
Lecture 15: All-pairs shortest paths

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 2, 2023

1 / 48



Overview

Single-Source Shortest Paths with Arbitrary Weights
How Dijkstra goes wrong
Negative Cycles
Bellman-Ford: Dynamic Programming for the rescue!
Shortest Path Tree

All-Pairs Shortest Paths
Floyd-Warshall: “mo’ paths mo’ subproblems”

Acknowledgements

2 / 48



Single-Source Shortest Paths

Input: Input: Weighted directed graph G (V ,E ,w), where
w : E → R, vertex s ∈ V

Adjacency list. Note that weights can be arbitrary.

Output: a shortest path from s to t for any t ∈ V

Why not Dijkstra?

Negative weights ⇒ may have negative cycles.

Even without negative cycles Dijkstra will fail, since we violate the
property of the distance!

3 / 48



Single-Source Shortest Paths

Input: Input: Weighted directed graph G (V ,E ,w), where
w : E → R, vertex s ∈ V

Adjacency list. Note that weights can be arbitrary.

Output: a shortest path from s to t for any t ∈ V

Why not Dijkstra?

Negative weights ⇒ may have negative cycles.

Even without negative cycles Dijkstra will fail, since we violate the
property of the distance!

4 / 48



Single-Source Shortest Paths

Input: Input: Weighted directed graph G (V ,E ,w), where
w : E → R, vertex s ∈ V

Adjacency list. Note that weights can be arbitrary.

Output: a shortest path from s to t for any t ∈ V

Why not Dijkstra?

Negative weights ⇒ may have negative cycles.

Even without negative cycles Dijkstra will fail, since we violate the
property of the distance!

5 / 48



Negative Cycles

With negative edges, we may have negative cycles

In this case, “shortest paths” will have length −∞ (i.e., not well
defined)

If we have no negative cycles, then shortest path distance well defined
(as cycles don’t help you “go faster”)

Can we devise an efficient algorithm that solves the following
problem:

If G has a negative cycle, output FAIL (output the cycle)
Else, solve the single-source shortest paths problem

6 / 48



Negative Cycles

With negative edges, we may have negative cycles

In this case, “shortest paths” will have length −∞ (i.e., not well
defined)

If we have no negative cycles, then shortest path distance well defined
(as cycles don’t help you “go faster”)

Can we devise an efficient algorithm that solves the following
problem:

If G has a negative cycle, output FAIL (output the cycle)
Else, solve the single-source shortest paths problem

7 / 48



Negative Cycles

With negative edges, we may have negative cycles

In this case, “shortest paths” will have length −∞ (i.e., not well
defined)

If we have no negative cycles, then shortest path distance well defined
(as cycles don’t help you “go faster”)

Can we devise an efficient algorithm that solves the following
problem:

If G has a negative cycle, output FAIL (output the cycle)
Else, solve the single-source shortest paths problem

8 / 48



Single-Source Shortest Paths with Arbitrary Weights
How Dijkstra goes wrong
Negative Cycles
Bellman-Ford: Dynamic Programming for the rescue!
Shortest Path Tree

All-Pairs Shortest Paths
Floyd-Warshall: “mo’ paths mo’ subproblems”

Acknowledgements

9 / 48



Bellman-Ford

Template:
1 Subproblems

D[v , i ] := shortest s → v path distance using at most i edges
2 Base case: D[s, 0] = 0, and D[v , 0] = ∞, for all v ̸= s
3 Recurrence:

D[v , i + 1] = min

{
D[v , i ], min

u∈Nin(v)
(D[u, i ] + w(u, v))

}
4 Output: D[v , n − 1] for all v ∈ V

Why do we only need to check n − 1 times?

If graph has no negative cycle, then shortest walk must be simple
path ⇒ ≤ n − 1 edges.

10 / 48



Bellman-Ford

Template:
1 Subproblems

D[v , i ] := shortest s → v path distance using at most i edges
2 Base case: D[s, 0] = 0, and D[v , 0] = ∞, for all v ̸= s
3 Recurrence:

D[v , i + 1] = min

{
D[v , i ], min

u∈Nin(v)
(D[u, i ] + w(u, v))

}
4 Output: D[v , n − 1] for all v ∈ V

Why do we only need to check n − 1 times?

If graph has no negative cycle, then shortest walk must be simple
path ⇒ ≤ n − 1 edges.

