Lecture 19: Complexity Intro \& Reductions

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 16, 2023

Overview

- Complexity Classes
- Decision Problems
- P - decision problems with efficient algorithms
- Search/Optimization Problems
- Reductions \& Transformations
- Examples of Problems \& Transformations
- Problems
- Transformations
- Acknowledgements

Decision Problems

- Decision problems are problems which have a YES/NO answer
- Given graph G, does it have perfect matching?
- Given graph G and $k \in \mathbb{N}$, does it have matching of size k ?
- Given directed graph G and $s, t \in V$, is there an $s \rightarrow t$ path in G ?
- Given directed graph $G, s, t \in V$ and $k \in \mathbb{N}$, are there k edge-disjoint $s \rightarrow t$ paths in G ?
- Complexity Classes
- Decision Problems
- P - decision problems with efficient algorithms
- Search/Optimization Problems
- Reductions \& Transformations
- Examples of Problems \& Transformations
- Problems
- Transformations
- Acknowledgements

Complexity Class P: the class of efficient algorithms

- We have learned many "efficient" algorithms in this course so far
- But what do we really mean when we say "efficient"?

Complexity Class P: the class of efficient algorithms

- We have learned many "efficient" algorithms in this course so far
- But what do we really mean when we say "efficient"?
- A good notion of efficient should be:
- "fast" (solve large instances of the problem in reasonable time) As instances grow, runtime should not be prohibitive.
- "composable"
(allows for using efficient subroutines)
Of course, should call subroutine not too many times

Complexity Class P: the class of efficient algorithms

- We have learned many "efficient" algorithms in this course so far
- But what do we really mean when we say "efficient"?
- A good notion of efficient should be:
- "fast" (solve large instances of the problem in reasonable time) As instances grow, runtime should not be prohibitive.
- "composable" (allows for using efficient subroutines) Of course, should call subroutine not too many times
- What could be a set of runtimes that satisfy the above properties?

Polynomial time!

A runtime $T(n)$ is polynomial if there is a constant $c>0$ such that $T(n)=O\left(n^{c}\right)$.

Complexity Class P: the class of efficient algorithms

- We have learned many "efficient" algorithms in this course so far
- But what do we really mean when we say "efficient"?
- A good notion of efficient should be:
- "fast" (solve large instances of the problem in reasonable time) As instances grow, runtime should not be prohibitive.
- "composable" (allows for using efficient subroutines) Of course, should call subroutine not too many times
- What could be a set of runtimes that satisfy the above properties?

Polynomial time!

A runtime $T(n)$ is polynomial if there is a constant $c>0$ such that $T(n)=O\left(n^{c}\right)$.

- Complexity class P:
$\mathrm{P}:=$ class of decision problems with algorithms which correctly decide them in polynomial time.
- Complexity Classes
- Decision Problems
- P - decision problems with efficient algorithms
- Search/Optimization Problems
- Reductions \& Transformations
- Examples of Problems \& Transformations
- Problems
- Transformations
- Acknowledgements

Search/Optimization Problems

- The choice of considering decision problems is not too restrictive

Search/Optimization Problems

- The choice of considering decision problems is not too restrictive
- Often times, deciding property allows us to search for witness of the property
- saw this in DP
- greedy always returns a solution with maximal properties
- BFS/DFS, Dijkstra trees
- saw how to get the max-flow \& the min-cut
- can find a perfect matching if we can decide whether graph has perfect matching

Search/Optimization Problems

- The choice of considering decision problems is not too restrictive
- Often times, deciding property allows us to search for witness of the property
- saw this in DP
- greedy always returns a solution with maximal properties
- BFS/DFS, Dijkstra trees
- saw how to get the max-flow \& the min-cut
- can find a perfect matching if we can decide whether graph has perfect matching
- Also, for optimization problems, it is often the case that the decision version of problem combined with binary search yields an efficient solution
- If we can decide, for every k, whether graph G has matching of size k, we can find the maximum matching in G
- If we can decide, for every k, whether G has a flow of value k, then we can find the max-flow value.
- Complexity Classes
- Decision Problems
- P - decision problems with efficient algorithms
- Search/Optimization Problems
- Reductions \& Transformations
- Examples of Problems \& Transformations
- Problems
- Transformations
- Acknowledgements

Reductions \& Transformations

- How do we prove problem A is "easier than" another problem B ?

