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Paths: Measure of “Resilience”

Given (directed) graph G (V ,E ), we would like to know how
“resilient” it may be

Is G (strongly) connected?
How many edges does one need to remove to disconnect it?
How many vertices does one need to remove to disconnect it?

Using BFS/DFS can determine if there is s → t path

Does it have 2 edge-disjoint s → t paths?
How many edge-disjoint paths does it have?

Edge-Disjoint Paths problem:

Input: (directed) graph G (V ,E ), s, t ∈ V
Output: Maximum number of edge-disjoint s → t paths

More generally, can consider weighted directed graphs

networks: edge weights are how much data can go through
traffic system: edge weights are how much traffic can go through

Weighted version is (almost) the maximum flow problem.

How to generalize notion of edge-disjoint in weighted version?
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Flows
We will now think of a weighted graph G (V ,E , c), where
c : E → R>0 (the weight function) is giving the capacity of an edge

If we have c : E → N then
Think of capacity as number of lanes in a street/highway
Or think of G (V ,E , c) as unweighted graph with c((u, v)) being the
number of distinct u → v edges

An s → t flow is a function f : E → R≥0 with the properties:

1 Capacity constraints: 0 ≤ f (e) ≤ c(e) for all e ∈ E
2 Flow conservation: fin(u) = fout(u) for each u ∈ V \ {s, t}, where

fin(u) :=
∑

w∈Nin(u)

f (w , u), and fout(u) :=
∑

w∈Nout(u)

f (u,w)

The value of a flow f is value(f ) := fout(s)− fin(s)

In this course, we will generally have fin(s) = 0, so value(f ) = fout(s)
Max-flow problem:

Input: directed graph G (V ,E , c), with c : E → R>0, vertices s, t ∈ V
Output: an s → t flow with maximum value.
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Example (from Jeff Erickson’s book)
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Flows & Paths

How does the idea of flows generalize edge-disjoint paths?

If G (V ,E , c), where c : E → N
Think of capacity as number of lanes in a street/highway
Or think of G (V ,E , c) as unweighted graph with c((u, v)) being the
number of distinct u → v edges
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If G (V ,E , c), where c : E → N
Think of capacity as number of lanes in a street/highway
Or think of G (V ,E , c) as unweighted graph with c((u, v)) being the
number of distinct u → v edges

Integral flow f (i.e. f : E → N) with value(f ) = k corresponds to k
edge-disjoint paths in the unweighted graph G (V ,E , c) above

Think of edge e with f (e) = h as the collections of paths using h lanes
in highway
flow conservation ↔ # cars entering vertex u = # cars leaving vertex u
capacity constraints ↔ each car gets one lane in highway
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Example
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Path decomposition lemma

Lemma (Path Decomposition Lemma)

Let G be a weighted DAG with integral weights. Let f be an integral
s → t flow, with fin(s) = 0 and value(f ) = k. Then, there are s → t
paths P1, . . . ,Pk such that each edge e appears in f (e) of these paths.
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Flows and Cuts
How can we upper bound the maximum possible value of a flow?

How do we know a given flow is the maximum flow?

Trivial upper bound: total capacity of all edges

Better upper bound: total capacity of edges leaving s

Can we do better?

YES! Let’s look at all s − t cuts!
(generalizes better upper bound)

an s − t cut is a cut (S ,V \ S) such that s ∈ S and t ̸∈ S .
Capacity of cut:

Cout(S) :=
∑

e∈δout(S)

c(e)

where δout(S) = {(u, v) ∈ E | u ∈ S , v ̸∈ S}

By path decomposition lemma or flow conservation, can prove that

value(f ) ≤ Cout(S)

for any flow f and cut S .
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Example
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Max-Flow Min-Cut Theorem

Capacity of cuts are an upper bound for flows.

Is this a tight upper bound?

Theorem (Max-Flow Min-Cut Theorem)

The value of the maximum s − t flow equals the minimum capacity among
all cuts.

max
f s−t flow

value(f ) = min
S is s−t cut

Cout(S)

We will give an algorithmic proof of this theorem, that solves the
max-flow and the min-cut problem at the same time.
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Ford-Fulkerson Algorithm: Intuition

Natural (greedy) strategy: by path decomposition lemma, we could
just keep finding s → t paths in the graph

(updating the capacities of the graph)

No bueno: greedy approach may force us to “commit to a path”
which may “block others”

Would be nice to “push back/undo” bad paths, but only if this
improves our current solution

Main idea behind Ford-Fulkerson.

