Lecture 16: Max-Flow \& Min-Cut

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 7, 2023

Overview

- Paths, Flows \& Cuts
- Paths
- Flows
- Cuts
- Ford-Fulkerson Algorithm
- Residual Graph
- Main Algorithm
- Acknowledgements

Paths: Measure of "Resilience"

- Given (directed) graph $G(V, E)$, we would like to know how "resilient" it may be
- Is G (strongly) connected?
- How many edges does one need to remove to disconnect it?
- How many vertices does one need to remove to disconnect it?

Paths: Measure of "Resilience"

- Given (directed) graph $G(V, E)$, we would like to know how "resilient" it may be
- Is G (strongly) connected?
- How many edges does one need to remove to disconnect it?
- How many vertices does one need to remove to disconnect it?
- Using BFS/DFS can determine if there is $s \rightarrow t$ path

Does it have 2 edge-disjoint $s \rightarrow t$ paths?
How many edge-disjoint paths does it have?

Paths: Measure of "Resilience"

- Given (directed) graph $G(V, E)$, we would like to know how "resilient" it may be
- Is G (strongly) connected?
- How many edges does one need to remove to disconnect it?
- How many vertices does one need to remove to disconnect it?
- Using BFS/DFS can determine if there is $s \rightarrow t$ path

Does it have 2 edge-disjoint $s \rightarrow t$ paths?
How many edge-disjoint paths does it have?

- Edge-Disjoint Paths problem:
- Input: (directed) graph $G(V, E), s, t \in V$
- Output: Maximum number of edge-disjoint $s \rightarrow t$ paths

Paths: Measure of "Resilience"

- Given (directed) graph $G(V, E)$, we would like to know how "resilient" it may be
- Is G (strongly) connected?
- How many edges does one need to remove to disconnect it?
- How many vertices does one need to remove to disconnect it?
- Using BFS/DFS can determine if there is $s \rightarrow t$ path

Does it have 2 edge-disjoint $s \rightarrow t$ paths?
How many edge-disjoint paths does it have?

- Edge-Disjoint Paths problem:
- Input: (directed) graph $G(V, E), s, t \in V$
- Output: Maximum number of edge-disjoint $s \rightarrow t$ paths
- More generally, can consider weighted directed graphs
- networks: edge weights are how much data can go through
- traffic system: edge weights are how much traffic can go through Weighted version is (almost) the maximum flow problem.

Paths: Measure of "Resilience"

- Given (directed) graph $G(V, E)$, we would like to know how "resilient" it may be
- Is G (strongly) connected?
- How many edges does one need to remove to disconnect it?
- How many vertices does one need to remove to disconnect it?
- Using BFS/DFS can determine if there is $s \rightarrow t$ path

Does it have 2 edge-disjoint $s \rightarrow t$ paths?
How many edge-disjoint paths does it have?

- Edge-Disjoint Paths problem:
- Input: (directed) graph $G(V, E), s, t \in V$
- Output: Maximum number of edge-disjoint $s \rightarrow t$ paths
- More generally, can consider weighted directed graphs
- networks: edge weights are how much data can go through
- traffic system: edge weights are how much traffic can go through

Weighted version is (almost) the maximum flow problem.

- How to generalize notion of edge-disjoint in weighted version?

Flows

- We will now think of a weighted graph $G(V, E, c)$, where
$c: E \rightarrow \mathbb{R}_{>0}$ (the weight function) is giving the capacity of an edge
If we have $c: E \rightarrow \mathbb{N}$ then
- Think of capacity as number of lanes in a street/highway
- Or think of $G(V, E, c)$ as unweighted graph with $c((u, v))$ being the number of distinct $u \rightarrow v$ edges

Flows

- We will now think of a weighted graph $G(V, E, c)$, where $c: E \rightarrow \mathbb{R}_{>0}$ (the weight function) is giving the capacity of an edge
- An $s \rightarrow t$ flow is a function $f: E \rightarrow \mathbb{R}_{\geq 0}$ with the properties:
(1) Capacity constraints: $0 \leq f(e) \leq c(e)$ for all $e \in E$
(2) Flow conservation: $f_{\text {in }}(u)=f_{\text {out }}(u)$ for each $u \in V \backslash\{s, t\}$, where

$$
f_{\text {in }}(u):=\sum_{w \in N_{\text {in }}(u)} f(w, u), \quad \text { and } f_{\text {out }}(u):=\sum_{w \in N_{\text {out }}(u)} f(u, w)
$$