Reductions \& Transformations

- How do we prove problem A is "easier than" another problem B ?
- Intuitive notion is: if we can efficiently solve B, then we can also efficiently solve A

Reductions \& Transformations

- How do we prove problem A is "easier than" another problem B ?
- Intuitive notion is: if we can efficiently solve B, then we can also efficiently solve A
- Now that we have our notion of efficient (i.e., polynomial time solvable), we can make the notion above precise.

Reductions \& Transformations

- How do we prove problem A is "easier than" another problem B ?
- Intuitive notion is: if we can efficiently solve B, then we can also efficiently solve A
- Now that we have our notion of efficient (i.e., polynomial time solvable), we can make the notion above precise.
- There are a couple of ways to go about it.
- Turing Reductions
- Karp Reductions (or Polynomial Transformations)
- Truth Table Reductions (won't see this in CS 341...)

Polynomial Time (Turing) Reductions

- Turing reductions are the most natural way you would think about reducing a problem.
We say that

$$
A \leq_{T} B
$$

if there is a polynomial-time algorithm M which solves problem A and makes polynomially many calls ${ }^{1}$ to instances of B
${ }^{1}$ These calls to instances of B does not count towards the running time of M. Think of M as having access to an "oracle" that gives correct answers to instances of B (in unit time).

Polynomial Time (Turing) Reductions

- Turing reductions are the most natural way you would think about reducing a problem.
We say that

$$
A \leq_{T} B
$$

if there is a polynomial-time algorithm M which solves problem A and makes polynomially many calls ${ }^{1}$ to instances of B

- Intuitively, M can use any (efficient) algorithm for B as a subroutine, so long as it uses it polynomially many times.
${ }^{1}$ These calls to instances of B does not count towards the running time of M. Think of M as having access to an "oracle" that gives correct answers to instances of B (in unit time).

Polynomial Time (Turing) Reductions

- Turing reductions are the most natural way you would think about reducing a problem.
We say that

$$
A \leq_{T} B
$$

if there is a polynomial-time algorithm M which solves problem A and makes polynomially many calls ${ }^{1}$ to instances of B

- Intuitively, M can use any (efficient) algorithm for B as a subroutine, so long as it uses it polynomially many times.
- For instance, we saw in previous lectures that
- max-flow \leq_{T} shortest paths
${ }^{1}$ These calls to instances of B does not count towards the running time of M. Think of M as having access to an "oracle" that gives correct answers to instances of B (in unit time).

Polynomial Time Transformations (Karp reductions)

- Another type of reduction is a mapping reduction, also known as transformations

Polynomial Time Transformations (Karp reductions)

- Another type of reduction is a mapping reduction, also known as transformations
- In this case, if we can - in polynomial time - transform each YES instance of problem A to a YES instance of problem B, and each NO instance of problem A to a NO instance of problem B, then we say

$$
A \leq_{m} B
$$

Polynomial Time Transformations (Karp reductions)

- Another type of reduction is a mapping reduction, also known as transformations
- In this case, if we can - in polynomial time - transform each YES instance of problem A to a YES instance of problem B, and each NO instance of problem A to a NO instance of problem B, then we say

$$
A \leq_{m} B
$$

- If we can do the above, then any efficient algorithm for B will yield an efficient algorithm for A

Polynomial Time Transformations (Karp reductions)

- Another type of reduction is a mapping reduction, also known as transformations
- In this case, if we can - in polynomial time - transform each YES instance of problem A to a YES instance of problem B, and each NO instance of problem A to a NO instance of problem B, then we say

$$
A \leq_{m} B
$$

- If we can do the above, then any efficient algorithm for B will yield an efficient algorithm for A
- For instance, we saw in previous lectures that
- Perfect matching in bipartite graphs \leq_{m} max-flow
- vertex-cover in bipartite graphs \leq_{m} max-flow
- Complexity Classes
- Decision Problems
- P - decision problems with efficient algorithms
- Search/Optimization Problems
- Reductions \& Transformations
- Examples of Problems \& Transformations
- Problems
- Transformations
- Acknowledgements

Problems

- Clique:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a clique in G with k vertices?

