
Lecture 18: Max-Flow & Min-Cut
Applications

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 14, 2023

1 / 41

Overview

Applications of Max-Flow & Min-Cut
Maximum Bipartite Matching
Minimum Vertex Cover
Edge-disjoint Paths
Vertex-disjoint Paths

Further Remarks

Acknowledgements

2 / 41

Matchings

Given an undirected graph G (V ,E) a matching M is a subset of E
such that all edges in M are pairwise vertex disjoint (i.e., no two
edges share a common vertex)

A matching M ⊂ E is called a perfect matching if every vertex in the
graph is matched.

3 / 41

Maximum Bipartite Matching
Input: A bipartite graph G (L ⊔ R ,E)
Output: A maximum cardinality matching M ⊂ E

4 / 41

Maximum Bipartite Matching
Input: A bipartite graph G (L ⊔ R ,E)
Output: A maximum cardinality matching M ⊂ E
Consider directed graph H({s, t} ⊔ L ⊔ R ,F , c) given by





{u, v} ∈ E , u ∈ L, v ∈ R ⇔ (u, v) ∈ F , c(u, v) = ∞
(s, u) ∈ F , c(s, u) = 1 ∀ u ∈ L

(v , t) ∈ F , c(v , t) = 1 ∀ v ∈ R

in picture:

5 / 41

Maximum Bipartite Matching
Input: A bipartite graph G (L ⊔ R ,E)
Output: A maximum cardinality matching M ⊂ E
Consider directed graph H({s, t} ⊔ L ⊔ R ,F , c) given by





{u, v} ∈ E , u ∈ L, v ∈ R ⇔ (u, v) ∈ F , c(u, v) = ∞
(s, u) ∈ F , c(s, u) = 1 ∀ u ∈ L

(v , t) ∈ F , c(v , t) = 1 ∀ v ∈ R

in picture:
Claim: there is matching of size k in G ⇔ there is an s → t flow of
value k in H

6 / 41

Maximum Bipartite Matching

Claim: there is matching of size k in G ⇔ there is an s → t flow of
value k in H

(⇒) from matching M = {{ui , vi}}ki=1 we get flow
f (s, ui) = f (ui , vi) = f (vi , t) = 1 of value k

7 / 41

Maximum Bipartite Matching

Claim: there is matching of size k in G ⇔ there is an s → t flow of
value k in H

(⇐) from (integral) flow of value k (exists by Ford-Fulkerson), use flow
decomposition lemma (note that H is a DAG) to get k s → t paths
P1, . . . ,Pk , where

Pi = (s, ui , vi , t)

Path decomposition lemma says that (s, ui)’s and (vi , t)’s must be
distinct, since

0 < f (s, ui) ≤ c(s, ui) = 1 ⇒ f (s, ui) = 1

(same for (vi , t)).
Moreover, {ui , vi} ∈ E for i ∈ [k], by construction of H.
Thus, M = {{ui , vi}}ki=1 must be a matching in G .

8 / 41

Maximum Bipartite Matching

Claim: there is matching of size k in G ⇔ there is an s → t flow of
value k in H

(⇐) from (integral) flow of value k (exists by Ford-Fulkerson), use flow
decomposition lemma (note that H is a DAG) to get k s → t paths
P1, . . . ,Pk , where

Pi = (s, ui , vi , t)

Path decomposition lemma says that (s, ui)’s and (vi , t)’s must be
distinct, since

0 < f (s, ui) ≤ c(s, ui) = 1 ⇒ f (s, ui) = 1

(same for (vi , t)).
Moreover, {ui , vi} ∈ E for i ∈ [k], by construction of H.
Thus, M = {{ui , vi}}ki=1 must be a matching in G .

Ford-Fulkerson gives algorithm with running time O(|V | · |E |) for
maximum bipartite matching.

9 / 41

Applications of Max-Flow & Min-Cut
Maximum Bipartite Matching
Minimum Vertex Cover
Edge-disjoint Paths
Vertex-disjoint Paths

Further Remarks

Acknowledgements

10 / 41

Minimum Vertex Cover

Definition: given graph G (V ,E), a subset S ⊆ V is a vertex cover if
for every edge {u, v} ∈ E , we have {u, v} ∩ S ̸= ∅

11 / 41

Minimum Vertex Cover

Input: Bipartite graph G (L ⊔ R,E)

Output: Minimum cardinality vertex cover

12 / 41

Minimum Vertex Cover

Input: Bipartite graph G (L ⊔ R,E)

Output: Minimum cardinality vertex cover

König’s Theorem:

Theorem (König’s Theorem)

In a bipartite graph, the maximum size of a matching equals the minimum
size of a vertex cover.