Flows

- We will now think of a weighted graph $G(V, E, c)$, where $c: E \rightarrow \mathbb{R}_{>0}$ (the weight function) is giving the capacity of an edge
- An $s \rightarrow t$ flow is a function $f: E \rightarrow \mathbb{R}_{\geq 0}$ with the properties:
(1) Capacity constraints: $0 \leq f(e) \leq c(e)$ for all $e \in E$
(2) Flow conservation: $f_{\text {in }}(u)=f_{\text {out }}(u)$ for each $u \in V \backslash\{s, t\}$, where

$$
f_{\text {in }}(u):=\sum_{w \in N_{\text {in }}(u)} f(w, u), \quad \text { and } \quad f_{\text {out }}(u):=\sum_{w \in N_{\text {out }}(u)} f(u, w)
$$

- The value of a flow f is value $(f):=f_{\text {out }}(s)-f_{\text {in }}(s)$

In this course, we will generally have $f_{\text {in }}(s)=0$, so value $(f)=f_{\text {out }}(s)$

Flows

- We will now think of a weighted graph $G(V, E, c)$, where $c: E \rightarrow \mathbb{R}_{>0}$ (the weight function) is giving the capacity of an edge
- An $s \rightarrow t$ flow is a function $f: E \rightarrow \mathbb{R}_{\geq 0}$ with the properties:
(1) Capacity constraints: $0 \leq f(e) \leq c(e)$ for all $e \in E$
(2) Flow conservation: $f_{\text {in }}(u)=f_{\text {out }}(u)$ for each $u \in V \backslash\{s, t\}$, where

$$
f_{\text {in }}(u):=\sum_{w \in N_{\text {in }}(u)} f(w, u), \quad \text { and } f_{\text {out }}(u):=\sum_{w \in N_{\text {out }}(u)} f(u, w)
$$

- The value of a flow f is value $(f):=f_{\text {out }}(s)-f_{\text {in }}(s)$

In this course, we will generally have $f_{\text {in }}(s)=0$, so value $(f)=f_{\text {out }}(s)$

- Max-flow problem:
- Input: directed graph $G(V, E, c)$, with $c: E \rightarrow \mathbb{R}_{>0}$, vertices $s, t \in V$
- Output: an $s \rightarrow t$ flow with maximum value.

Example (from Jeff Erickson's book)

SECRET $\begin{aligned} & \substack{506-1973 \\ 10-24-95 \\-33-}\end{aligned}$

Fig. 7 - Traffic pattern: entire network available

Legend:
-... International boundary
(B) Railway operating division

- 12 - Copacity: 12 each way per doy. atauired flow of 9 per day toward destinations (in direction of arrow) with equivalent numbar of returning
trains in opposite direction

All eapacifies in trains $\left.\begin{array}{c}\text { troon's of tons }\end{array}\right\}$ each way per day
Origins: Divisions $2,3 \mathrm{~W}, 3 \mathrm{E}, 25,13 \mathrm{~N}, 13 \mathrm{~s}$,
12,52 (USSR), and Roumania
Pestinctions: Divisions 3, 6,9 (Poland);
B (Czechaslovavakio); and 2, 3 (Austr la)
Alternativa destinations: Germany or Eas? Germany

Note IIX at Dívision 9, Polanid

Figure 10.1. Harris and Ross's map of the Warsaw Pact rail network. (See Image Credits at the end of the book.)

Flows \& Paths

- How does the idea of flows generalize edge-disjoint paths?

Flows \& Paths

- How does the idea of flows generalize edge-disjoint paths?
- If $G(V, E, c)$, where $c: E \rightarrow \mathbb{N}$
- Think of capacity as number of lanes in a street/highway
- Or think of $G(V, E, c)$ as unweighted graph with $c((u, v))$ being the number of distinct $u \rightarrow v$ edges

Flows \& Paths

- How does the idea of flows generalize edge-disjoint paths?
- If $G(V, E, c)$, where $c: E \rightarrow \mathbb{N}$
- Think of capacity as number of lanes in a street/highway
- Or think of $G(V, E, c)$ as unweighted graph with $c((u, v))$ being the number of distinct $u \rightarrow v$ edges
Integral flow f (i.e. $f: E \rightarrow \mathbb{N}$) with value $(f)=k$ corresponds to k edge-disjoint paths in the unweighted graph $G(V, E, c)$ above
- Think of edge e with $f(e)=h$ as the collections of paths using h lanes in highway
- flow conservation $\leftrightarrow \#$ cars entering vertex $u=$ \# cars leaving vertex u
- capacity constraints \leftrightarrow each car gets one lane in highway

Example

(aloo in Jeffés book)

Path decomposition lemma

Lemma (Path Decomposition Lemma)
Let G be a weighted DAG with integral weights. Let f be an integral $s \rightarrow t$ flow, with $f_{\text {in }}(s)=0$ and value $(f)=k$. Then, there are $s \rightarrow t$ paths P_{1}, \ldots, P_{k} such that each edge e appears in $f(e)$ of these paths.