11 / 48



Bellman-Ford

Algorithm:
1 Initialization: D[s, i ] = 0, D[v , i ] = ∞ for all v ̸= s and i ∈ [0, n − 1]

p[v ] = NULL for all v ∈ V
2 for i ∈ [n − 1]:

for (u, v) ∈ E :
if D[u, i − 1] + w(u, v) < D[v , i ]:

D[v , i + 1] = D[v , i ] = D[u, i − 1] + w(u, v)
p[v ] = u

3 Output: D[v , n − 1] for all v ∈ V

Running time:
Initialization: O(n)
First for loop runs for O(n) iterations. Each iteration takes O(m)
operations, as the for loop on edges takes O(m).
Total: O(nm)

Space Complexity: O(n2)

Can reduce space used to be O(n) by not keeping track of i (exercise)

12 / 48



Bellman-Ford

Algorithm:
1 Initialization: D[s, i ] = 0, D[v , i ] = ∞ for all v ̸= s and i ∈ [0, n − 1]

p[v ] = NULL for all v ∈ V
2 for i ∈ [n − 1]:

for (u, v) ∈ E :
if D[u, i − 1] + w(u, v) < D[v , i ]:

D[v , i + 1] = D[v , i ] = D[u, i − 1] + w(u, v)
p[v ] = u

3 Output: D[v , n − 1] for all v ∈ V

Running time:
Initialization: O(n)
First for loop runs for O(n) iterations. Each iteration takes O(m)
operations, as the for loop on edges takes O(m).
Total: O(nm)

Space Complexity: O(n2)

Can reduce space used to be O(n) by not keeping track of i (exercise)

13 / 48



Bellman-Ford

Algorithm:
1 Initialization: D[s, i ] = 0, D[v , i ] = ∞ for all v ̸= s and i ∈ [0, n − 1]

p[v ] = NULL for all v ∈ V
2 for i ∈ [n − 1]:

for (u, v) ∈ E :
if D[u, i − 1] + w(u, v) < D[v , i ]:

D[v , i + 1] = D[v , i ] = D[u, i − 1] + w(u, v)
p[v ] = u

3 Output: D[v , n − 1] for all v ∈ V

Running time:
Initialization: O(n)
First for loop runs for O(n) iterations. Each iteration takes O(m)
operations, as the for loop on edges takes O(m).
Total: O(nm)

Space Complexity: O(n2)

Can reduce space used to be O(n) by not keeping track of i (exercise)

14 / 48



Bellman-Ford

Algorithm:
1 Initialization: D[s, i ] = 0, D[v , i ] = ∞ for all v ̸= s and i ∈ [0, n − 1]

p[v ] = NULL for all v ∈ V
2 for i ∈ [n − 1]:

for (u, v) ∈ E :
if D[u, i − 1] + w(u, v) < D[v , i ]:

D[v , i + 1] = D[v , i ] = D[u, i − 1] + w(u, v)
p[v ] = u

3 Output: D[v , n − 1] for all v ∈ V

Running time:
Initialization: O(n)
First for loop runs for O(n) iterations. Each iteration takes O(m)
operations, as the for loop on edges takes O(m).
Total: O(nm)

Space Complexity: O(n2)

Can reduce space used to be O(n) by not keeping track of i (exercise)

15 / 48



Shortest Path Tree
As in BFS and Dijkstra, would like to return succinct data structure
will all shortest paths

Bellman-Ford has many iterations, not clear whether edges (p[u], u)
will form a tree.
However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by (p[u], u),
then Γ must be a negative cycle.

Let Γ = (v1, v2, · · · , vk), completed at path length i .
For 1 ≤ j < k must have

D[vj+1, i ] = D[vj , i
′
j ] + w(vj , vj+1)

for some i ′j < i as p[vi+1] = vi .
Since distances only decrease as path length increases, by our
algorithm, we have D[vj , i

′
j ] ≤ D[vj , i − 1] ≤ D[vj , i ] and thus

D[vj+1, i ] ≥ D[vj , i − 1] + w(vj , vj+1)

As cycle formed at length i we have to update D[v1, i ], which means

D[v1, i − 1] > D[vk , i − 1] + w(vk , v1) ≥ D[vk , i ] + w(vk , v1)

16 / 48



Shortest Path Tree
As in BFS and Dijkstra, would like to return succinct data structure
will all shortest paths
Bellman-Ford has many iterations, not clear whether edges (p[u], u)
will form a tree.

