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Residual Graph

The residual graph is the object we will study to find augmenting
paths

Given G (V ,E , c) and s → t flow f on G , define the residual graph
Gf as follows:

V (Gf ) = V (G )
For each (u, v) =: e ∈ E add edges

(u, v) to Gf with capacity c(e)− f (e) (forward edges)
(v , u) to Gf with capacity f (e) (backward edges)
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Augmenting Path

An augmenting path with respect to a flow f is simply an s → t
path1 in Gf

Given augmenting path P in Gf , want to push as much flow as
possible through it:

bottleneck(P, f ) := minimum capacity of edge of P in Gf

1By path here we mean a simple path, and not a walk.
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Improving the Flow

Input: flow f and an augmenting path P in Gf

Output: improved flow f ′

Let b := bottleneck(P, f ) and f ′(e) = f (e) for all e ∈ E

for each e := (u, v) ∈ P:

If e forward edge:
f ′(e) = f ′(e) + b

If e backward edge:
f ′(v , u) = f ′(v , u)− b (decrease reversed edge)

return f ′
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for each e := (u, v) ∈ P:

If e forward edge:
f ′(e) = f ′(e) + b

If e backward edge:
f ′(v , u) = f ′(v , u)− b (decrease reversed edge)

return f ′

8 / 31



Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with fin(s) = 0 and P an augmenting path with
respect to f . If f ′ is the output from augment(f ,P), then f ′ is a flow with

value(f ′) = value(f ) + bottleneck(P, f )

and f ′in(s) = 0.

Let b := bottleneck(P, f ).

Value of flow f ′ and f ′in(s):

Value of f ′: by previous bullet, only forward edges out of s, thus:

value(f ′) = f ′out(s) = fout(s) + b = value(f ) + b
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Ford-Fulkerson Algorithm

Now that we know that augmenting paths can only improve our flow, we
can describe Ford-Fulkerson, which simply applies the augmenting
operation until we can no longer do it.

Ford-Fulkerson(G ):
1 Initialize f (e) = 0 for all e ∈ E , and initialize Gf accordingly
2 While there is s → t path P ∈ Gf :

f ← augment(f ,P)
update Gf

3 return f

Use BFS to decide whether there exists s → t path in Gf , and take P
to be the shortest path returned by the BFS, if exists
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Running Time Analysis

Each iteration can be implemented in O(n +m) time (runtime of
BFS)

If all capacities are integral, then flow improvement lemma says that
the value of our flow increases by at least 1 in each iteration.

If flow has value k , then runtime is

O(k · (n +m))
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Running Time Analysis

Each iteration can be implemented in O(n +m) time (runtime of
BFS)

If all capacities are integral, then flow improvement lemma says that
the value of our flow increases by at least 1 in each iteration.

If flow has value k , then runtime is

O(k · (n +m))

For more details & variations on the algorithm we presented (and the
proof by Edmonds-Karp), please see references.
Also, if you liked flows and want to learn more, consider taking C&O’s
Network Flows course.
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Max-Flow Min-Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

The value of the maximum s − t flow equals the minimum capacity among
all cuts.

max
f s−t flow

value(f ) = min
S is s−t cut

Cout(S)

Easy direction: given any flow f and s − t cut S , we have

value(f ) ≤ Cout(S).

To prove the above, will prove following claim:

fout(s)− fin(s) =: value(f ) = fout(S)− fin(S)
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Proof of Claim 1

value(f ) = fout(s)− fin(s)

=
∑
v∈S

(fout(v)− fin(v)) (flow conservation)

=
∑
v∈S

 ∑
z∈Nout(v)

f (v , z)−
∑

w∈Nin(v)

f (w , v)

 (definition)

=
∑

e∈δout(S)

f (e)−
∑

e∈δin(S)

f (e) (cancellations)

= fout(S)− fin(S)
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Hard direction

Proposition

If f is an s → t flow such that there is no s → t path in the residual graph
Gf , then there is s − t cut S such that value(f ) = Cout(S).

No s → t path in Gf , by BFS/DFS, can find the set of visited vertices
in Gf starting from s.
Let S be this set. Then, no s → t path ⇒ t ̸∈ S .

We will prove that Cout(S) = value(f ). Let’s look at G :

Let (u, v) ∈ δout(S). S has no outgoing edge in Gf implies
f ((u, v)) = c((u, v)) (otherwise Gf has forward edge)

Let (u′, v ′) ∈ δin(S). S has no outgoing edge in Gf implies
f ((u′, v ′)) = 0 (otherwise Gf has backward edge)
Thus, we have:

fout(S)− fin(S) = Cout(S)− 0 = Cout(S)
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