Remark: for full "flow decomposition theorem" see Jeff Erickson's book, chapter 10.

Flows and Cuts

- How can we upper bound the maximum possible value of a flow?
- How do we know a given flow is the maximum flow?

Flows and Cuts

- How can we upper bound the maximum possible value of a flow?
- How do we know a given flow is the maximum flow?
- Trivial upper bound: total capacity of all edges

Flows and Cuts

- How can we upper bound the maximum possible value of a flow?
- How do we know a given flow is the maximum flow?
- Trivial upper bound: total capacity of all edges
- Better upper bound: total capacity of edges leaving s

Flows and Cuts

- How can we upper bound the maximum possible value of a flow?
- How do we know a given flow is the maximum flow?
- Trivial upper bound: total capacity of all edges
- Better upper bound: total capacity of edges leaving s
- Can we do better?

YES! Let's look at all $s-t$ cuts!
(generalizes better upper bound)

Flows and Cuts

- How can we upper bound the maximum possible value of a flow?
- How do we know a given flow is the maximum flow?
- Trivial upper bound: total capacity of all edges
- Better upper bound: total capacity of edges leaving s
- Can we do better?

YES! Let's look at all $s-t$ cuts!
(generalizes better upper bound)

- an $s-t$ cut is a cut $(S, V \backslash S)$ such that $s \in S$ and $t \notin S$.
- Capacity of cut:

$$
C_{\text {out }}(S):=\sum_{e \in \delta_{\text {out }}(S)} c(e)
$$

where $\delta_{\text {out }}(S)=\{(u, v) \in E \mid u \in S, v \notin S\}$

Flows and Cuts

- How can we upper bound the maximum possible value of a flow?
- How do we know a given flow is the maximum flow?
- Trivial upper bound: total capacity of all edges
- Better upper bound: total capacity of edges leaving s
- Can we do better?

YES! Let's look at all $s-t$ cuts!
(generalizes better upper bound)

- an $s-t$ cut is a cut $(S, V \backslash S)$ such that $s \in S$ and $t \notin S$.
- Capacity of cut:

$$
C_{\text {out }}(S):=\sum_{e \in \delta_{\text {out }}(S)} c(e)
$$

where $\delta_{\text {out }}(S)=\{(u, v) \in E \mid u \in S, v \notin S\}$

- By path decomposition lemma or flow conservation, can prove that

$$
\operatorname{value}(f) \leq C_{\text {out }}(S)
$$

for any flow f and cut S.

Example

note that st cut $\{s, a, b, u\}$ gives better upper bound than $\{s\}$.

Max-Flow Min-Cut Theorem

- Capacity of cuts are an upper bound for flows. Is this a tight upper bound?

Theorem (Max-Flow Min-Cut Theorem)

The value of the maximum $s-t$ flow equals the minimum capacity among all cuts.

$$
\max _{f-t \text { flow }} \operatorname{value}(f)=\min _{S \text { is } s-t \text { cut }} C_{\text {out }}(S)
$$

Max-Flow Min-Cut Theorem

- Capacity of cuts are an upper bound for flows. Is this a tight upper bound?

Theorem (Max-Flow Min-Cut Theorem)

The value of the maximum $s-t$ flow equals the minimum capacity among all cuts.

$$
\max _{f s-t \text { flow }} \operatorname{value}(f)=\min _{S \text { is } s-t \text { cut }} C_{\text {out }}(S)
$$

- We will give an algorithmic proof of this theorem, that solves the max-flow and the min-cut problem at the same time.
- Paths, Flows \& Cuts
- Paths
- Flows
- Cuts
- Ford-Fulkerson Algorithm
- Residual Graph
- Main Algorithm

- Acknowledgements

Ford-Fulkerson Algorithm: Intuition

- Natural (greedy) strategy: by path decomposition lemma, we could just keep finding $s \rightarrow t$ paths in the graph
(updating the capacities of the graph)

Ford-Fulkerson Algorithm: Intuition

- Natural (greedy) strategy: by path decomposition lemma, we could just keep finding $s \rightarrow t$ paths in the graph
(updating the capacities of the graph)
- No bueno: greedy approach may force us to "commit to a path" which may "block others"

Ford-Fulkerson Algorithm: Intuition

- Natural (greedy) strategy: by path decomposition lemma, we could just keep finding $s \rightarrow t$ paths in the graph
(updating the capacities of the graph)
- No bueno: greedy approach may force us to "commit to a path" which may "block others"
- Would be nice to "push back/undo" bad paths, but only if this improves our current solution

Main idea behind Ford-Fulkerson.

