Lecture 17: Max-Flow & Min-Cut

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 9, 2023

1/31

Overview

@ Ford-Fulkerson Recap
o Algorithm
o Running Time

@ Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

@ Acknowledgements

2/31

Residual Graph

@ The residual graph is the object we will study to find augmenting
paths

3/31

Residual Graph

@ The residual graph is the object we will study to find augmenting
paths

e Given G(V,E,c) and s — t flow f on G, define the residual graph
Gr as follows:
o V(Gf) = V(G)
o For each (u,v) =: e € E add edges
o (u,v) to Gr with capacity c(e) — f(e) (forward edges)
e (v,u) to Gr with capacity f(e) (backward edges)

4/31

Augmenting Path

o An augmenting path with respect to a flow f is simply an s — ¢
path! in Gf

1By path here we mean a simple path, and not a walk.
5/31

Augmenting Path

@ An augmenting path with respect to a flow f is simply an s — ¢
path! in Gf

@ Given augmenting path P in G, want to push as much flow as
possible through it:

bottleneck(P, f) := minimum capacity of edge of P in Gf

1By path here we mean a simple path, and not a walk.
6/31

Improving the Flow

@ Input: flow f and an augmenting path P in Gf
@ Output: improved flow f’

7/31

Improving the Flow

@ Input: flow f and an augmenting path P in Gy
@ Output: improved flow f’

augment(f, P) :
o Let b:= bottleneck(P, f) and f’'(e) = f(e) for all e € E

e for each e := (u,v) € P:

o If e forward edge:
f'le)=""(e)+b
o If e backward edge:
f'(v,u) =f'(v,u) — b (decrease reversed edge)

e return f’

8/31

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fi,(s) = 0 and P an augmenting path with
respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f') = value(f) + bottleneck(P, f)
and f (s) = 0.

9/31

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fi,(s) = 0 and P an augmenting path with
respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f') = value(f) + bottleneck(P, f)

and f) (s) = 0.

n
v

@ To check that ' is a flow, need to check capacity constraint and flow
conservation constraint.

10/31

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fi,(s) = 0 and P an augmenting path with
respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f’) = value(f) + bottleneck(P, f)
and f (s) = 0.

o Let b := bottleneck(P, f).

e Capacity constraint: given e € E(Gyr), we have
o e forward edge in Gy, then

f'(e) = f(e)+ b < f(e) + (c(e) — f(e)) = c(e)
o e:=(u,v) backward edge in Gf, then
f'(v,u) = f(v,u) — b < f(v,u) < c(v,u)
and

f'(v,u) = f(v,u) — b> f(v,u) — f(v,u) >0

11/31

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fi,(s) = 0 and P an augmenting path with
respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f') = value(f) + bottleneck(P, f)
and f (s) = 0.

o Let b := bottleneck(P, f).
o Flow Conservation: let u € V be a vertex.
o if u ¢ P then flow in and out of u doesn't change.

12/31

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fi,(s) = 0 and P an augmenting path with
respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f’) = value(f) + bottleneck(P, f)

and f (s) = 0.

o Let b := bottleneck(P, f).
o Flow Conservation: let v € V be a vertex.
e if u € P, have 4 cases to analyze. Let e; := (w, u) and e := (u, z) be
the edges in P passing through v in Gy.

@ e, & forward edges: both incoming and outgoing flow increase by b
@ e, e backward edges: both incoming and outgoing flow decrease by b
© e forward, e; backward: both incoming and outgoing flow unchanged
@ e backward, e forward: both incoming and outgoing flow unchanged

13/31

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fi,(s) = 0 and P an augmenting path with
respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f’) = value(f) + bottleneck(P, f)

and f) (s) = 0.

@ Let b := bottleneck(P, f).
e Value of flow f" and £/ (s):
o fin(s) = 0 = no backward edges incident to s in Gf

£ (5) = fin(s) + 0 = fin(s) =0

14/31

Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fi,(s) = 0 and P an augmenting path with
respect to f. If f' is the output from augment(f, P), then f' is a flow with

value(f’) = value(f) + bottleneck(P, f)
and f (s) = 0.

o Let b := bottleneck(P, f).
e Value of flow " and £, (s):

e Value of f’: by previous bullet, only forward edges out of s, thus:

value(f') = £,.(s) = four(s) + b = value(f) + b

15/31

Ford-Fulkerson Algorithm

Now that we know that augmenting paths can only improve our flow, we
can describe Ford-Fulkerson, which simply applies the augmenting
operation until we can no longer do it.

e Ford-Fulkerson(G):

@ Initialize f(e) = 0 for all e € E, and initialize Gf accordingly
@ While there is s — t path P € Gf:

o f < augment(f, P)
@ update Gr

© return f

@ Use BFS to decide whether there exists s — t path in Gf, and take P
to be the shortest path returned by the BFS, if exists

16/31

@ Ford-Fulkerson Recap

e Running Time

@ Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

@ Acknowledgements

17/31

Running Time Analysis

@ Each iteration can be implemented in O(n + m) time (runtime of
BFS)

18/31

Running Time Analysis

@ Each iteration can be implemented in O(n + m) time (runtime of
BFS)

o If all capacities are integral, then flow improvement lemma says that
the value of our flow increases by at least 1 in each iteration.