However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by (p[u], u),
then Γ must be a negative cycle.

Let Γ = (v1, v2, · · · , vk), completed at path length i .
For 1 ≤ j < k must have

D[vj+1, i ] = D[vj , i
′
j ] + w(vj , vj+1)

for some i ′j < i as p[vi+1] = vi .
Since distances only decrease as path length increases, by our
algorithm, we have D[vj , i

′
j ] ≤ D[vj , i − 1] ≤ D[vj , i ] and thus

D[vj+1, i ] ≥ D[vj , i − 1] + w(vj , vj+1)

As cycle formed at length i we have to update D[v1, i ], which means

D[v1, i − 1] > D[vk , i − 1] + w(vk , v1) ≥ D[vk , i ] + w(vk , v1)

17 / 48



Shortest Path Tree
As in BFS and Dijkstra, would like to return succinct data structure
will all shortest paths
Bellman-Ford has many iterations, not clear whether edges (p[u], u)
will form a tree.
However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by (p[u], u),
then Γ must be a negative cycle.

Let Γ = (v1, v2, · · · , vk), completed at path length i .
For 1 ≤ j < k must have

D[vj+1, i ] = D[vj , i
′
j ] + w(vj , vj+1)

for some i ′j < i as p[vi+1] = vi .
Since distances only decrease as path length increases, by our
algorithm, we have D[vj , i

′
j ] ≤ D[vj , i − 1] ≤ D[vj , i ] and thus

D[vj+1, i ] ≥ D[vj , i − 1] + w(vj , vj+1)

As cycle formed at length i we have to update D[v1, i ], which means

D[v1, i − 1] > D[vk , i − 1] + w(vk , v1) ≥ D[vk , i ] + w(vk , v1)

18 / 48



Shortest Path Tree
However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by (p[u], u),
then Γ must be a negative cycle.

Let Γ = (v1, v2, · · · , vk), completed at path length i .

For 1 ≤ j < k must have

D[vj+1, i ] = D[vj , i
′
j ] + w(vj , vj+1)

for some i ′j < i as p[vi+1] = vi .
Since distances only decrease as path length increases, by our
algorithm, we have D[vj , i

′
j ] ≤ D[vj , i − 1] ≤ D[vj , i ] and thus

D[vj+1, i ] ≥ D[vj , i − 1] + w(vj , vj+1)

As cycle formed at length i we have to update D[v1, i ], which means

D[v1, i − 1] > D[vk , i − 1] + w(vk , v1) ≥ D[vk , i ] + w(vk , v1)

19 / 48



Shortest Path Tree
However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by (p[u], u),
then Γ must be a negative cycle.

Let Γ = (v1, v2, · · · , vk), completed at path length i .
For 1 ≤ j < k must have

D[vj+1, i ] = D[vj , i
′
j ] + w(vj , vj+1)

for some i ′j < i as p[vi+1] = vi .

Since distances only decrease as path length increases, by our
algorithm, we have D[vj , i

′
j ] ≤ D[vj , i − 1] ≤ D[vj , i ] and thus

D[vj+1, i ] ≥ D[vj , i − 1] + w(vj , vj+1)

As cycle formed at length i we have to update D[v1, i ], which means

D[v1, i − 1] > D[vk , i − 1] + w(vk , v1) ≥ D[vk , i ] + w(vk , v1)

20 / 48



Shortest Path Tree
However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by (p[u], u),
then Γ must be a negative cycle.

Let Γ = (v1, v2, · · · , vk), completed at path length i .
For 1 ≤ j < k must have

D[vj+1, i ] = D[vj , i
′
j ] + w(vj , vj+1)

for some i ′j < i as p[vi+1] = vi .
Since distances only decrease as path length increases, by our
algorithm, we have D[vj , i

′
j ] ≤ D[vj , i − 1] ≤ D[vj , i ] and thus

D[vj+1, i ] ≥ D[vj , i − 1] + w(vj , vj+1)

As cycle formed at length i we have to update D[v1, i ], which means

D[v1, i − 1] > D[vk , i − 1] + w(vk , v1) ≥ D[vk , i ] + w(vk , v1)

21 / 48



Shortest Path Tree
However, if we have a cycle “it must be making some path shorter”
which means it must be a negative cycle!