Ford-Fulkerson Algorithm: Intuition

- Natural (greedy) strategy: by path decomposition lemma, we could just keep finding $s \rightarrow t$ paths in the graph
(updating the capacities of the graph)
- No bueno: greedy approach may force us to "commit to a path" which may "block others"
- Would be nice to "push back/undo" bad paths, but only if this improves our current solution

Main idea behind Ford-Fulkerson.

- Augment the flow by finding "augmenting path" which increases total amount of flow

Example
(bad greedy example)

all capacities 1 .
Shortest path in red would block max flow in green

Residual Graph

- The residual graph is the object we will study to find augmenting paths

Residual Graph

- The residual graph is the object we will study to find augmenting paths
- Given $G(V, E, c)$ and $s \rightarrow t$ flow f on G, define the residual graph G_{f} as follows:
- $V\left(G_{f}\right)=V(G)$
- For each $(u, v)=: e \in E$ add edges
- (u, v) to G_{f} with capacity $c(e)-f(e)$
- (v, u) to G_{f} with capacity $f(e)$
(forward edges)
(backward edges)

Example

Augmenting Path

- An augmenting path with respect to a flow f is simply an $s \rightarrow t$ path ${ }^{1}$ in G_{f}

[^0]
Augmenting Path

- An augmenting path with respect to a flow f is simply an $s \rightarrow t$ path ${ }^{1}$ in G_{f}
- Given augmenting path P in G_{f}, want to push as much flow as possible through it:
bottleneck $(P, f):=$ minimum capacity of edge of P in G_{f}

[^1]Example
In previous residual graph, have following

$$
\operatorname{bottlenech}(P, p)=1
$$ augmenting path.

Improving the Flow

- Input: flow f and an augmenting path P in G_{f}
- Output: improved flow f^{\prime}

Improving the Flow

- Input: flow f and an augmenting path P in G_{f}
- Output: improved flow f^{\prime}
augment (f, P) :
- Let $b:=\operatorname{bottleneck}(P, f)$ and $f^{\prime}(e)=f(e)$ for all $e \in E$
- for each $e:=(u, v) \in P$:
- If e forward edge:

$$
f^{\prime}(e)=f^{\prime}(e)+b
$$

- If e backward edge:

$$
f^{\prime}(v, u)=f^{\prime}(v, u)-b
$$

(decrease reversed edge)

- return f^{\prime}

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{\text {in }}(s)=0$ and P an augmenting path with respect to f. If f^{\prime} is the output from augment (f, P), then f^{\prime} is a flow with

$$
\operatorname{value}\left(f^{\prime}\right)=\operatorname{value}(f)+\operatorname{bottleneck}(P, f)
$$

and $f_{\mathrm{in}}^{\prime}(s)=0$.

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{\text {in }}(s)=0$ and P an augmenting path with respect to f. If f^{\prime} is the output from augment (f, P), then f^{\prime} is a flow with

$$
\operatorname{value}\left(f^{\prime}\right)=\operatorname{value}(f)+\operatorname{bottleneck}(P, f)
$$

and $f_{\text {in }}^{\prime}(s)=0$.

- To check that f^{\prime} is a flow, need to check capacity constraint and flow conservation constraint.

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{\text {in }}(s)=0$ and P an augmenting path with respect to f. If f^{\prime} is the output from augment (f, P), then f^{\prime} is a flow with

$$
\operatorname{value}\left(f^{\prime}\right)=\operatorname{value}(f)+\operatorname{bottleneck}(P, f)
$$

and $f_{\text {in }}^{\prime}(s)=0$.

- Let $b:=\operatorname{bottleneck}(P, f)$.
- Capacity constraint: given $e \in E\left(G_{f}\right)$, we have
- e forward edge in G_{f}, then

$$
f^{\prime}(e)=f(e)+b \leq f(e)+(c(e)-f(e))=c(e)
$$

- $e:=(u, v)$ backward edge in G_{f}, then

$$
f^{\prime}(v, u)=f(v, u)-b \leq f(v, u) \leq c(v, u)
$$

and

$$
f^{\prime}(v, u)=f(v, u)-b \geq f(v, u)-f(v, u) \geq 0
$$

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{\text {in }}(s)=0$ and P an augmenting path with respect to f. If f^{\prime} is the output from augment (f, P), then f^{\prime} is a flow with

$$
\operatorname{value}\left(f^{\prime}\right)=\operatorname{value}(f)+\operatorname{bottleneck}(P, f)
$$

and $f_{\text {in }}^{\prime}(s)=0$.

