Lecture 18: Max-Flow & Min-Cut
Applications

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 14, 2023

1/41

Overview

@ Applications of Max-Flow & Min-Cut
e Maximum Bipartite Matching
o Minimum Vertex Cover
o Edge-disjoint Paths
o Vertex-disjoint Paths

@ Further Remarks

@ Acknowledgements

2/41

Matchings

e Given an undirected graph G(V, E) a matching M is a subset of E
such that all edges in M are pairwise vertex disjoint (i.e., no two
edges share a common vertex)

@ A matching M C E is called a perfect matching if every vertex in the
graph is matched.

Pen fech o perfect watchion
madching (mex madching A= 2
in
ned

|~

— Y

A .

L R

3/41

Maximum Bipartite Matching
e Input: A bipartite graph G(LU R, E)
@ Output: A maximum cardinality matching M C E

4/41

Maximum Bipartite Matching
e Input: A bipartite graph G(LU R, E)
@ Output: A maximum cardinality matching M C E
e Consider directed graph H({s,t} ULLU R, F,c) given by
{u,v}€E, uel,ve R& (u,v)€F, c(u,v) =00
(s,u)e F, c(s,u)y=1YVuel
(vit)e F, ¢(v,t)=1VveR

in picture:

5/41

Maximum Bipartite Matching

e Input: A bipartite graph G(LU R, E)

@ Output: A maximum cardinality matching M C E

e Consider directed graph H({s,t} ULUR, F,c) given by
{u,v}€E, uel,ve R& (u,v)€F, c(u,v) =00
(s,u)e F, c(s,u)y=1YVuel
(vit)e F, ¢(v,t)=1VveR

in picture:

@ Claim: there is matching of size k in G < there is an s — t flow of
value k in H

6/41

Maximum Bipartite Matching

o Claim: there is matching of size k in G < there is an s — t flow of
value k in H

o (=) from matching M = {{u;, vi} }_, we get flow
f(s,u;) = f(ui,v;) = f(v;, t) = 1 of value k

7/41

Maximum Bipartite Matching

o Claim: there is matching of size k in G < there is an s — t flow of
value k in H

o (<) from (integral) flow of value k (exists by Ford-Fulkerson), use flow
decomposition lemma (note that H is a DAG) to get k s — t paths
Pi,..., Pk, where

P, = (5, u;, vi, t)

Path decomposition lemma says that (s, u;)'s and (v;, t)'s must be
distinct, since

0 < f(s,ui) <cs,u) =1= f(s,u;) =1
(same for (v;, t)).

Moreover, {u;, v;} € E for i € [k], by construction of H.
Thus, M = {{u;, vi} }%_, must be a matching in G.

8/41

Maximum Bipartite Matching

o Claim: there is matching of size k in G < there is an s — t flow of
value k in H

o («=) from (integral) flow of value k (exists by Ford-Fulkerson), use flow
decomposition lemma (note that H is a DAG) to get k s — t paths
Pi,..., Pk, where

P = (5, u;, vi, t)
Path decomposition lemma says that (s, u;)'s and (v;, t)'s must be
distinct, since

0 < f(s,ui) <cs,u) =1= f(s,u;) =1

(same for (v;, t)).
Moreover, {u;, v;} € E for i € [k], by construction of H.
Thus, M = {{u;, vi} }%_, must be a matching in G.
o Ford-Fulkerson gives algorithm with running time O(|V/| - |E|) for
maximum bipartite matching.

9/41

o Applications of Max-Flow & Min-Cut

o Minimum Vertex Cover

@ Further Remarks

@ Acknowledgements

10/41

Minimum Vertex Cover

e Definition: given graph G(V/, E), a subset S C V is a vertex cover if
for every edge {u,v} € E, we have {u,v} NS #0

Py L
ﬂ‘-’\'\‘* o

vert kx
oo veR

11/41

Minimum Vertex Cover

o Input: Bipartite graph G(LU R, E)

o Output: Minimum cardinality vertex cover

12/41

Minimum Vertex Cover

o Input: Bipartite graph G(LU R, E)
@ Output: Minimum cardinality vertex cover

@ Konig’s Theorem:

Theorem (Konig's Theorem)

In a bipartite graph, the maximum size of a matching equals the minimum
size of a vertex cover.