13 / 41

Minimum Vertex Cover

Input: Bipartite graph G (L ⊔ R,E)

Output: Minimum cardinality vertex cover

König’s Theorem:

Theorem (König’s Theorem)

In a bipartite graph, the maximum size of a matching equals the minimum
size of a vertex cover.

Ford-Fulkerson finds a min-cut in the modified graph H from the
previous slides, and from it we will obtain a vertex cover. (we’ll see
this in the next side)

14 / 41

Proof of König’s theorem

Let G (L ⊔ R ,E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s, t} ⊔ L ⊔ R,F) be constructed as before. By our previous
result, the max-flow in H has value k .

15 / 41

Proof of König’s theorem

Let G (L ⊔ R ,E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s, t} ⊔ L ⊔ R,F) be constructed as before. By our previous
result, the max-flow in H has value k .

By the max-flow min-cut theorem, let S be an s − t cut in H with
s ∈ S & Cout(S) = k . (Ford-Fulkerson finds us such cut)

16 / 41

Proof of König’s theorem

Let G (L ⊔ R ,E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s, t} ⊔ L ⊔ R,F) be constructed as before. By our previous
result, the max-flow in H has value k .

By the max-flow min-cut theorem, let S be an s − t cut in H with
s ∈ S & Cout(S) = k . (Ford-Fulkerson finds us such cut)

Claim 1: |(L \ S) ∪ (S ∩ R)| = k

17 / 41

Proof of König’s theorem

Let G (L ⊔ R ,E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s, t} ⊔ L ⊔ R,F) be constructed as before. By our previous
result, the max-flow in H has value k .

By the max-flow min-cut theorem, let S be an s − t cut in H with
s ∈ S & Cout(S) = k . (Ford-Fulkerson finds us such cut)

Claim 1: |(L \ S) ∪ (S ∩ R)| = k

s has edge of capacity 1 to each vertex in L \ S
t has edge of capacity 1 from each vertex in S ∩ R

18 / 41

Proof of König’s theorem

Let G (L ⊔ R ,E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s, t} ⊔ L ⊔ R,F) be constructed as before. By our previous
result, the max-flow in H has value k .

By the max-flow min-cut theorem, let S be an s − t cut in H with
s ∈ S & Cout(S) = k . (Ford-Fulkerson finds us such cut)

Claim 1: |(L \ S) ∪ (S ∩ R)| = k

s has edge of capacity 1 to each vertex in L \ S
t has edge of capacity 1 from each vertex in S ∩ R
These edges are in δout(S)

19 / 41

Proof of König’s theorem

Let G (L ⊔ R ,E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s, t} ⊔ L ⊔ R,F) be constructed as before. By our previous
result, the max-flow in H has value k .

By the max-flow min-cut theorem, let S be an s − t cut in H with
s ∈ S & Cout(S) = k . (Ford-Fulkerson finds us such cut)

Claim 1: |(L \ S) ∪ (S ∩ R)| = k

s has edge of capacity 1 to each vertex in L \ S
t has edge of capacity 1 from each vertex in S ∩ R
These edges are in δout(S)
Note that δout(S) cannot contain edge from L to R (as these have ∞
capacity), so the edges above are the only ones in δout(S).

20 / 41

Proof of König’s theorem

Let G (L ⊔ R ,E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s, t} ⊔ L ⊔ R,F) be constructed as before. By our previous
result, the max-flow in H has value k .

By the max-flow min-cut theorem, let S be an s − t cut in H with
s ∈ S & Cout(S) = k . (Ford-Fulkerson finds us such cut)

Claim 1: |(L \ S) ∪ (S ∩ R)| = k

s has edge of capacity 1 to each vertex in L \ S
t has edge of capacity 1 from each vertex in S ∩ R
These edges are in δout(S)
Note that δout(S) cannot contain edge from L to R (as these have ∞
capacity), so the edges above are the only ones in δout(S).