Lemma (Negative Cycles)

If there is a directed cycle Γ in the parent subgraph given by (p[u], u),
then Γ must be a negative cycle.

Let Γ = (v1, v2, · · · , vk), completed at path length i .
For 1 ≤ j < k must have

D[vj+1, i ] = D[vj , i
′
j ] + w(vj , vj+1)

for some i ′j < i as p[vi+1] = vi .
Since distances only decrease as path length increases, by our
algorithm, we have D[vj , i

′
j ] ≤ D[vj , i − 1] ≤ D[vj , i ] and thus

D[vj+1, i ] ≥ D[vj , i − 1] + w(vj , vj+1)

As cycle formed at length i we have to update D[v1, i ], which means

D[v1, i − 1] > D[vk , i − 1] + w(vk , v1) ≥ D[vk , i ] + w(vk , v1)

22 / 48



Shortest Path Tree

Summing up inequalities, we have:

D[v1, i−1]+
k−1∑
j=1

D[vj+1, i ] >
k∑

j=1

D[vj , i−1]+
k−1∑
i=1

w(vj , vj+1)+w(vk , v1)

which implies

k∑
j=2

D[vj , i ] >
k∑

j=2

D[vj , i − 1] +
k−1∑
i=1

w(vj , vj+1) + w(vk , v1)

Using the fact that D[vj , i − 1] ≥ D[vj , i ], we obtain

k−1∑
i=1

w(vj , vj+1) + w(vk , v1) < 0

23 / 48



Shortest Path Tree

Summing up inequalities, we have:

D[v1, i−1]+
k−1∑
j=1

D[vj+1, i ] >
k∑

j=1

D[vj , i−1]+
k−1∑
i=1

w(vj , vj+1)+w(vk , v1)

which implies

k∑
j=2

D[vj , i ] >
k∑

j=2

D[vj , i − 1] +
k−1∑
i=1

w(vj , vj+1) + w(vk , v1)

Using the fact that D[vj , i − 1] ≥ D[vj , i ], we obtain

k−1∑
i=1

w(vj , vj+1) + w(vk , v1) < 0

24 / 48



Finding Negative Cycles

So, how is Bellman-Ford finding a negative cycle, when it exists?

Need to prove that after n− 1 iterations, we will find a negative cycle,
if one exists (otherwise we already know our algorithm is correct)

If we have negative cycles, expect D[v , k] → −∞ as k → ∞
Will go through negative cycle multiple times.

If we have no negative cycles, then D[v , n] = D[v , n− 1] for all v ∈ V

Thus, to compute negative cycles, just need to check if
D[v , n − 1] = D[v , n]

25 / 48



Finding Negative Cycles

So, how is Bellman-Ford finding a negative cycle, when it exists?

Need to prove that after n− 1 iterations, we will find a negative cycle,
if one exists (otherwise we already know our algorithm is correct)

If we have negative cycles, expect D[v , k] → −∞ as k → ∞
Will go through negative cycle multiple times.

If we have no negative cycles, then D[v , n] = D[v , n− 1] for all v ∈ V

Thus, to compute negative cycles, just need to check if
D[v , n − 1] = D[v , n]

26 / 48



Finding Negative Cycles

So, how is Bellman-Ford finding a negative cycle, when it exists?

Need to prove that after n− 1 iterations, we will find a negative cycle,
if one exists (otherwise we already know our algorithm is correct)

If we have negative cycles, expect D[v , k] → −∞ as k → ∞
Will go through negative cycle multiple times.

If we have no negative cycles, then D[v , n] = D[v , n− 1] for all v ∈ V

Thus, to compute negative cycles, just need to check if
D[v , n − 1] = D[v , n]

27 / 48



Finding Negative Cycles

So, how is Bellman-Ford finding a negative cycle, when it exists?

Need to prove that after n− 1 iterations, we will find a negative cycle,
if one exists (otherwise we already know our algorithm is correct)

If we have negative cycles, expect D[v , k] → −∞ as k → ∞
Will go through negative cycle multiple times.

If we have no negative cycles, then D[v , n] = D[v , n− 1] for all v ∈ V

Thus, to compute negative cycles, just need to check if
D[v , n − 1] = D[v , n]

28 / 48



Finding Negative Cycles

So, how is Bellman-Ford finding a negative cycle, when it exists?

