
Lecture 19: Complexity Intro & Reductions

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 16, 2023

1 / 43



Overview

Complexity Classes
Decision Problems
P - decision problems with efficient algorithms
Search/Optimization Problems
Reductions & Transformations

Examples of Problems & Transformations
Problems
Transformations

Acknowledgements

2 / 43



Decision Problems

Decision problems are problems which have a YES/NO answer

Given graph G , does it have perfect matching?
Given graph G and k ∈ N, does it have matching of size k?
Given directed graph G and s, t ∈ V , is there an s → t path in G?
Given directed graph G , s, t ∈ V and k ∈ N, are there k edge-disjoint
s → t paths in G?

3 / 43



Complexity Classes
Decision Problems
P - decision problems with efficient algorithms
Search/Optimization Problems
Reductions & Transformations

Examples of Problems & Transformations
Problems
Transformations

Acknowledgements

4 / 43



Complexity Class P: the class of efficient algorithms

We have learned many “efficient” algorithms in this course so far

But what do we really mean when we say “efficient”?

A good notion of efficient should be:

“fast” (solve large instances of the problem in reasonable time)

As instances grow, runtime should not be prohibitive.

“composable” (allows for using efficient subroutines)

Of course, should call subroutine not too many times

What could be a set of runtimes that satisfy the above properties?

Polynomial time!

A runtime T (n) is polynomial if there is a constant c > 0 such that
T (n) = O(nc).

Complexity class P:

P := class of decision problems with algorithms which correctly decide
them in polynomial time.

5 / 43



Complexity Class P: the class of efficient algorithms

We have learned many “efficient” algorithms in this course so far

But what do we really mean when we say “efficient”?

A good notion of efficient should be:

“fast” (solve large instances of the problem in reasonable time)

As instances grow, runtime should not be prohibitive.

“composable” (allows for using efficient subroutines)

Of course, should call subroutine not too many times

What could be a set of runtimes that satisfy the above properties?

Polynomial time!

A runtime T (n) is polynomial if there is a constant c > 0 such that
T (n) = O(nc).

Complexity class P:

P := class of decision problems with algorithms which correctly decide
them in polynomial time.

6 / 43



Complexity Class P: the class of efficient algorithms

We have learned many “efficient” algorithms in this course so far

But what do we really mean when we say “efficient”?

A good notion of efficient should be:

“fast” (solve large instances of the problem in reasonable time)

As instances grow, runtime should not be prohibitive.

“composable” (allows for using efficient subroutines)

Of course, should call subroutine not too many times

What could be a set of runtimes that satisfy the above properties?

Polynomial time!

A runtime T (n) is polynomial if there is a constant c > 0 such that
T (n) = O(nc).

Complexity class P:

P := class of decision problems with algorithms which correctly decide
them in polynomial time.

7 / 43



Complexity Class P: the class of efficient algorithms

We have learned many “efficient” algorithms in this course so far

But what do we really mean when we say “efficient”?

A good notion of efficient should be:

“fast” (solve large instances of the problem in reasonable time)

As instances grow, runtime should not be prohibitive.

“composable” (allows for using efficient subroutines)

Of course, should call subroutine not too many times

What could be a set of runtimes that satisfy the above properties?

Polynomial time!

A runtime T (n) is polynomial if there is a constant c > 0 such that
T (n) = O(nc).

Complexity class P:

P := class of decision problems with algorithms which correctly decide
them in polynomial time.

8 / 43



Complexity Classes
Decision Problems
P - decision problems with efficient algorithms
Search/Optimization Problems
Reductions & Transformations

Examples of Problems & Transformations
Problems
Transformations

Acknowledgements

9 / 43



Search/Optimization Problems

The choice of considering decision problems is not too restrictive

Often times, deciding property allows us to search for witness of the
property

saw this in DP
greedy always returns a solution with maximal properties
BFS/DFS, Dijkstra trees
saw how to get the max-flow & the min-cut
can find a perfect matching if we can decide whether graph has perfect
matching

Also, for optimization problems, it is often the case that the decision
version of problem combined with binary search yields an efficient
solution

If we can decide, for every k, whether graph G has matching of size k,
we can find the maximum matching in G
If we can decide, for every k, whether G has a flow of value k, then we
can find the max-flow value.

