
Lecture 17: Max-Flow & Min-Cut

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 9, 2023

1 / 31



Overview

Ford-Fulkerson Recap
Algorithm
Running Time

Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

Acknowledgements

2 / 31



Residual Graph

The residual graph is the object we will study to find augmenting
paths

Given G (V ,E , c) and s → t flow f on G , define the residual graph
Gf as follows:

V (Gf ) = V (G )
For each (u, v) =: e ∈ E add edges

(u, v) to Gf with capacity c(e)− f (e) (forward edges)
(v , u) to Gf with capacity f (e) (backward edges)

3 / 31



Residual Graph

The residual graph is the object we will study to find augmenting
paths

Given G (V ,E , c) and s → t flow f on G , define the residual graph
Gf as follows:

V (Gf ) = V (G )
For each (u, v) =: e ∈ E add edges

(u, v) to Gf with capacity c(e)− f (e) (forward edges)
(v , u) to Gf with capacity f (e) (backward edges)

4 / 31



Augmenting Path

An augmenting path with respect to a flow f is simply an s → t
path1 in Gf

Given augmenting path P in Gf , want to push as much flow as
possible through it:

bottleneck(P, f ) := minimum capacity of edge of P in Gf

1By path here we mean a simple path, and not a walk.
5 / 31



Augmenting Path

An augmenting path with respect to a flow f is simply an s → t
path1 in Gf

Given augmenting path P in Gf , want to push as much flow as
possible through it:

bottleneck(P, f ) := minimum capacity of edge of P in Gf

1By path here we mean a simple path, and not a walk.
6 / 31



Improving the Flow

Input: flow f and an augmenting path P in Gf

Output: improved flow f ′

Let b := bottleneck(P, f ) and f ′(e) = f (e) for all e ∈ E

for each e := (u, v) ∈ P:

If e forward edge:
f ′(e) = f ′(e) + b

If e backward edge:
f ′(v , u) = f ′(v , u)− b (decrease reversed edge)

return f ′

7 / 31



Improving the Flow

Input: flow f and an augmenting path P in Gf

Output: improved flow f ′

augment(f ,P) :

Let b := bottleneck(P, f ) and f ′(e) = f (e) for all e ∈ E

for each e := (u, v) ∈ P:

If e forward edge:
f ′(e) = f ′(e) + b

If e backward edge:
f ′(v , u) = f ′(v , u)− b (decrease reversed edge)

return f ′

8 / 31



Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b

9 / 31



Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

To check that f ′ is a flow, need to check capacity constraint and flow
conservation constraint.

Let b := bottleneck(P, f ).

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b

10 / 31



Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).
Capacity constraint: given e ∈ E (Gf ), we have

e forward edge in Gf , then

f ′(e) = f (e) + b ≤ f (e) + (c(e)− f (e)) = c(e)

e := (u, v) backward edge in Gf , then

f ′(v , u) = f (v , u)− b ≤ f (v , u) ≤ c(v , u)

and
f ′(v , u) = f (v , u)− b ≥ f (v , u)− f (v , u) ≥ 0

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b

11 / 31



Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).
Flow Conservation: let u ∈ V be a vertex.

if u ̸∈ P then flow in and out of u doesn’t change.

if u ∈ P, have 4 cases to analyze. Let e1 := (w , u) and e2 := (u, z) be
the edges in P passing through u in Gf .

1 e1, e2 forward edges: both incoming and outgoing flow increase by b
2 e1, e2 backward edges: both incoming and outgoing flow decrease by b
3 e1 forward, e2 backward: both incoming and outgoing flow unchanged
4 e1 backward, e2 forward: both incoming and outgoing flow unchanged

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b

12 / 31



Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).
Flow Conservation: let u ∈ V be a vertex.

if u ∈ P, have 4 cases to analyze. Let e1 := (w , u) and e2 := (u, z) be
the edges in P passing through u in Gf .