Problems

- Clique:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a clique in G with k vertices?
- Independent Set:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there an independent set in G of size k ?

Problems

- Clique:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a clique in G with k vertices?
- Independent Set:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there an independent set in G of size k ?
- Vertex Cover:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a vertex cover of size $\leq k$?

Problems

- Clique:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a clique in G with k vertices?
- Independent Set:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there an independent set in G of size k ?
- Vertex Cover:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a vertex cover of size $\leq k$?
- Hamiltonian Path:
- Input: graph $G(V, E)$
- Output: Does G have a Hamiltonian Path (a path passing by each vertex exactly once)?

Problems

- Clique:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a clique in G with k vertices?
- Independent Set:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there an independent set in G of size k ?
- Vertex Cover:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a vertex cover of size $\leq k$?
- Hamiltonian Path:
- Input: graph $G(V, E)$
- Output: Does G have a Hamiltonian Path (a path passing by each vertex exactly once)?
- Hamiltonian Cycle:
- Input: graph $G(V, E)$
- Output: Does G have a hamiltonian cycle?

Problems

- Clique:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a clique in G with k vertices?
- Independent Set:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there an independent set in G of size k ?
- Vertex Cover:
- Input: graph $G(V, E)$, integer $k \in \mathbb{N}$
- Output: is there a vertex cover of size $\leq k$?
- Hamiltonian Path:
- Input: graph $G(V, E)$
- Output: Does G have a Hamiltonian Path (a path passing by each vertex exactly once)?
- Hamiltonian Cycle:
- Input: graph $G(V, E)$
- Output: Does G have a hamiltonian cycle?
- Traveling Salesman Problem:
- Input: complete graph $G(V, E, d)$ where $d: E \rightarrow \mathbb{R}_{\geq 0}, k \in \mathbb{R}$
- Output: is there a cycle in G visiting each vertex exactly once of total distance k ?
- Complexity Classes
- Decision Problems
- P - decision problems with efficient algorithms
- Search/Optimization Problems
- Reductions \& Transformations
- Examples of Problems \& Transformations
- Problems
- Transformations
- Acknowledgements

Clique and Independent Set

- Claim 1: Clique \leq_{m} Independent Set
- Claim 2: Independent set \leq_{m} Clique

Clique and Independent Set

- Claim 1: Clique \leq_{m} Independent Set
- Claim 2: Independent set \leq_{m} Clique
- Proof: Complement graph

Independent Set and Vertex Cover

- Claim 1: Independent set \leq_{m} vertex cover
- Claim 2: vertex cover \leq_{m} independent set

Independent Set and Vertex Cover

- Claim 1: Independent set \leq_{m} vertex cover
- Claim 2: vertex cover \leq_{m} independent set
- Proof: In $G(V, E), S \subset V$ is a vertex cover iff $V \backslash S$ is an independent set.

Hamiltonian Path \& Hamiltonian Cycle

- Claim 1: Hamiltonian path \leq_{m} hamiltonian cycle

Hamiltonian Path \& Hamiltonian Cycle

- Claim 1: Hamiltonian path \leq_{m} hamiltonian cycle
- Proof: Forcing path to become cycle by adding one point

Hamiltonian Path \& Hamiltonian Cycle

- Claim 1: Hamiltonian path \leq_{m} hamiltonian cycle
- Proof: Forcing path to become cycle by adding one point
- Claim 2: hamiltonian cycle \leq_{m} hamiltonian path

Hamiltonian Path \& Hamiltonian Cycle

- Claim 1: Hamiltonian path \leq_{m} hamiltonian cycle
- Proof: Forcing path to become cycle by adding one point
- Claim 2: hamiltonian cycle \leq_{m} hamiltonian path
- Forcing cycle to become path by adding two "endpoints" (degree 1 vertices)

Hamiltonian Cycle and Traveling Salesman Problem (TSP)

- Claim 2: hamiltonian cycle \leq_{m} TSP
- different edge weights

Acknowledgement

Based on

- Prof. Lau's Lecture 17
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L17.pdf
- [Erickson 2019, Chapter 12]

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009)

Introduction to Algorithms, third edition.
MIT Press
Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

E- Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/
Relent Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