10 / 43



Search/Optimization Problems

The choice of considering decision problems is not too restrictive

Often times, deciding property allows us to search for witness of the
property

saw this in DP
greedy always returns a solution with maximal properties
BFS/DFS, Dijkstra trees
saw how to get the max-flow & the min-cut
can find a perfect matching if we can decide whether graph has perfect
matching

Also, for optimization problems, it is often the case that the decision
version of problem combined with binary search yields an efficient
solution

If we can decide, for every k, whether graph G has matching of size k,
we can find the maximum matching in G
If we can decide, for every k, whether G has a flow of value k, then we
can find the max-flow value.

11 / 43



Search/Optimization Problems

The choice of considering decision problems is not too restrictive

Often times, deciding property allows us to search for witness of the
property

saw this in DP
greedy always returns a solution with maximal properties
BFS/DFS, Dijkstra trees
saw how to get the max-flow & the min-cut
can find a perfect matching if we can decide whether graph has perfect
matching

Also, for optimization problems, it is often the case that the decision
version of problem combined with binary search yields an efficient
solution

If we can decide, for every k , whether graph G has matching of size k,
we can find the maximum matching in G
If we can decide, for every k , whether G has a flow of value k, then we
can find the max-flow value.

12 / 43



Complexity Classes
Decision Problems
P - decision problems with efficient algorithms
Search/Optimization Problems
Reductions & Transformations

Examples of Problems & Transformations
Problems
Transformations

Acknowledgements

13 / 43



Reductions & Transformations

How do we prove problem A is “easier than” another problem B?

Intuitive notion is: if we can efficiently solve B, then we can also
efficiently solve A

Now that we have our notion of efficient (i.e., polynomial time
solvable), we can make the notion above precise.

There are a couple of ways to go about it.

Turing Reductions
Karp Reductions (or Polynomial Transformations)
Truth Table Reductions (won’t see this in CS 341...)

14 / 43



Reductions & Transformations

How do we prove problem A is “easier than” another problem B?

Intuitive notion is: if we can efficiently solve B, then we can also
efficiently solve A

Now that we have our notion of efficient (i.e., polynomial time
solvable), we can make the notion above precise.

There are a couple of ways to go about it.

Turing Reductions
Karp Reductions (or Polynomial Transformations)
Truth Table Reductions (won’t see this in CS 341...)

15 / 43



Reductions & Transformations

How do we prove problem A is “easier than” another problem B?

Intuitive notion is: if we can efficiently solve B, then we can also
efficiently solve A

Now that we have our notion of efficient (i.e., polynomial time
solvable), we can make the notion above precise.

There are a couple of ways to go about it.

Turing Reductions
Karp Reductions (or Polynomial Transformations)
Truth Table Reductions (won’t see this in CS 341...)

16 / 43



Reductions & Transformations

How do we prove problem A is “easier than” another problem B?

Intuitive notion is: if we can efficiently solve B, then we can also
efficiently solve A

Now that we have our notion of efficient (i.e., polynomial time
solvable), we can make the notion above precise.

There are a couple of ways to go about it.

Turing Reductions
Karp Reductions (or Polynomial Transformations)
Truth Table Reductions (won’t see this in CS 341...)

17 / 43



Polynomial Time (Turing) Reductions

Turing reductions are the most natural way you would think about
reducing a problem.
We say that

A ≤T B

if there is a polynomial-time algorithm M which solves problem A and
makes polynomially many calls1 to instances of B

Intuitively, M can use any (efficient) algorithm for B as a subroutine,
so long as it uses it polynomially many times.