Augment the flow by finding “augmenting path” which increases
total amount of flow
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Example

32 / 50

Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira



Rafael Oliveira





Residual Graph

The residual graph is the object we will study to find augmenting
paths

Given G (V ,E , c) and s → t flow f on G , define the residual graph
Gf as follows:

V (Gf ) = V (G )
For each (u, v) =: e ∈ E add edges

(u, v) to Gf with capacity c(e)− f (e) (forward edges)
(v , u) to Gf with capacity f (e) (backward edges)
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V (Gf ) = V (G )
For each (u, v) =: e ∈ E add edges

(u, v) to Gf with capacity c(e)− f (e) (forward edges)
(v , u) to Gf with capacity f (e) (backward edges)
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Example
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Augmenting Path

An augmenting path with respect to a flow f is simply an s → t
path1 in Gf

Given augmenting path P in Gf , want to push as much flow as
possible through it:

bottleneck(P, f ) := minimum capacity of edge of P in Gf

1By path here we mean a simple path, and not a walk.
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Improving the Flow

Input: flow f and an augmenting path P in Gf

Output: improved flow f ′

Let b := bottleneck(P, f ) and f ′(e) = f (e) for all e ∈ E

for each e := (u, v) ∈ P:

If e forward edge:
f ′(e) = f ′(e) + b

If e backward edge:
f ′(v , u) = f ′(v , u)− b (decrease reversed edge)

return f ′
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Improving the Flow

Input: flow f and an augmenting path P in Gf

Output: improved flow f ′

augment(f ,P) :

Let b := bottleneck(P, f ) and f ′(e) = f (e) for all e ∈ E

for each e := (u, v) ∈ P:

If e forward edge:
f ′(e) = f ′(e) + b

If e backward edge:
f ′(v , u) = f ′(v , u)− b (decrease reversed edge)

return f ′
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Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b
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Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

To check that f ′ is a flow, need to check capacity constraint and flow
conservation constraint.

Let b := bottleneck(P, f ).

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b
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Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).
Capacity constraint: given e ∈ E (Gf ), we have

e forward edge in Gf , then

f ′(e) = f (e) + b ≤ f (e) + (c(e)− f (e)) = c(e)

e := (u, v) backward edge in Gf , then

f ′(v , u) = f (v , u)− b ≤ f (v , u) ≤ c(v , u)

and
f ′(v , u) = f (v , u)− b ≥ f (v , u)− f (v , u) ≥ 0

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b
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Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).
Flow Conservation: let u ∈ V be a vertex.

if u ̸∈ P then flow in and out of u doesn’t change.

if u ∈ P, have 4 cases to analyze. Let e1 := (w , u) and e2 := (u, z) be
the edges in P passing through u in Gf .

1 e1, e2 forward edges: both incoming and outgoing flow increase by b
2 e1, e2 backward edges: both incoming and outgoing flow decrease by b
3 e1 forward, e2 backward: both incoming and outgoing flow unchanged
4 e1 backward, e2 forward: both incoming and outgoing flow unchanged

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b
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Lemma (Flow Improvement)
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respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).
Flow Conservation: let u ∈ V be a vertex.

if u ∈ P, have 4 cases to analyze. Let e1 := (w , u) and e2 := (u, z) be
the edges in P passing through u in Gf .

1 e1, e2 forward edges: both incoming and outgoing flow increase by b
2 e1, e2 backward edges: both incoming and outgoing flow decrease by b
3 e1 forward, e2 backward: both incoming and outgoing flow unchanged
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Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).

Value of flow f ′ and f ′in(s):
fin(s) = 0 ⇒ no backward edges incident to s in Gf

f ′in(s) = fin(s) + 0 = fin(s) = 0

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b
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Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b
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Ford-Fulkerson Algorithm

Now that we know that augmenting paths can only improve our flow, we
can describe Ford-Fulkerson, which simply applies the augmenting
operation until we can no longer do it.

Ford-Fulkerson(G ):
1 Initialize f (e) = 0 for all e ∈ E , and initialize Gf accordingly
2 While there is s → t path P ∈ Gf :

f ← augment(f ,P)
update Gf

3 return f
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Ford-Fulkerson Algorithm

Now that we know that augmenting paths can only improve our flow, we
can describe Ford-Fulkerson, which simply applies the augmenting
operation until we can no longer do it.

Ford-Fulkerson(G ):
1 Initialize f (e) = 0 for all e ∈ E , and initialize Gf accordingly
2 While there is s → t path P ∈ Gf :

f ← augment(f ,P)
update Gf

3 return f

Next lecture: runtime analysis and proof of correctness.
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