Lecture 20: Reductions II

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 20, 2023

Overview

- More Reductions
- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT \& Independent Set
- Graph Coloring \& 3SAT
- Subset Sum \& Vertex Cover
- Web of Reductions
- Acknowledgements

Hamiltonian Cycle \& Traveling Salesman Problem (TSP)

- Claim 1: hamiltonian cycle \leq_{m} TSP
- Reduction: different edge weights (for edges in graph vs edges not in graph)

G

TSP inotance

- More Reductions
- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT \& Independent Set
- Graph Coloring \& 3SAT
- Subset Sum \& Vertex Cover
- Web of Reductions
- Acknowledgements
- x_{1}, \ldots, x_{n} are boolean variables
- a literal is a variable, or its negation
(i.e., take values in $\{0,1\}$)
(i.e., $x_{i}, \overline{x_{i}}$)

SAT

- x_{1}, \ldots, x_{n} are boolean variables (i.e., take values in $\{0,1\}$)
- a literal is a variable, or its negation
(i.e., $x_{i}, \overline{x_{i}}$)
- CNF: a boolean formula is in conjunctive normal form (CNF) if:
- it is the (conjunction) AND of a number of clauses,
- each clause being an (disjunction) OR of some literals

Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(\overline{x_{2}} \vee x_{4}\right)
$$

SAT

- x_{1}, \ldots, x_{n} are boolean variables (i.e., take values in $\{0,1\}$)
- a literal is a variable, or its negation
(i.e., $x_{i}, \overline{x_{i}}$)
- CNF: a boolean formula is in conjunctive normal form (CNF) if:
- it is the (conjunction) AND of a number of clauses,
- each clause being an (disjunction) OR of some literals

Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(\overline{x_{2}} \vee x_{4}\right)
$$

- SAT problem
- Input: a CNF formula
- Output: YES, if it has a satisfying assignment; NO otherwise

3SAT

- a 3CNF formula is a CNF formula with exactly 3 literals per clause Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{5}}\right) \wedge\left(\overline{x_{2}} \vee x_{4} \vee x_{5}\right)
$$

3SAT

- a 3CNF formula is a CNF formula with exactly 3 literals per clause Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{5}}\right) \wedge\left(\overline{x_{2}} \vee x_{4} \vee x_{5}\right)
$$

- 3SAT problem
- Input: a 3CNF formula
- Output: YES, if it has a satisfying assignment; NO otherwise
- a 3CNF formula is a CNF formula with exactly 3 literals per clause Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{5}}\right) \wedge\left(\overline{x_{2}} \vee x_{4} \vee x_{5}\right)
$$

- 3SAT problem
- Input: a 3CNF formula
- Output: YES, if it has a satisfying assignment; NO otherwise
- Why are we talking about this problem?

Exercise: prove that SAT \leq_{m} 3SAT.

3SAT \& Independent Set

- Claim 2: 3 SAT \leq_{m} IS

3SAT \& Independent Set

- Claim 2: 3 SAT \leq_{m} IS
- Proof: construct "conflict graph."

Example: $\quad(x \vee y \vee \bar{z}) \wedge(\bar{x} \vee y \vee z) \wedge(\bar{x} \vee \bar{y} \vee z)$

confect graph

- More Reductions
- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT \& Independent Set
- Graph Coloring \& 3SAT
- Subset Sum \& Vertex Cover
- Web of Reductions
- Acknowledgements

Graph Coloring

- Given graph $G(V, E)$ and $k \in \mathbb{N}$, a proper k-coloring of G is a function $C: V \rightarrow\{1,2, \ldots, k\}$ such that

For all $\{u, v\} \in E$ we have $C(u) \neq C(v)$.

Graph Coloring

- Given graph $G(V, E)$ and $k \in \mathbb{N}$, a proper k-coloring of G is a function $C: V \rightarrow\{1,2, \ldots, k\}$ such that

$$
\text { For all }\{u, v\} \in E \text { we have } C(u) \neq C(v) \text {. }
$$

- Graph Coloring problem
- Input: graph $G(V, E), k \in \mathbb{N}$
- Output: does G admit a proper k-coloring?

Graph Coloring

- Given graph $G(V, E)$ and $k \in \mathbb{N}$, a proper k-coloring of G is a function $C: V \rightarrow\{1,2, \ldots, k\}$ such that

$$
\text { For all }\{u, v\} \in E \text { we have } C(u) \neq C(v) \text {. }
$$

- Graph Coloring problem
- Input: graph $G(V, E), k \in \mathbb{N}$
- Output: does G admit a proper k-coloring?
- 3 Coloring (3COLOR) problem
- Input: graph $G(V, E)$
- Output: does G admit a proper 3-coloring?