1 e1, e2 forward edges: both incoming and outgoing flow increase by b
2 e1, e2 backward edges: both incoming and outgoing flow decrease by b
3 e1 forward, e2 backward: both incoming and outgoing flow unchanged
4 e1 backward, e2 forward: both incoming and outgoing flow unchanged

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b

13 / 31



Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).

Value of flow f ′ and f ′in(s):
fin(s) = 0 ⇒ no backward edges incident to s in Gf

f ′in(s) = fin(s) + 0 = fin(s) = 0

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b

14 / 31



Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b

15 / 31



Ford-Fulkerson Algorithm

Now that we know that augmenting paths can only improve our flow, we
can describe Ford-Fulkerson, which simply applies the augmenting
operation until we can no longer do it.

Ford-Fulkerson(G ):
1 Initialize f (e) = 0 for all e ∈ E , and initialize Gf accordingly
2 While there is s → t path P ∈ Gf :

f ← augment(f ,P)
update Gf

3 return f

Use BFS to decide whether there exists s → t path in Gf , and take P
to be the shortest path returned by the BFS, if exists

16 / 31



Ford-Fulkerson Recap
Algorithm
Running Time

Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

Acknowledgements

17 / 31



Running Time Analysis

Each iteration can be implemented in O(n +m) time (runtime of
BFS)

If all capacities are integral, then flow improvement lemma says that
the value of our flow increases by at least 1 in each iteration.

If flow has value k , then runtime is

O(k · (n +m))

18 / 31



Running Time Analysis

Each iteration can be implemented in O(n +m) time (runtime of
BFS)

If all capacities are integral, then flow improvement lemma says that
the value of our flow increases by at least 1 in each iteration.

If flow has value k , then runtime is

O(k · (n +m))

19 / 31



Running Time Analysis

Each iteration can be implemented in O(n +m) time (runtime of
BFS)

If all capacities are integral, then flow improvement lemma says that
the value of our flow increases by at least 1 in each iteration.

If flow has value k , then runtime is

O(k · (n +m))

20 / 31



Running Time Analysis

Each iteration can be implemented in O(n +m) time (runtime of
BFS)

If all capacities are integral, then flow improvement lemma says that
the value of our flow increases by at least 1 in each iteration.

If flow has value k , then runtime is

O(k · (n +m))

For more details & variations on the algorithm we presented (and the
proof by Edmonds-Karp), please see references.
Also, if you liked flows and want to learn more, consider taking C&O’s
Network Flows course.

21 / 31



Ford-Fulkerson Recap
Algorithm
Running Time

Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

Acknowledgements

22 / 31



Max-Flow Min-Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

The value of the maximum s − t flow equals the minimum capacity among
all cuts.

max
f s−t flow

value(f ) = min
S is s−t cut

Cout(S)

Easy direction: given any flow f and s − t cut S , we have

value(f ) ≤ Cout(S).

To prove the above, will prove following claim:

fout(s)− fin(s) =: value(f ) = fout(S)− fin(S)

23 / 31



Proof of Claim 1

value(f ) = fout(s)− fin(s)

=
∑
v∈S

(fout(v)− fin(v)) (flow conservation)

=
∑
v∈S

 ∑
z∈Nout(v)

f (v , z)−
∑

w∈Nin(v)

f (w , v)

 (definition)

=
∑

e∈δout(S)

f (e)−
∑

e∈δin(S)

f (e) (cancellations)

= fout(S)− fin(S)

24 / 31



Hard direction

Proposition

If f is an s → t flow such that there is no s → t path in the residual graph
Gf , then there is s − t cut S such that value(f ) = Cout(S).

No s → t path in Gf , by BFS/DFS, can find the set of visited vertices
in Gf starting from s.
Let S be this set. Then, no s → t path ⇒ t ̸∈ S .