Need to prove that after n− 1 iterations, we will find a negative cycle,
if one exists (otherwise we already know our algorithm is correct)

If we have negative cycles, expect D[v , k] → −∞ as k → ∞
Will go through negative cycle multiple times.

If we have no negative cycles, then D[v , n] = D[v , n− 1] for all v ∈ V

Thus, to compute negative cycles, just need to check if
D[v , n − 1] = D[v , n]

29 / 48



Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some v ∈ V ,

D[v , k] → −∞ as k → ∞

30 / 48



Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some v ∈ V ,

D[v , k] → −∞ as k → ∞

Proof: by definition of D[v , k] and our recurrence, we are always
computing the min distance of s → v paths of length k . Since we can take
the negative cycle multiple times as k → ∞ there will always be a path of
smaller length.

31 / 48



Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some v ∈ V ,

D[v , k] → −∞ as k → ∞

Lemma

If graph has no negative cycles, then

D[v , n] = D[v , n − 1], for all v ∈ V .

32 / 48



Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some v ∈ V ,

D[v , k] → −∞ as k → ∞

Lemma

If graph has no negative cycles, then

D[v , n] = D[v , n − 1], for all v ∈ V .

Proof: every cycle is non-negative, so it doesn’t help. Any walk with
length n must contain a cycle, thus not optimal. So we won’t update D in
the nth iteration.

33 / 48



Negative Cycle Lemmas

Lemma

If G has negative cycle in SCC containing s, then for some v ∈ V ,

D[v , k] → −∞ as k → ∞

Lemma

If D[v , n] = D[v , n − 1] for all v ∈ V , then G has no negative cycle.

Proof: By recurrence, and the assumption, we will prove that
D[v , n + t] = D[v , n − 1] for all t ≥ 0. Then first lemma will finish it.

D[v , n + t + 1] = min

{
D[v , n + t], min

u∈Nin(v)
(D[v , n + t] + w(u, v))

}
= min

{
D[v , n − 1], min

u∈Nin(v)
(D[v , n − 1] + w(u, v))

}
= D[v , n] = D[v , n − 1]

Since no distance → −∞, G has no negative cycles.
34 / 48



Full Bellman-Ford

Algorithm:
1 Initialization: D[s, i ] = 0, D[v , i ] = ∞ for all v ̸= s and i ∈ [0, n]

p[v ] = NULL for all v ∈ V
2 for i ∈ [n]:

for (u, v) ∈ E :
if D[u, i − 1] + w(u, v) < D[v , i ]:

D[v , i + 1] = D[v , i ] = D[u, i − 1] + w(u, v)
p[v ] = u

3 If D[v , n− 1] = D[v , n] for all v ∈ V output: D[v , n− 1] for all v ∈ V
4 Else, output FAIL.

same running time as before, and space complexity

easy to find negative cycle (exercise)

35 / 48



Full Bellman-Ford

Algorithm:
1 Initialization: D[s, i ] = 0, D[v , i ] = ∞ for all v ̸= s and i ∈ [0, n]

p[v ] = NULL for all v ∈ V
2 for i ∈ [n]:

for (u, v) ∈ E :
if D[u, i − 1] + w(u, v) < D[v , i ]:

D[v , i + 1] = D[v , i ] = D[u, i − 1] + w(u, v)
p[v ] = u

3 If D[v , n− 1] = D[v , n] for all v ∈ V output: D[v , n− 1] for all v ∈ V
4 Else, output FAIL.

same running time as before, and space complexity

easy to find negative cycle (exercise)

36 / 48



Full Bellman-Ford

Algorithm:
1 Initialization: D[s, i ] = 0, D[v , i ] = ∞ for all v ̸= s and i ∈ [0, n]

p[v ] = NULL for all v ∈ V
2 for i ∈ [n]:

for (u, v) ∈ E :
if D[u, i − 1] + w(u, v) < D[v , i ]:

D[v , i + 1] = D[v , i ] = D[u, i − 1] + w(u, v)
p[v ] = u

3 If D[v , n− 1] = D[v , n] for all v ∈ V output: D[v , n− 1] for all v ∈ V
4 Else, output FAIL.

same running time as before, and space complexity

easy to find negative cycle (exercise)

37 / 48



Single-Source Shortest Paths with Arbitrary Weights
How Dijkstra goes wrong
Negative Cycles
Bellman-Ford: Dynamic Programming for the rescue!
Shortest Path Tree

All-Pairs Shortest Paths
Floyd-Warshall: “mo’ paths mo’ subproblems”

Acknowledgements

38 / 48



All-Pairs Shortest Paths

Input: Directed, weighted graph G (V ,E ,w), without negative cycles

Output: for all pairs (u, v), the length of the shortest u → v path

Could apply n iterations of Bellman-Ford, but this would give us
O(n2m) running time

Can we do better?

