Lecture 17: Max-Flow & Min-Cut

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 9, 2023

Overview

- Ford-Fulkerson Recap
 - Algorithm
 - Running Time
- Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

• Acknowledgements

Residual Graph

• The residual graph is the object we will study to find augmenting paths

Residual Graph

- The residual graph is the object we will study to find augmenting paths
- Given G(V, E, c) and $s \to t$ flow f on G, define the *residual graph* G_f as follows:

•
$$V(G_f) = V(G)$$

• For each $(u, v) =: e \in E$ add edges
• (u, v) to G_f with capacity $c(e) - f(e)$ (forward edges)
• (v, u) to G_f with capacity $f(e)$ (backward edges)

Augmenting Path

• An *augmenting path* with respect to a flow f is simply an $s \to t$ path¹ in G_f

Augmenting Path

- An *augmenting path* with respect to a flow f is simply an $s \rightarrow t$ path¹ in G_f
- Given augmenting path *P* in *G*_f, want to push *as much flow as possible* through it:

 $bottleneck(P, f) := minimum capacity of edge of P in G_f$

Improving the Flow

- Input: flow f and an augmenting path P in G_f
- **Output:** improved flow f'

Improving the Flow

- Input: flow f and an augmenting path P in G_f
- **Output:** improved flow f'

 $\operatorname{augment}(f, P)$:

- Let $b := \mathsf{bottleneck}(P, f)$ and f'(e) = f(e) for all $e \in E$
- for each $e := (u, v) \in P$:
 - If e forward edge: f'(e) = f'(e) + b
 - If *e* backward edge:
 f'(*v*, *u*) = *f*'(*v*, *u*) − *b*

(decrease reversed edge)

• return f'

Lemma (Flow Improvement)

Let f be a flow in G with $f_{in}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from augment(f, P), then f' is a flow with

$$value(f') = value(f) + bottleneck(P, f)$$

and $f'_{in}(s) = 0$.

Lemma (Flow Improvement)

Let f be a flow in G with $f_{in}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from augment(f, P), then f' is a flow with

$$value(f') = value(f) + bottleneck(P, f)$$

and $f'_{in}(s) = 0$.

• To check that f' is a flow, need to check capacity constraint and flow conservation constraint.

Lemma (Flow Improvement)

Let f be a flow in G with $f_{in}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f') = value(f) + bottleneck(P, f)

and $f'_{in}(s) = 0$.

- Let b := bottleneck(P, f).
- Capacity constraint: given $e \in E(G_f)$, we have
 - e forward edge in G_f , then

$$f'(e) = f(e) + b \le f(e) + (c(e) - f(e)) = c(e)$$

• e := (u, v) backward edge in G_f , then

$$f'(v, u) = f(v, u) - b \leq f(v, u) \leq c(v, u)$$

and

$$f'(v, u) = f(v, u) - b \ge f(v, u) - f(v, u) \ge 0$$

Lemma (Flow Improvement)

Let f be a flow in G with $f_{in}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f') = value(f) + bottleneck(P, f)

and $f'_{in}(s) = 0$.

- Let b := bottleneck(P, f).
- Flow Conservation: let *u* ∈ *V* be a vertex.
 - if $u \notin P$ then flow in and out of u doesn't change.

Lemma (Flow Improvement)

Let f be a flow in G with $f_{in}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f') = value(f) + bottleneck(P, f)

and $f'_{in}(s) = 0$.

- Let b := bottleneck(P, f).
- Flow Conservation: let *u* ∈ *V* be a vertex.
 - if u ∈ P, have 4 cases to analyze. Let e₁ := (w, u) and e₂ := (u, z) be the edges in P passing through u in G_f.

• e_1, e_2 forward edges: *both* incoming and outgoing flow *increase* by *b*

- 2 e_1, e_2 backward edges: *both* incoming and outgoing flow *decrease* by *b*
- e1 forward, e2 backward: both incoming and outgoing flow unchanged
- e1 backward, e2 forward: both incoming and outgoing flow unchanged

Lemma (Flow Improvement)

Let f be a flow in G with $f_{in}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from augment(f, P), then f' is a flow with

$$value(f') = value(f) + bottleneck(P, f)$$

and $f'_{in}(s) = 0$.

- Let b := bottleneck(P, f).
- Value of flow f' and $f'_{in}(s)$:
 - $f_{
 m in}(s)=0 \Rightarrow$ no backward edges incident to s in G_f

$$f_{\mathrm{in}}'(s) = f_{\mathrm{in}}(s) + 0 = f_{\mathrm{in}}(s) = 0$$

Lemma (Flow Improvement)

Let f be a flow in G with $f_{in}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from augment(f, P), then f' is a flow with

$$value(f') = value(f) + bottleneck(P, f)$$

and $f'_{in}(s) = 0$.

- Let b := bottleneck(P, f).
- Value of flow f' and $f'_{in}(s)$:

• Value of f': by previous bullet, only forward edges out of s, thus:

$$\operatorname{value}(f') = f'_{\operatorname{out}}(s) = f_{\operatorname{out}}(s) + b = \operatorname{value}(f) + b$$

Ford-Fulkerson Algorithm

Now that we know that augmenting paths can only improve our flow, we can describe Ford-Fulkerson, which simply applies the augmenting operation until we can no longer do it.