13/41

Minimum Vertex Cover

o Input: Bipartite graph G(LU R, E)
@ Output: Minimum cardinality vertex cover

@ Konig’s Theorem:

Theorem (Konig's Theorem)

In a bipartite graph, the maximum size of a matching equals the minimum
size of a vertex cover.

o Ford-Fulkerson finds a min-cut in the modified graph H from the
previous slides, and from it we will obtain a vertex cover. (we'll see
this in the next side)

14 /41

Proof of Konig's theorem

o Let G(LU R, E) be our bipartite graph and k be the maximum size of
a matching in it.

o Let H({s,t} U LU R, F) be constructed as before. By our previous
result, the max-flow in H has value k.

15 /41

Proof of Konig's theorem

o Let G(LU R, E) be our bipartite graph and k be the maximum size of
a matching in it.

o Let H({s,t} U LU R, F) be constructed as before. By our previous
result, the max-flow in H has value k.

@ By the max-flow min-cut theorem, let S be an s — t cut in H with
s€S& Cu(S) = k. (Ford-Fulkerson finds us such cut)

16 /41

Proof of Konig's theorem

o Let G(LU R, E) be our bipartite graph and k be the maximum size of
a matching in it.

o Let H({s,t} U LU R, F) be constructed as before. By our previous
result, the max-flow in H has value k.

@ By the max-flow min-cut theorem, let S be an s — t cut in H with
s€S& Cu(S) = k. (Ford-Fulkerson finds us such cut)

e Claim 1: |(L\S)U(SNR)| =k

17 /41

Proof of Konig's theorem

o Let G(LU R, E) be our bipartite graph and k be the maximum size of
a matching in it.
o Let H({s,t} U LU R, F) be constructed as before. By our previous
result, the max-flow in H has value k.
@ By the max-flow min-cut theorem, let S be an s — t cut in H with
s€S& Cu(S) = k. (Ford-Fulkerson finds us such cut)
e Claim 1: |(L\S)U(SNR)|=k
e s has edge of capacity 1 to each vertex in L\ S
e t has edge of capacity 1 from each vertex in SN R

18/41

Proof of Konig's theorem

Let G(LU R, E) be our bipartite graph and k be the maximum size of
a matching in it.
Let H({s,t} U LU R, F) be constructed as before. By our previous
result, the max-flow in H has value k.
By the max-flow min-cut theorem, let S be an s — t cut in H with
s€S& Cu(S) = k. (Ford-Fulkerson finds us such cut)
Claim 1: |[(L\S)U(SNR)|=k

e s has edge of capacity 1 to each vertex in L\ S

e t has edge of capacity 1 from each vertex in SN R
o These edges are in dout(S)

19/41

Proof of Konig's theorem

o Let G(LU R, E) be our bipartite graph and k be the maximum size of
a matching in it.

o Let H({s,t} U LU R, F) be constructed as before. By our previous
result, the max-flow in H has value k.

@ By the max-flow min-cut theorem, let S be an s — t cut in H with
s€S& Cu(S) = k. (Ford-Fulkerson finds us such cut)

e Claim 1: |(L\S)U(SNR)|=k

s has edge of capacity 1 to each vertex in L\ S

t has edge of capacity 1 from each vertex in SN R

These edges are in dout(S)

Note that do,:(S) cannot contain edge from L to R (as these have oo

capacity), so the edges above are the only ones in §,:(S).

20/41

Proof of Konig's theorem

o Let G(LU R, E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s,t} U LU R, F) be constructed as before. By our previous
result, the max-flow in H has value k.

(]

By the max-flow min-cut theorem, let S be an s — t cut in H with
s€S& Cu(S) = k. (Ford-Fulkerson finds us such cut)
Claim 1: |[(L\S)U(SNR)|=k

s has edge of capacity 1 to each vertex in L\ S

t has edge of capacity 1 from each vertex in SN R

These edges are in dout(S)

Note that do,:(S) cannot contain edge from L to R (as these have oo
capacity), so the edges above are the only ones in §,:(S).

Claim 2: (L\ S)U(SNR) is a vertex cover of G

21/41

Proof of Konig's theorem

o Let G(LU R, E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s,t} U LU R, F) be constructed as before. By our previous
result, the max-flow in H has value k.