- Let $b:=\operatorname{bottleneck}(P, f)$.
- Flow Conservation: let $u \in V$ be a vertex.
- if $u \notin P$ then flow in and out of u doesn't change.

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{\text {in }}(s)=0$ and P an augmenting path with respect to f. If f^{\prime} is the output from augment (f, P), then f^{\prime} is a flow with

$$
\operatorname{value}\left(f^{\prime}\right)=\operatorname{value}(f)+\operatorname{bottleneck}(P, f)
$$

and $f_{\text {in }}^{\prime}(s)=0$.

- Let $b:=\operatorname{bottleneck}(P, f)$.
- Flow Conservation: let $u \in V$ be a vertex.
- if $u \in P$, have 4 cases to analyze. Let $e_{1}:=(w, u)$ and $e_{2}:=(u, z)$ be the edges in P passing through u in G_{f}.
(1) e_{1}, e_{2} forward edges: both incoming and outgoing flow increase by b
(2) e_{1}, e_{2} backward edges: both incoming and outgoing flow decrease by b
(3) e_{1} forward, e_{2} backward: both incoming and outgoing flow unchanged
(4) e_{1} backward, e_{2} forward: both incoming and outgoing flow unchanged

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{\text {in }}(s)=0$ and P an augmenting path with respect to f. If f^{\prime} is the output from augment (f, P), then f^{\prime} is a flow with

$$
\operatorname{value}\left(f^{\prime}\right)=\operatorname{value}(f)+\operatorname{bottleneck}(P, f)
$$

and $f_{\text {in }}^{\prime}(s)=0$.

- Let $b:=\operatorname{bottleneck}(P, f)$.
- Value of flow f^{\prime} and $f_{\text {in }}^{\prime}(s)$:
- $f_{\text {in }}(s)=0 \Rightarrow$ no backward edges incident to s in G_{f}

$$
f_{\mathrm{in}}^{\prime}(s)=f_{\mathrm{in}}(s)+0=f_{\mathrm{in}}(s)=0
$$

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{\text {in }}(s)=0$ and P an augmenting path with respect to f. If f^{\prime} is the output from augment (f, P), then f^{\prime} is a flow with

$$
\operatorname{value}\left(f^{\prime}\right)=\operatorname{value}(f)+\operatorname{bottleneck}(P, f)
$$

and $f_{\mathrm{in}}^{\prime}(s)=0$.

- Let $b:=\operatorname{bottleneck}(P, f)$.
- Value of flow f^{\prime} and $f_{\text {in }}^{\prime}(s)$:
- Value of f^{\prime} : by previous bullet, only forward edges out of s, thus:

$$
\operatorname{value}\left(f^{\prime}\right)=f_{\text {out }}^{\prime}(s)=f_{\text {out }}(s)+b=\operatorname{value}(f)+b
$$

Ford-Fulkerson Algorithm

Now that we know that augmenting paths can only improve our flow, we can describe Ford-Fulkerson, which simply applies the augmenting operation until we can no longer do it.

- Ford-Fulkerson (G) :
(1) Initialize $f(e)=0$ for all $e \in E$, and initialize G_{f} accordingly
(2) While there is $s \rightarrow t$ path $P \in G_{f}$:
- $f \leftarrow \operatorname{augment}(f, P)$
- update G_{f}
(3) return f

Ford-Fulkerson Algorithm

Now that we know that augmenting paths can only improve our flow, we can describe Ford-Fulkerson, which simply applies the augmenting operation until we can no longer do it.

- Ford-Fulkerson(G):
(1) Initialize $f(e)=0$ for all $e \in E$, and initialize G_{f} accordingly
(2) While there is $s \rightarrow t$ path $P \in G_{f}$:
- $f \leftarrow \operatorname{augment}(f, P)$
- update G_{f}
(3) return f

Next lecture: runtime analysis and proof of correctness.

Acknowledgement

Based on

- Prof. Lau's Lecture 15
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L15.pdf
- Jeff Erickson's book, Chpater 10
https://jeffe.cs.illinois.edu/teaching/algorithms/book/ 10-maxflow.pdf

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.
MIT Press
Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

Releinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

[^0]: ${ }^{1}$ By path here we mean a simple path, and not a walk.

[^1]: ${ }^{1}$ By path here we mean a simple path, and not a walk.