For instance, we saw in previous lectures that

max-flow ≤T shortest paths

1These calls to instances of B does not count towards the running time of M. Think
of M as having access to an “oracle” that gives correct answers to instances of B (in
unit time).

18 / 43



Polynomial Time (Turing) Reductions

Turing reductions are the most natural way you would think about
reducing a problem.
We say that

A ≤T B

if there is a polynomial-time algorithm M which solves problem A and
makes polynomially many calls1 to instances of B

Intuitively, M can use any (efficient) algorithm for B as a subroutine,
so long as it uses it polynomially many times.

For instance, we saw in previous lectures that

max-flow ≤T shortest paths

1These calls to instances of B does not count towards the running time of M. Think
of M as having access to an “oracle” that gives correct answers to instances of B (in
unit time).

19 / 43



Polynomial Time (Turing) Reductions

Turing reductions are the most natural way you would think about
reducing a problem.
We say that

A ≤T B

if there is a polynomial-time algorithm M which solves problem A and
makes polynomially many calls1 to instances of B

Intuitively, M can use any (efficient) algorithm for B as a subroutine,
so long as it uses it polynomially many times.

For instance, we saw in previous lectures that

max-flow ≤T shortest paths

1These calls to instances of B does not count towards the running time of M. Think
of M as having access to an “oracle” that gives correct answers to instances of B (in
unit time).

20 / 43



Polynomial Time Transformations (Karp reductions)

Another type of reduction is a mapping reduction, also known as
transformations

In this case, if we can – in polynomial time – transform each YES
instance of problem A to a YES instance of problem B, and each NO
instance of problem A to a NO instance of problem B, then we say

A ≤m B

If we can do the above, then any efficient algorithm for B will yield an
efficient algorithm for A

For instance, we saw in previous lectures that

Perfect matching in bipartite graphs ≤m max-flow
vertex-cover in bipartite graphs ≤m max-flow

21 / 43



Polynomial Time Transformations (Karp reductions)

Another type of reduction is a mapping reduction, also known as
transformations

In this case, if we can – in polynomial time – transform each YES
instance of problem A to a YES instance of problem B, and each NO
instance of problem A to a NO instance of problem B, then we say

A ≤m B

If we can do the above, then any efficient algorithm for B will yield an
efficient algorithm for A

For instance, we saw in previous lectures that

Perfect matching in bipartite graphs ≤m max-flow
vertex-cover in bipartite graphs ≤m max-flow

22 / 43



Polynomial Time Transformations (Karp reductions)

Another type of reduction is a mapping reduction, also known as
transformations

In this case, if we can – in polynomial time – transform each YES
instance of problem A to a YES instance of problem B, and each NO
instance of problem A to a NO instance of problem B, then we say

A ≤m B

If we can do the above, then any efficient algorithm for B will yield an
efficient algorithm for A

For instance, we saw in previous lectures that

Perfect matching in bipartite graphs ≤m max-flow
vertex-cover in bipartite graphs ≤m max-flow

23 / 43



Polynomial Time Transformations (Karp reductions)

Another type of reduction is a mapping reduction, also known as
transformations

In this case, if we can – in polynomial time – transform each YES
instance of problem A to a YES instance of problem B, and each NO
instance of problem A to a NO instance of problem B, then we say

A ≤m B

If we can do the above, then any efficient algorithm for B will yield an
efficient algorithm for A

For instance, we saw in previous lectures that

Perfect matching in bipartite graphs ≤m max-flow
vertex-cover in bipartite graphs ≤m max-flow

24 / 43



Complexity Classes
Decision Problems
P - decision problems with efficient algorithms
Search/Optimization Problems
Reductions & Transformations

Examples of Problems & Transformations
Problems
Transformations

Acknowledgements

25 / 43



Problems
Clique:

Input: graph G (V ,E ), integer k ∈ N
Output: is there a clique in G with k vertices?

Independent Set:
Input: graph G (V ,E ), integer k ∈ N
Output: is there an independent set in G of size k?

Vertex Cover:
Input: graph G (V ,E ), integer k ∈ N
Output: is there a vertex cover of size ≤ k?