(]

By the max-flow min-cut theorem, let S be an s — t cut in H with
s€S& Cu(S) = k. (Ford-Fulkerson finds us such cut)
Claim 1: [(L\S)U(SNR)|=k

s has edge of capacity 1 to each vertex in L\ S

t has edge of capacity 1 from each vertex in SN R

These edges are in dout(S)

Note that do,:(S) cannot contain edge from L to R (as these have oo
capacity), so the edges above are the only ones in §,:(S).

Claim 2: (L\ S)U(SNR) is a vertex cover of G

o Note that d,,:(S) cannot contain edge from L to R (as these have 0o
capacity).

22/41

Proof of Konig's theorem

o Let G(LU R, E) be our bipartite graph and k be the maximum size of
a matching in it.

Let H({s,t} U LU R, F) be constructed as before. By our previous
result, the max-flow in H has value k.

(]

By the max-flow min-cut theorem, let S be an s — t cut in H with
s€S& Cu(S) = k. (Ford-Fulkerson finds us such cut)
Claim 1: [(L\S)U(SNR)|=k

s has edge of capacity 1 to each vertex in L\ S

t has edge of capacity 1 from each vertex in SN R

These edges are in dout(S)

Note that do,:(S) cannot contain edge from L to R (as these have oo
capacity), so the edges above are the only ones in §,:(S).

Claim 2: (L\ S)U(SNR) is a vertex cover of G
o Note that d,,:(S) cannot contain edge from L to R (as these have 0o
capacity).
e Thus, every edge in G must be from L\ S or to SN R = vertex cover

23 /41

Hall's Theorem

Theorem (Hall's Theorem)

A bipartite graph G(LU R, E) with |L| = |R| = n has a perfect matching
& for every subset S C L, it holds that |[N(S)| > |S].

24 /41

Hall's Theorem

Theorem (Hall's Theorem)

A bipartite graph G(LU R, E) with |L| = |R| = n has a perfect matching
& for every subset S C L, it holds that |[N(S)| > |S].

@ Proof of this theorem can be derived from Konig's theorem.

e Hint: can we have a vertex cover of size < n when the neighborhood
constraints hold?

25 /41

o Applications of Max-Flow & Min-Cut

o Edge-disjoint Paths

@ Further Remarks

@ Acknowledgements

26 /41

Edge-Disjoint Paths
@ Input: Directed (unweighted) graph G(V/, E), vertices s, t € V
@ Output: Maximum subset of edge-disjoint s — t paths

27 /41

Edge-Disjoint Paths
@ Input: Directed (unweighted) graph G(V/, E), vertices s, t € V
@ Output: Maximum subset of edge-disjoint s — t paths

@ Simply set capacity of each edge to be 1, and run the max-flow
algorithm for it.

28 /41

Edge-Disjoint Paths
Input: Directed (unweighted) graph G(V/, E), vertices s,t € V
Output: Maximum subset of edge-disjoint s — t paths

Simply set capacity of each edge to be 1, and run the max-flow
algorithm for it.
@ Claim 3: there are k edge-disjoint s — t paths iff there is s — t flow
of value k
e (=) given k edge disjoint paths Py,..., P, we can simply get a flow
of value k by “adding” the paths P;, that is, set the flow value to be 1
for each edge in one of the paths, and all other edges get 0 capacity
o (<) given flow of value k, by flow decomposition theorem we have k
paths Py, ..., Pk, and these must be edge disjoint, since for any e € E,
we have 0 < f(e) < c(e) = 1.

29 /41

Edge-Disjoint Paths
Input: Directed (unweighted) graph G(V/, E), vertices s,t € V
Output: Maximum subset of edge-disjoint s — t paths

Simply set capacity of each edge to be 1, and run the max-flow

algorithm for it.
@ Claim 3: there are k edge-disjoint s — t paths iff there is s — t flow
of value k
e (=) given k edge disjoint paths Py,..., P, we can simply get a flow
of value k by “adding” the paths P;, that is, set the flow value to be 1
for each edge in one of the paths, and all other edges get 0 capacity
o (<) given flow of value k, by flow decomposition theorem we have k
paths Py, ..., Pk, and these must be edge disjoint, since for any e € E,
we have 0 < f(e) < c(e) = 1.