19/31

Running Time Analysis

@ Each iteration can be implemented in O(n + m) time (runtime of
BFS)

o If all capacities are integral, then flow improvement lemma says that
the value of our flow increases by at least 1 in each iteration.

o If flow has value k, then runtime is

O(k - (n+ m))

20/31

Running Time Analysis

e Each iteration can be implemented in O(n+ m) time (runtime of
BFS)

o If all capacities are integral, then flow improvement lemma says that
the value of our flow increases by at least 1 in each iteration.

o If flow has value k, then runtime is

O(k - (n+ m))

For more details & variations on the algorithm we presented (and the

proof by Edmonds-Karp), please see references.
Also, if you liked flows and want to learn more, consider taking C&OQO's

Network Flows course.

21/31

@ Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

22/31

Max-Flow Min-Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

The value of the maximum s — t flow equals the minimum capacity among
all cuts.

max value(f)= min Cou(S
f s—t flowV k () S is s—t cut out()

o Easy direction: given any flow f and s — t cut S, we have
value(f) < Cout(S).
@ To prove the above, will prove following claim:

fout(s) — fin(s) =: value(f) = fout(S) — fin(S)

23/31

Proof of Claim 1

value(f) = fou(s) — fin(s)

= Z(fout(\/) — fin(v)) (flow conservation)
veSs

=S > flvva)— > f(w,v) (definition)
veS \z€Nout(v) weEN;y(v)

— Z f(e) — Z f(e) (cancellations)
e€dout(S) e€din(S)

= out(S) - fln(S)

24/31

Hard direction

Proposition

If f is an s — t flow such that there is no s — t path in the residual graph
Gy, then there is s — t cut S such that value(f) = Cout(S).

25/31

Hard direction

Proposition

If f is an s — t flow such that there is no s — t path in the residual graph
Gy, then there is s — t cut S such that value(f) = Cout(S).

e No s — t path in Gf, by BFS/DFS, can find the set of visited vertices
in Gr starting from s.

Let S be this set. Then, no s — t path = t ¢ S.

26/31

Hard direction

Proposition

If f is an s — t flow such that there is no s — t path in the residual graph
Gy, then there is s — t cut S such that value(f) = Cout(S).

e No s — t path in Gf, by BFS/DFS, can find the set of visited vertices
in Gr starting from s.

Let S be this set. Then, no s — t path = t ¢ S.

e We will prove that Cou(S) = value(f). Let's look at G:
o Let (u,v) € 0out(S). S has no outgoing edge in Gf implies
f((u,v)) = c((u,v)) (otherwise Gf has forward edge)

27/31

Hard direction

Proposition

If f is an s — t flow such that there is no s — t path in the residual graph
Gy, then there is s — t cut S such that value(f) = Cout(S).

e No s — t path in Gf, by BFS/DFS, can find the set of visited vertices
in Gr starting from s.

Let S be this set. Then, no s — t path = t ¢ S.
e We will prove that Cou(S) = value(f). Let's look at G:
o Let (u,v) € 0out(S). S has no outgoing edge in Gf implies

f((u,v)) = c((u,v)) (otherwise Gf has forward edge)
o Let (u',v') € §;s(S). S has no outgoing edge in Gy implies

f((v,v))=0 (otherwise Gr has backward edge)

28/31

Hard direction

Proposition

If f is an s — t flow such that there is no s — t path in the residual graph
Gy, then there is s — t cut S such that value(f) = Cout(S).

e No s — t path in Gf, by BFS/DFS, can find the set of visited vertices
in Gr starting from s.

Let S be this set. Then, no s — t path = t ¢ S.
e We will prove that Cou(S) = value(f). Let's look at G:
o Let (u,v) € 0out(S). S has no outgoing edge in Gf implies

f((u,v)) = c((u,v)) (otherwise Gf has forward edge)
o Let (u',v') € §;s(S). S has no outgoing edge in Gy implies
f((v,v))=0 (otherwise Gr has backward edge)

e Thus, we have:

fout(s) - ﬂn(s) = Cout(s) -0= Cout(s)

29/31

Acknowledgement

Based on
@ Prof. Lau's Lecture 15
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L15.pdf
o Jeff Erickson’s book, Chapter 10

https://jeffe.cs.illinois.edu/teaching/algorithms/book/
10-maxflow.pdf

30/31

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L15.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/10-maxflow.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/10-maxflow.pdf

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

ﬁ Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)
Algorithms

ﬁ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

31/31

	Ford-Fulkerson Recap
	Algorithm
	Running Time

	Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson
	Acknowledgements