- Ford-Fulkerson(G):
 Initialize f(e) = 0 for all e ∈ E, and initialize G_f accordingly
 While there is s → t path P ∈ G_f:
 f ← augment(f, P)
 update G_f
 return f
- Use BFS to decide whether there exists s → t path in G_f, and take P to be the shortest path returned by the BFS, if exists

- Ford-Fulkerson Recap
 - Algorithm
 - Running Time

• Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

• Acknowledgements

• Each iteration can be implemented in O(n + m) time (runtime of BFS)

- Each iteration can be implemented in O(n + m) time (runtime of BFS)
- If all capacities are integral, then flow improvement lemma says that the value of our flow increases by at least 1 in each iteration.

- Each iteration can be implemented in O(n + m) time (runtime of BFS)
- If all capacities are integral, then flow improvement lemma says that the value of our flow increases by at least 1 in each iteration.
- If flow has value k, then runtime is

$$O(k \cdot (n+m))$$

- Each iteration can be implemented in O(n + m) time (runtime of BFS)
- If all capacities are integral, then flow improvement lemma says that the value of our flow increases by at least 1 in each iteration.
- If flow has value k, then runtime is

$$O(k \cdot (n+m))$$

For more details & variations on the algorithm we presented (and the proof by Edmonds-Karp), please see references. Also, if you liked flows and want to learn more, consider taking C&O's

Network Flows course.

• Ford-Fulkerson Recap

- Algorithm
- Running Time

• Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

Acknowledgements

Max-Flow Min-Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

The value of the maximum s - t flow equals the minimum capacity among all cuts.

$$\max_{f \ s-t \ flow} \operatorname{value}(f) = \min_{S \ is \ s-t \ cut} C_{\operatorname{out}}(S)$$

• Easy direction: given any flow f and s - t cut S, we have

$$\operatorname{value}(f) \leq C_{\operatorname{out}}(S).$$

• To prove the above, will prove following claim:

$$f_{\text{out}}(s) - f_{\text{in}}(s) =: \text{value}(f) = f_{\text{out}}(S) - f_{\text{in}}(S)$$

Proof of Claim 1

$$value(f) = f_{out}(s) - f_{in}(s)$$

$$= \sum_{v \in S} (f_{out}(v) - f_{in}(v)) \qquad (flow conservation)$$

$$= \sum_{v \in S} \left(\sum_{z \in N_{out}(v)} f(v, z) - \sum_{w \in N_{in}(v)} f(w, v) \right) \qquad (definition)$$

$$= \sum_{e \in \delta_{out}(S)} f(e) - \sum_{e \in \delta_{in}(S)} f(e) \qquad (cancellations)$$

$$= f_{out}(S) - f_{in}(S)$$

Proposition

Proposition

If f is an $s \to t$ flow such that there is no $s \to t$ path in the residual graph G_f , then there is s - t cut S such that value $(f) = C_{out}(S)$.

No s → t path in G_f, by BFS/DFS, can find the set of visited vertices in G_f starting from s.
 Let S be this set. Then, no s → t path ⇒ t ∉ S.

Proposition

- No s → t path in G_f, by BFS/DFS, can find the set of visited vertices in G_f starting from s.
 Let S be this set. Then, no s → t path ⇒ t ∉ S.
- We will prove that $C_{out}(S) = value(f)$. Let's look at G:
 - Let $(u, v) \in \delta_{out}(S)$. S has no outgoing edge in G_f implies f((u, v)) = c((u, v)) (otherwise G_f has forward edge)

Proposition

- No s → t path in G_f, by BFS/DFS, can find the set of visited vertices in G_f starting from s.
 Let S be this set. Then, no s → t path ⇒ t ∉ S.
- We will prove that $C_{out}(S) = value(f)$. Let's look at G:
 - Let $(u, v) \in \delta_{out}(S)$. S has no outgoing edge in G_f implies f((u, v)) = c((u, v)) (otherwise G_f has forward edge)
 - Let $(u', v') \in \delta_{in}(S)$. S has no outgoing edge in G_f implies f((u', v')) = 0 (otherwise G_f has backward edge)

Proposition

- No s → t path in G_f, by BFS/DFS, can find the set of visited vertices in G_f starting from s.
 Let S be this set. Then, no s → t path ⇒ t ∉ S.
- We will prove that $C_{out}(S) = value(f)$. Let's look at G:
 - Let $(u, v) \in \delta_{out}(S)$. S has no outgoing edge in G_f implies f((u, v)) = c((u, v)) (otherwise G_f has forward edge)
 - Let $(u', v') \in \delta_{in}(S)$. S has no outgoing edge in G_f implies f((u', v')) = 0 (otherwise G_f has backward edge)
 - Thus, we have:

$$f_{\mathrm{out}}(S) - f_{\mathrm{in}}(S) = C_{\mathrm{out}}(S) - 0 = C_{\mathrm{out}}(S)$$

Acknowledgement

Based on

Prof. Lau's Lecture 15

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L15.pdf

 Jeff Erickson's book, Chapter 10 https://jeffe.cs.illinois.edu/teaching/algorithms/book/ 10-maxflow.pdf

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)

Introduction to Algorithms, third edition.

MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

Kleinberg, Jon and Tardos, Eva (2006) Algorithm Design.

Addison Wesley