3SAT \& 3COLOR

- Claim 3: 3SAT \leq_{m} 3COLOR

3SAT \& 3COLOR

- Claim 3: 3SAT \leq_{m} 3COLOR
- Proof: let $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ be a 3CNF

3SAT \& 3COLOR

- Claim 3: 3SAT \leq_{m} 3COLOR
- Proof: let $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ be a 3CNF
- we use gadgets - subgraphs enforcing semantics of input formula φ
- Truth gadget: triangle with 3 vertices T, F, X (standing for True, False, Other)
Enforces that T will be assigned color True, F will be assigned color False and X will be assigned the third color

3SAT \& 3COLOR

- Claim 3: 3SAT \leq_{m} 3COLOR
- Proof: let $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ be a 3CNF
- we use gadgets - subgraphs enforcing semantics of input formula φ
- Truth gadget: triangle with 3 vertices T, F, X (standing for True, False, Other)
Enforces that T will be assigned color True, F will be assigned color False and X will be assigned the third color
- Literal gadget: for each $x_{i}, \overline{x_{i}}$, we have a triangle with vertices $X, x_{i}, \overline{x_{i}}$ Enforces x_{i} and $\overline{x_{i}}$ get a proper assignment.

3SAT \& 3COLOR

- Claim 3: 3SAT \leq_{m} 3COLOR
- Proof: let $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ be a 3CNF
- we use gadgets - subgraphs enforcing semantics of input formula φ
- Truth gadget: triangle with 3 vertices T, F, X (standing for True, False, Other)
Enforces that T will be assigned color True, F will be assigned color False and X will be assigned the third color
- Literal gadget: for each $x_{i}, \overline{x_{i}}$, we have a triangle with vertices $X, x_{i}, \overline{x_{i}}$

Enforces x_{i} and $\overline{x_{i}}$ get a proper assignment.

- Clause gadget: enforces each clause that becomes true under assignment will have a 3 coloring (iff) Clausx: $a \vee \bar{b} \vee c$

3SAT \& 3COLOR - correctness

Need to prove following claims:

- Literal gadget enforces every variable is properly assigned in a coloring
- Clause gadget enforces that every valid 3-coloring of the graph corresponds to a variable assignment which makes corresponding clause true
- More Reductions
- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT \& Independent Set
- Graph Coloring \& 3SAT
- Subset Sum \& Vertex Cover
- Web of Reductions
- Acknowledgements

Subset Sum \& Vertex Cover

- Claim 4: Vertex Cover \leq_{m} Subset Sum

Subset Sum \& Vertex Cover

- Claim 4: Vertex Cover \leq_{m} Subset Sum
- Proof: given $G(V, E)$ and k, need to construct (in poly-time) a (multi)set X of integers and T such that:
X has a subset that sums to $T \Leftrightarrow G$ has a vertex cover of size k.

Subset Sum \& Vertex Cover

- Claim 4: Vertex Cover \leq_{m} Subset Sum
- Proof: given $G(V, E)$ and k, need to construct (in poly-time) a (multi)set X of integers and T such that:
X has a subset that sums to $T \Leftrightarrow G$ has a vertex cover of size k.
- Reduction:
- Number edges (arbitrarily) from 0 to $m-1$. Edge i will correspond to integer $b_{i}:=4^{i}$
- For each vertex $u \in V$ assign number

$$
a_{u}:=4^{m}+\sum_{i \in \delta(u)} 4^{i}
$$

where $\delta(u)$ is the set of edges with u as one endpoint.

- Let

$$
T:=k \cdot 4^{m}+\sum_{i=0}^{m-1} 2 \cdot 4^{i}
$$

- Let $X=\left\{a_{u}, b_{i}\right\}_{u \in V, 0 \leq i<m}$

Subset Sum \& Vertex Cover - proof of reduction

- Need to prove that $\langle G, k\rangle$ has a vertex cover of size k iff X has a subset of elements with sum T

Subset Sum \& Vertex Cover - proof of reduction

- Need to prove that $\langle G, k\rangle$ has a vertex cover of size k iff X has a subset of elements with sum T
- (\Rightarrow) Let $C \subset V$ be a vertex cover of size k. Consider the subset

$$
Y:=\left\{a_{u} \mid u \in C\right\} \cup\left\{b_{i} \mid \text { edge } i \text { has exactly one endpoint in } C\right\}
$$

easy to check it has sum T

Subset Sum \& Vertex Cover - proof of reduction

- Need to prove that $\langle G, k\rangle$ has a vertex cover of size k iff X has a subset of elements with sum T
- (\Leftarrow) Let $\left\{a_{u}\right\}_{u \in C} \cup\left\{b_{i}\right\}_{i \in F}=: Y \subset X$ be a subset with sum T. Must have:

$$
\sum_{u \in C} a_{u}+\sum_{i \in F} b_{i}=T=k \cdot 4^{m}+\sum_{i=0}^{m-1} 2 \cdot 4^{i}
$$

since there are no carries from lower order base-4 digits (i.e., the b_{i} 's), it must be the case that $|C|=k$. moreover, to each 4^{i}, there is at most one b_{i} on LHS that contributes with 4^{i}, so C must be a vertex cover.

- More Reductions
- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT \& Independent Set
- Graph Coloring \& 3SAT
- Subset Sum \& Vertex Cover
- Web of Reductions
- Acknowledgements

Current algorithmic world view

- Wait, why haven't we proved the missing arrows? Do they even hold?

Foundational Question

- Is there a way to organize our world view?
- Is there some property that unifies the problems we have seen so far?
- Why would any of these be considered "hard"?
- Can we "classify" problems according to their "difficulty"? How can we measure this?

Acknowledgement

Based on

- [Kleinberg Tardos 2006, Chapter 8]
- [Erickson 2019, Chapter 12]

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009)

Introduction to Algorithms, third edition.
MIT Press
Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

E- Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/
Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