Claim 2: (L \ S) ∪ (S ∩ R) is a vertex cover of G

21 / 41

Proof of König’s theorem

Let G (L ⊔ R ,E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s, t} ⊔ L ⊔ R,F) be constructed as before. By our previous
result, the max-flow in H has value k .

By the max-flow min-cut theorem, let S be an s − t cut in H with
s ∈ S & Cout(S) = k . (Ford-Fulkerson finds us such cut)

Claim 1: |(L \ S) ∪ (S ∩ R)| = k

s has edge of capacity 1 to each vertex in L \ S
t has edge of capacity 1 from each vertex in S ∩ R
These edges are in δout(S)
Note that δout(S) cannot contain edge from L to R (as these have ∞
capacity), so the edges above are the only ones in δout(S).

Claim 2: (L \ S) ∪ (S ∩ R) is a vertex cover of G

Note that δout(S) cannot contain edge from L to R (as these have ∞
capacity).

22 / 41

Proof of König’s theorem

Let G (L ⊔ R ,E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s, t} ⊔ L ⊔ R,F) be constructed as before. By our previous
result, the max-flow in H has value k .

By the max-flow min-cut theorem, let S be an s − t cut in H with
s ∈ S & Cout(S) = k . (Ford-Fulkerson finds us such cut)

Claim 1: |(L \ S) ∪ (S ∩ R)| = k

s has edge of capacity 1 to each vertex in L \ S
t has edge of capacity 1 from each vertex in S ∩ R
These edges are in δout(S)
Note that δout(S) cannot contain edge from L to R (as these have ∞
capacity), so the edges above are the only ones in δout(S).

Claim 2: (L \ S) ∪ (S ∩ R) is a vertex cover of G

Note that δout(S) cannot contain edge from L to R (as these have ∞
capacity).
Thus, every edge in G must be from L \ S or to S ∩ R ⇒ vertex cover

23 / 41

Hall’s Theorem

Theorem (Hall’s Theorem)

A bipartite graph G (L ⊔ R,E) with |L| = |R | = n has a perfect matching
⇔ for every subset S ⊂ L, it holds that |N(S)| ≥ |S |.

24 / 41

Hall’s Theorem

Theorem (Hall’s Theorem)

A bipartite graph G (L ⊔ R,E) with |L| = |R | = n has a perfect matching
⇔ for every subset S ⊂ L, it holds that |N(S)| ≥ |S |.

Proof of this theorem can be derived from König’s theorem.

Hint: can we have a vertex cover of size < n when the neighborhood
constraints hold?

25 / 41

Applications of Max-Flow & Min-Cut
Maximum Bipartite Matching
Minimum Vertex Cover
Edge-disjoint Paths
Vertex-disjoint Paths

Further Remarks

Acknowledgements

26 / 41

Edge-Disjoint Paths
Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of edge-disjoint s → t paths

27 / 41

Edge-Disjoint Paths
Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of edge-disjoint s → t paths

Simply set capacity of each edge to be 1, and run the max-flow
algorithm for it.

28 / 41

Edge-Disjoint Paths
Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of edge-disjoint s → t paths

Simply set capacity of each edge to be 1, and run the max-flow
algorithm for it.

Claim 3: there are k edge-disjoint s → t paths iff there is s → t flow
of value k

(⇒) given k edge disjoint paths P1, . . . ,Pk , we can simply get a flow
of value k by “adding” the paths Pi , that is, set the flow value to be 1
for each edge in one of the paths, and all other edges get 0 capacity
(⇐) given flow of value k , by flow decomposition theorem we have k
paths P1, . . . ,Pk , and these must be edge disjoint, since for any e ∈ E ,
we have 0 ≤ f (e) ≤ c(e) = 1.

29 / 41

Edge-Disjoint Paths
Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of edge-disjoint s → t paths

Simply set capacity of each edge to be 1, and run the max-flow
algorithm for it.

Claim 3: there are k edge-disjoint s → t paths iff there is s → t flow
of value k

(⇒) given k edge disjoint paths P1, . . . ,Pk , we can simply get a flow
of value k by “adding” the paths Pi , that is, set the flow value to be 1
for each edge in one of the paths, and all other edges get 0 capacity
(⇐) given flow of value k , by flow decomposition theorem we have k
paths P1, . . . ,Pk , and these must be edge disjoint, since for any e ∈ E ,
we have 0 ≤ f (e) ≤ c(e) = 1.