Runtime: Ford-Fulkerson takes O(| V| - |E]) time

30/41

Edge-Disjoint Paths
@ Input: Directed (unweighted) graph G(V/, E), vertices s, t € V
@ Output: Maximum subset of edge-disjoint s — t paths
@ Simply set capacity of each edge to be 1, and run the max-flow

algorithm for it.

@ Claim 3: there are k edge-disjoint s — t paths iff there is s — t flow
of value k
e (=) given k edge disjoint paths Py,..., P, we can simply get a flow
of value k by “adding” the paths P;, that is, set the flow value to be 1
for each edge in one of the paths, and all other edges get 0 capacity
o (<) given flow of value k, by flow decomposition theorem we have k
paths Py, ..., Pk, and these must be edge disjoint, since for any e € E,
we have 0 < f(e) < c(e) = 1.

e Runtime: Ford-Fulkerson takes O(|V/|- |E|) time
@ By the max-flow min-cut theorem, can prove:

The maximum number of edge-disjoint s — t paths equals the
minimum number of edges whose removal disconnects s and t (i.e.,
no s — t paths).

31/41

o Applications of Max-Flow & Min-Cut

o Vertex-disjoint Paths

@ Further Remarks

@ Acknowledgements

32/41

Vertex-Disjoint Paths

o Input: Directed (unweighted) graph G(V, E), vertices s, t € V

@ Output: Maximum subset of vertex-disjoint s — t paths

33/41

Vertex-Disjoint Paths

o Input: Directed (unweighted) graph G(V, E), vertices s, t € V
@ Output: Maximum subset of vertex-disjoint s — t paths

@ Reduce this problem to the edge-disjoint paths problem!

34/41

Vertex-Disjoint Paths

o Input: Directed (unweighted) graph G(V, E), vertices s, t € V
@ Output: Maximum subset of vertex-disjoint s — t paths
@ Reduce this problem to the edge-disjoint paths problem!

e For each u € V' \ {s, t}, replace it by two vertices uz, uy and edges

(u1, u2)
(w,u1), Vw e Njp(u)
(u2,v), Vv E Noye(u)

35/41

Vertex-Disjoint Paths

o Input: Directed (unweighted) graph G(V, E), vertices s, t € V
@ Output: Maximum subset of vertex-disjoint s — t paths
@ Reduce this problem to the edge-disjoint paths problem!

e For each u € V' \ {s, t}, replace it by two vertices uz, uy and edges

(u1, u2)
(w,u1), Vw e Njp(u)
(u2,v), Vv E Noye(u)

Claim 4: There are k vertex-disjoint s — t paths in G < there are k
edge-disjoint s — t paths in the new graph.

36/41

Vertex-Disjoint Paths

Input: Directed (unweighted) graph G(V/, E), vertices s,t € V
Output: Maximum subset of vertex-disjoint s — t paths
Reduce this problem to the edge-disjoint paths problem!

For each u € V'\ {s, t}, replace it by two vertices vy, up and edges

(u1, u2)
(w,u1), Vw e Njp(u)
(u2,v), Vv E Noye(u)

Claim 4: There are k vertex-disjoint s — t paths in G < there are k
edge-disjoint s — t paths in the new graph.

In this case, Ford-Fulkerson also gives us a O(|V/| - |E|) time
algorithm.

37/41

@ Further Remarks

38/41

Duality Theorems

@ It may at first seem a little magic that vertex cover and matching are
dual problems.

@ In fact several combinatorial optimization problems have very natural
dual problems, and the knowledge of such duality is a powerful
algorithmic tool!

@ Most (efficient) combinatorial optimization problems captured by
Linear Programming
one of the most powerful framework for efficient computation.

@ Most of the dual statements seen here can be derived from Linear
Program Duality

@ For more on this topic we encourage you all to take some courses in
C&O about it.

30/41

Acknowledgement

Based on
@ Prof. Lau's Lecture 16
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L16.pdf
o Jeff Erickson’s book, Chapter 11

https://jeffe.cs.illinois.edu/teaching/algorithms/book/
11-maxflowapps.pdf

40/41

References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.
MIT Press

ﬁ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

41/4