Floyd-Warshall: O(n3)

39 / 48



All-Pairs Shortest Paths

Input: Directed, weighted graph G (V ,E ,w), without negative cycles

Output: for all pairs (u, v), the length of the shortest u → v path

Could apply n iterations of Bellman-Ford, but this would give us
O(n2m) running time

Can we do better?

Floyd-Warshall: O(n3)

40 / 48



All-Pairs Shortest Paths

Input: Directed, weighted graph G (V ,E ,w), without negative cycles

Output: for all pairs (u, v), the length of the shortest u → v path

Could apply n iterations of Bellman-Ford, but this would give us
O(n2m) running time

Can we do better?

Floyd-Warshall: O(n3)

41 / 48



Floyd-Warshall

42 / 48



Floyd-Warshall

Simple modification of Bellman-Ford to account for all sources

Template:
1 Subproblems

D[u, v , k] := shortest u → v path distance using only vertices
{1, 2, . . . , k} as intermediate vertices.

2 Base case: D[u, v , 0] = w(u, v), if (u, v) ∈ E and D[u, v , 0] = ∞,
otherwise.

3 Recurrence:

D[u, v , k + 1] = min {D[u, v , k], D[u, k + 1, k] + D[k + 1, v , k]}

4 Output: D[u, v , n] for all u, v ∈ V

43 / 48



Full Floyd-Warshall Algorithm

Algorithm:
1 Initialize: D[u, v , 0] = w(u, v), if (u, v) ∈ E and D[u, v , 0] = ∞,

otherwise.
2 for k ∈ [n]:

for u ∈ [n]:
for v ∈ [n]:

Compute recurrence

D[u, v , k] = min {D[u, v , k − 1], D[u, k , k − 1] + D[k, v , k − 1])}

3 Return D[u, v , n]

Running Time: three nested loops, each of length n. Computing
within the loops takes O(1) time, so total running time O(n3).

Correctness: follows from correctness of recurrence, and the fact
that we have precomputed correctly.

44 / 48



Full Floyd-Warshall Algorithm

Algorithm:
1 Initialize: D[u, v , 0] = w(u, v), if (u, v) ∈ E and D[u, v , 0] = ∞,

otherwise.
2 for k ∈ [n]:

for u ∈ [n]:
for v ∈ [n]:

Compute recurrence

D[u, v , k] = min {D[u, v , k − 1], D[u, k , k − 1] + D[k, v , k − 1])}

3 Return D[u, v , n]

Running Time: three nested loops, each of length n. Computing
within the loops takes O(1) time, so total running time O(n3).

Correctness: follows from correctness of recurrence, and the fact
that we have precomputed correctly.

45 / 48



Full Floyd-Warshall Algorithm

Algorithm:
1 Initialize: D[u, v , 0] = w(u, v), if (u, v) ∈ E and D[u, v , 0] = ∞,

otherwise.
2 for k ∈ [n]:

for u ∈ [n]:
for v ∈ [n]:

Compute recurrence

D[u, v , k] = min {D[u, v , k − 1], D[u, k , k − 1] + D[k, v , k − 1])}

3 Return D[u, v , n]

Running Time: three nested loops, each of length n. Computing
within the loops takes O(1) time, so total running time O(n3).

Correctness: follows from correctness of recurrence, and the fact
that we have precomputed correctly.

46 / 48



Acknowledgement

Based on Prof. Lau’s Lecture 14

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L14.pdf

47 / 48

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L14.pdf


References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

48 / 48


	Single-Source Shortest Paths with Arbitrary Weights
	How Dijkstra goes wrong
	Negative Cycles
	Bellman-Ford: Dynamic Programming for the rescue!
	Shortest Path Tree

	All-Pairs Shortest Paths
	Floyd-Warshall: ``mo' paths mo' subproblems''

	Acknowledgements