We will prove that Cout(S) = value(f ). Let’s look at G :

Let (u, v) ∈ δout(S). S has no outgoing edge in Gf implies
f ((u, v)) = c((u, v)) (otherwise Gf has forward edge)

Let (u′, v ′) ∈ δin(S). S has no outgoing edge in Gf implies
f ((u′, v ′)) = 0 (otherwise Gf has backward edge)
Thus, we have:

fout(S)− fin(S) = Cout(S)− 0 = Cout(S)

25 / 31



Hard direction

Proposition

If f is an s → t flow such that there is no s → t path in the residual graph
Gf , then there is s − t cut S such that value(f ) = Cout(S).

No s → t path in Gf , by BFS/DFS, can find the set of visited vertices
in Gf starting from s.
Let S be this set. Then, no s → t path ⇒ t ̸∈ S .

We will prove that Cout(S) = value(f ). Let’s look at G :

Let (u, v) ∈ δout(S). S has no outgoing edge in Gf implies
f ((u, v)) = c((u, v)) (otherwise Gf has forward edge)

Let (u′, v ′) ∈ δin(S). S has no outgoing edge in Gf implies
f ((u′, v ′)) = 0 (otherwise Gf has backward edge)
Thus, we have:

fout(S)− fin(S) = Cout(S)− 0 = Cout(S)

26 / 31



Hard direction

Proposition

If f is an s → t flow such that there is no s → t path in the residual graph
Gf , then there is s − t cut S such that value(f ) = Cout(S).

No s → t path in Gf , by BFS/DFS, can find the set of visited vertices
in Gf starting from s.
Let S be this set. Then, no s → t path ⇒ t ̸∈ S .

We will prove that Cout(S) = value(f ). Let’s look at G :

Let (u, v) ∈ δout(S). S has no outgoing edge in Gf implies
f ((u, v)) = c((u, v)) (otherwise Gf has forward edge)

Let (u′, v ′) ∈ δin(S). S has no outgoing edge in Gf implies
f ((u′, v ′)) = 0 (otherwise Gf has backward edge)
Thus, we have:

fout(S)− fin(S) = Cout(S)− 0 = Cout(S)

27 / 31



Hard direction

Proposition

If f is an s → t flow such that there is no s → t path in the residual graph
Gf , then there is s − t cut S such that value(f ) = Cout(S).

No s → t path in Gf , by BFS/DFS, can find the set of visited vertices
in Gf starting from s.
Let S be this set. Then, no s → t path ⇒ t ̸∈ S .

We will prove that Cout(S) = value(f ). Let’s look at G :

Let (u, v) ∈ δout(S). S has no outgoing edge in Gf implies
f ((u, v)) = c((u, v)) (otherwise Gf has forward edge)
Let (u′, v ′) ∈ δin(S). S has no outgoing edge in Gf implies
f ((u′, v ′)) = 0 (otherwise Gf has backward edge)

Thus, we have:

fout(S)− fin(S) = Cout(S)− 0 = Cout(S)

28 / 31



Hard direction

Proposition

If f is an s → t flow such that there is no s → t path in the residual graph
Gf , then there is s − t cut S such that value(f ) = Cout(S).

No s → t path in Gf , by BFS/DFS, can find the set of visited vertices
in Gf starting from s.
Let S be this set. Then, no s → t path ⇒ t ̸∈ S .

We will prove that Cout(S) = value(f ). Let’s look at G :

Let (u, v) ∈ δout(S). S has no outgoing edge in Gf implies
f ((u, v)) = c((u, v)) (otherwise Gf has forward edge)
Let (u′, v ′) ∈ δin(S). S has no outgoing edge in Gf implies
f ((u′, v ′)) = 0 (otherwise Gf has backward edge)
Thus, we have:

fout(S)− fin(S) = Cout(S)− 0 = Cout(S)

29 / 31



Acknowledgement

Based on

Prof. Lau’s Lecture 15

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L15.pdf

Jeff Erickson’s book, Chapter 10

https://jeffe.cs.illinois.edu/teaching/algorithms/book/

10-maxflow.pdf

30 / 31

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L15.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/10-maxflow.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/10-maxflow.pdf


References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)

Algorithms

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

31 / 31


	Ford-Fulkerson Recap
	Algorithm
	Running Time

	Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson
	Acknowledgements