Hamiltonian Path:
Input: graph G (V ,E )
Output: Does G have a Hamiltonian Path (a path passing by each
vertex exactly once)?

Hamiltonian Cycle:
Input: graph G (V ,E )
Output: Does G have a hamiltonian cycle?

Traveling Salesman Problem:
Input: complete graph G (V ,E , d) where d : E → R≥0, k ∈ R
Output: is there a cycle in G visiting each vertex exactly once of total
distance k?

26 / 43



Problems
Clique:

Input: graph G (V ,E ), integer k ∈ N
Output: is there a clique in G with k vertices?

Independent Set:
Input: graph G (V ,E ), integer k ∈ N
Output: is there an independent set in G of size k?

Vertex Cover:
Input: graph G (V ,E ), integer k ∈ N
Output: is there a vertex cover of size ≤ k?

Hamiltonian Path:
Input: graph G (V ,E )
Output: Does G have a Hamiltonian Path (a path passing by each
vertex exactly once)?

Hamiltonian Cycle:
Input: graph G (V ,E )
Output: Does G have a hamiltonian cycle?

Traveling Salesman Problem:
Input: complete graph G (V ,E , d) where d : E → R≥0, k ∈ R
Output: is there a cycle in G visiting each vertex exactly once of total
distance k?

27 / 43



Problems
Clique:

Input: graph G (V ,E ), integer k ∈ N
Output: is there a clique in G with k vertices?

Independent Set:
Input: graph G (V ,E ), integer k ∈ N
Output: is there an independent set in G of size k?

Vertex Cover:
Input: graph G (V ,E ), integer k ∈ N
Output: is there a vertex cover of size ≤ k?

Hamiltonian Path:
Input: graph G (V ,E )
Output: Does G have a Hamiltonian Path (a path passing by each
vertex exactly once)?

Hamiltonian Cycle:
Input: graph G (V ,E )
Output: Does G have a hamiltonian cycle?

Traveling Salesman Problem:
Input: complete graph G (V ,E , d) where d : E → R≥0, k ∈ R
Output: is there a cycle in G visiting each vertex exactly once of total
distance k?

28 / 43



Problems
Clique:

Input: graph G (V ,E ), integer k ∈ N
Output: is there a clique in G with k vertices?

Independent Set:
Input: graph G (V ,E ), integer k ∈ N
Output: is there an independent set in G of size k?

Vertex Cover:
Input: graph G (V ,E ), integer k ∈ N
Output: is there a vertex cover of size ≤ k?

Hamiltonian Path:
Input: graph G (V ,E )
Output: Does G have a Hamiltonian Path (a path passing by each
vertex exactly once)?

Hamiltonian Cycle:
Input: graph G (V ,E )
Output: Does G have a hamiltonian cycle?

Traveling Salesman Problem:
Input: complete graph G (V ,E , d) where d : E → R≥0, k ∈ R
Output: is there a cycle in G visiting each vertex exactly once of total
distance k?

29 / 43



Problems
Clique:

Input: graph G (V ,E ), integer k ∈ N
Output: is there a clique in G with k vertices?

Independent Set:
Input: graph G (V ,E ), integer k ∈ N
Output: is there an independent set in G of size k?

Vertex Cover:
Input: graph G (V ,E ), integer k ∈ N
Output: is there a vertex cover of size ≤ k?

Hamiltonian Path:
Input: graph G (V ,E )
Output: Does G have a Hamiltonian Path (a path passing by each
vertex exactly once)?

Hamiltonian Cycle:
Input: graph G (V ,E )
Output: Does G have a hamiltonian cycle?

Traveling Salesman Problem:
Input: complete graph G (V ,E , d) where d : E → R≥0, k ∈ R
Output: is there a cycle in G visiting each vertex exactly once of total
distance k?

30 / 43



Problems
Clique:

Input: graph G (V ,E ), integer k ∈ N
Output: is there a clique in G with k vertices?

