left\{D[v, n+t], \min _{u \in N_{i n}(v)}(D[v, n+t]+w(u, v))\right\} \\
& =\min \left\{D[v, n-1], \min _{u \in N_{\text {in }}(v)}(D[v, n-1]+w(u, v))\right\} \\
& =D[v, n]=D[v, n-1]
\end{aligned}
$$

Since no distance $\rightarrow-\infty, G$ has no negative cycles.

Full Bellman-Ford

- Algorithm:
(1) Initialization: $D[s, i]=0, D[v, i]=\infty$ for all $v \neq s$ and $i \in[0, n]$ $p[v]=N U L L$ for all $v \in V$
(2) for $i \in[n]$:

$$
\begin{aligned}
& \text { for }(u, v) \in E: \\
& \quad \text { if } D[u, i-1]+w(u, v)<D[v, i]: \\
& \quad D[v, i+1]=D[v, i]=D[u, i-1]+w(u, v) \\
& \quad p[v]=u
\end{aligned}
$$

(3) If $D[v, n-1]=D[v, n]$ for all $v \in V$ output: $D[v, n-1]$ for all $v \in V$
((Else, output FAIL.

Full Bellman-Ford

- Algorithm:
(1) Initialization: $D[s, i]=0, D[v, i]=\infty$ for all $v \neq s$ and $i \in[0, n]$ $p[v]=N U L L$ for all $v \in V$
(2) for $i \in[n]$:

$$
\begin{aligned}
& \text { for }(u, v) \in E: \\
& \quad \text { if } D[u, i-1]+w(u, v)<D[v, i]: \\
& \quad D[v, i+1]=D[v, i]=D[u, i-1]+w(u, v) \\
& \quad p[v]=u
\end{aligned}
$$

(3) If $D[v, n-1]=D[v, n]$ for all $v \in V$ output: $D[v, n-1]$ for all $v \in V$
((Else, output FAIL.

- same running time as before, and space complexity

Full Bellman-Ford

- Algorithm:
(1) Initialization: $D[s, i]=0, D[v, i]=\infty$ for all $v \neq s$ and $i \in[0, n]$ $p[v]=N U L L$ for all $v \in V$
(2) for $i \in[n]$:

$$
\begin{aligned}
& \text { for }(u, v) \in E: \\
& \quad \text { if } D[u, i-1]+w(u, v)<D[v, i]: \\
& \quad D[v, i+1]=D[v, i]=D[u, i-1]+w(u, v) \\
& \quad p[v]=u
\end{aligned}
$$

(3) If $D[v, n-1]=D[v, n]$ for all $v \in V$ output: $D[v, n-1]$ for all $v \in V$
(3) Else, output FAIL.

- same running time as before, and space complexity
- easy to find negative cycle
- Single-Source Shortest Paths with Arbitrary Weights
- How Dijkstra goes wrong
- Negative Cycles
- Bellman-Ford: Dynamic Programming for the rescue!
- Shortest Path Tree
- All-Pairs Shortest Paths
- Floyd-Warshall: "mo' paths mo' subproblems"
- Acknowledgements

All-Pairs Shortest Paths

- Input: Directed, weighted graph $G(V, E, w)$, without negative cycles
- Output: for all pairs (u, v), the length of the shortest $u \rightarrow v$ path

All-Pairs Shortest Paths

- Input: Directed, weighted graph $G(V, E, w)$, without negative cycles
- Output: for all pairs (u, v), the length of the shortest $u \rightarrow v$ path
- Could apply n iterations of Bellman-Ford, but this would give us $O\left(n^{2} m\right)$ running time

All-Pairs Shortest Paths

- Input: Directed, weighted graph $G(V, E, w)$, without negative cycles
- Output: for all pairs (u, v), the length of the shortest $u \rightarrow v$ path
- Could apply n iterations of Bellman-Ford, but this would give us $O\left(n^{2} m\right)$ running time
- Can we do better?

Floyd-Warshall: $O\left(n^{3}\right)$

Floyd-Warshall

Mo' money, mo' problems.

- The Notorious B.S.G. -

AZ QUQTES

Floyd-Warshall

- Simple modification of Bellman-Ford to account for all sources
- Template:
(1) Subproblems

$$
\begin{aligned}
D[u, v, k]:= & \text { shortest } u \rightarrow v \text { path distance using only vertices } \\
& \{1,2, \ldots, k\} \text { as intermediate vertices. }
\end{aligned}
$$

(2) Base case: $D[u, v, 0]=w(u, v)$, if $(u, v) \in E$ and $D[u, v, 0]=\infty$, otherwise.
(3) Recurrence:

$$
D[u, v, k+1]=\min \{D[u, v, k], D[u, k+1, k]+D[k+1, v, k]\}
$$

(4) Output: $D[u, v, n]$ for all $u, v \in V$

Full Floyd-Warshall Algorithm

- Algorithm:
(1) Initialize: $D[u, v, 0]=w(u, v)$, if $(u, v) \in E$ and $D[u, v, 0]=\infty$, otherwise.
(2) for $k \in[n]$:

$$
\text { for } u \in[n] \text { : }
$$

for $v \in[n]$:
Compute recurrence

$$
D[u, v, k]=\min \{D[u, v, k-1], D[u, k, k-1]+D[k, v, k-1])\}
$$

(3) Return $D[u, v, n]$

Full Floyd-Warshall Algorithm

- Algorithm:
(1) Initialize: $D[u, v, 0]=w(u, v)$, if $(u, v) \in E$ and $D[u, v, 0]=\infty$, otherwise.
(2) for $k \in[n]$:

$$
\begin{aligned}
& \text { for } u \in[n]: \\
& \text { for } v \in[n]: \\
& \text { Compute recurrence } \\
& D[u, v, k]=\min \{D[u, v, k-1], D[u, k, k-1]+D[k, v, k-1])\}
\end{aligned}
$$

(3) Return $D[u, v, n]$

- Running Time: three nested loops, each of length n. Computing within the loops takes $O(1)$ time, so total running time $O\left(n^{3}\right)$.

Full Floyd-Warshall Algorithm

- Algorithm:
(1) Initialize: $D[u, v, 0]=w(u, v)$, if $(u, v) \in E$ and $D[u, v, 0]=\infty$, otherwise.
(2) for $k \in[n]$:

$$
\begin{aligned}
& \text { for } u \in[n]: \\
& \text { for } v \in[n]: \\
& \text { Compute recurrence } \\
& D[u, v, k]=\min \{D[u, v, k-1], D[u, k, k-1]+D[k, v, k-1])\}
\end{aligned}
$$

(3) Return $D[u, v, n]$

- Running Time: three nested loops, each of length n. Computing within the loops takes $O(1)$ time, so total running time $O\left(n^{3}\right)$.
- Correctness: follows from correctness of recurrence, and the fact that we have precomputed correctly.

Acknowledgement

- Based on Prof. Lau's Lecture 14
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L14.pdf

References I

B
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press
Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