Runtime: Ford-Fulkerson takes O(|V | · |E |) time

30 / 41

Edge-Disjoint Paths
Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of edge-disjoint s → t paths

Simply set capacity of each edge to be 1, and run the max-flow
algorithm for it.

Claim 3: there are k edge-disjoint s → t paths iff there is s → t flow
of value k

(⇒) given k edge disjoint paths P1, . . . ,Pk , we can simply get a flow
of value k by “adding” the paths Pi , that is, set the flow value to be 1
for each edge in one of the paths, and all other edges get 0 capacity
(⇐) given flow of value k , by flow decomposition theorem we have k
paths P1, . . . ,Pk , and these must be edge disjoint, since for any e ∈ E ,
we have 0 ≤ f (e) ≤ c(e) = 1.

Runtime: Ford-Fulkerson takes O(|V | · |E |) time

By the max-flow min-cut theorem, can prove:

The maximum number of edge-disjoint s → t paths equals the
minimum number of edges whose removal disconnects s and t (i.e.,

no s → t paths).
31 / 41

Applications of Max-Flow & Min-Cut
Maximum Bipartite Matching
Minimum Vertex Cover
Edge-disjoint Paths
Vertex-disjoint Paths

Further Remarks

Acknowledgements

32 / 41

Vertex-Disjoint Paths

Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of vertex-disjoint s → t paths

33 / 41

Vertex-Disjoint Paths

Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of vertex-disjoint s → t paths

Reduce this problem to the edge-disjoint paths problem!

34 / 41

Vertex-Disjoint Paths

Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of vertex-disjoint s → t paths

Reduce this problem to the edge-disjoint paths problem!

For each u ∈ V \ {s, t}, replace it by two vertices u1, u2 and edges





(u1, u2)

(w , u1), ∀ w ∈ Nin(u)

(u2, v), ∀ v ∈ Nout(u)

35 / 41

Vertex-Disjoint Paths

Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of vertex-disjoint s → t paths

Reduce this problem to the edge-disjoint paths problem!

For each u ∈ V \ {s, t}, replace it by two vertices u1, u2 and edges





(u1, u2)

(w , u1), ∀ w ∈ Nin(u)

(u2, v), ∀ v ∈ Nout(u)

Claim 4: There are k vertex-disjoint s → t paths in G ⇔ there are k
edge-disjoint s → t paths in the new graph.

36 / 41

Vertex-Disjoint Paths

Input: Directed (unweighted) graph G (V ,E), vertices s, t ∈ V

Output: Maximum subset of vertex-disjoint s → t paths

Reduce this problem to the edge-disjoint paths problem!

For each u ∈ V \ {s, t}, replace it by two vertices u1, u2 and edges





(u1, u2)

(w , u1), ∀ w ∈ Nin(u)

(u2, v), ∀ v ∈ Nout(u)

Claim 4: There are k vertex-disjoint s → t paths in G ⇔ there are k
edge-disjoint s → t paths in the new graph.

In this case, Ford-Fulkerson also gives us a O(|V | · |E |) time
algorithm.

37 / 41

Applications of Max-Flow & Min-Cut
Maximum Bipartite Matching
Minimum Vertex Cover
Edge-disjoint Paths
Vertex-disjoint Paths

Further Remarks

Acknowledgements

38 / 41

Duality Theorems

It may at first seem a little magic that vertex cover and matching are
dual problems.

In fact several combinatorial optimization problems have very natural
dual problems, and the knowledge of such duality is a powerful
algorithmic tool!

Most (efficient) combinatorial optimization problems captured by

Linear Programming

one of the most powerful framework for efficient computation.

Most of the dual statements seen here can be derived from Linear
Program Duality

For more on this topic we encourage you all to take some courses in
C&O about it.

39 / 41

Acknowledgement

Based on

Prof. Lau’s Lecture 16

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L16.pdf

Jeff Erickson’s book, Chapter 11

https://jeffe.cs.illinois.edu/teaching/algorithms/book/

11-maxflowapps.pdf

40 / 41

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

41 / 41