Independent Set:
Input: graph G (V ,E ), integer k ∈ N
Output: is there an independent set in G of size k?

Vertex Cover:
Input: graph G (V ,E ), integer k ∈ N
Output: is there a vertex cover of size ≤ k?

Hamiltonian Path:
Input: graph G (V ,E )
Output: Does G have a Hamiltonian Path (a path passing by each
vertex exactly once)?

Hamiltonian Cycle:
Input: graph G (V ,E )
Output: Does G have a hamiltonian cycle?

Traveling Salesman Problem:
Input: complete graph G (V ,E , d) where d : E → R≥0, k ∈ R
Output: is there a cycle in G visiting each vertex exactly once of total
distance k?

31 / 43



Complexity Classes
Decision Problems
P - decision problems with efficient algorithms
Search/Optimization Problems
Reductions & Transformations

Examples of Problems & Transformations
Problems
Transformations

Acknowledgements

32 / 43



Clique and Independent Set

Claim 1: Clique ≤m Independent Set

Claim 2: Independent set ≤m Clique

Proof: Complement graph

33 / 43



Clique and Independent Set

Claim 1: Clique ≤m Independent Set

Claim 2: Independent set ≤m Clique

Proof: Complement graph

34 / 43



Independent Set and Vertex Cover

Claim 1: Independent set ≤m vertex cover

Claim 2: vertex cover ≤m independent set

Proof: In G (V ,E ), S ⊂ V is a vertex cover iff V \ S is an
independent set.

35 / 43



Independent Set and Vertex Cover

Claim 1: Independent set ≤m vertex cover

Claim 2: vertex cover ≤m independent set

Proof: In G (V ,E ), S ⊂ V is a vertex cover iff V \ S is an
independent set.

36 / 43



Hamiltonian Path & Hamiltonian Cycle

Claim 1: Hamiltonian path ≤m hamiltonian cycle

Proof: Forcing path to become cycle by adding one point

Claim 2: hamiltonian cycle ≤m hamiltonian path

Forcing cycle to become path by adding two “endpoints” (degree 1
vertices)

37 / 43



Hamiltonian Path & Hamiltonian Cycle

Claim 1: Hamiltonian path ≤m hamiltonian cycle

Proof: Forcing path to become cycle by adding one point

Claim 2: hamiltonian cycle ≤m hamiltonian path

Forcing cycle to become path by adding two “endpoints” (degree 1
vertices)

38 / 43



Hamiltonian Path & Hamiltonian Cycle

Claim 1: Hamiltonian path ≤m hamiltonian cycle

Proof: Forcing path to become cycle by adding one point

Claim 2: hamiltonian cycle ≤m hamiltonian path

Forcing cycle to become path by adding two “endpoints” (degree 1
vertices)

39 / 43



Hamiltonian Path & Hamiltonian Cycle

Claim 1: Hamiltonian path ≤m hamiltonian cycle

Proof: Forcing path to become cycle by adding one point

Claim 2: hamiltonian cycle ≤m hamiltonian path

Forcing cycle to become path by adding two “endpoints” (degree 1
vertices)

40 / 43



Hamiltonian Cycle and Traveling Salesman Problem (TSP)

Claim 2: hamiltonian cycle ≤m TSP

different edge weights

41 / 43



Acknowledgement

Based on

Prof. Lau’s Lecture 17

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L17.pdf

[Erickson 2019, Chapter 12]

42 / 43

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L17.pdf


References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford
(2009)

Introduction to Algorithms, third edition.

MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)

Algorithms

Erickson, Jeff (2019)

Algorithms

https://jeffe.cs.illinois.edu/teaching/algorithms/

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

43 / 43

https://jeffe.cs.illinois.edu/teaching/algorithms/

	Complexity Classes
	Decision Problems
	P - decision problems with efficient algorithms
	Search/Optimization Problems
	Reductions & Transformations

	Examples of Problems & Transformations
	Problems
	Transformations

	Acknowledgements

