Lecture 20: Reductions II

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 20, 2023

Overview

• More Reductions

- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT & Independent Set
- Graph Coloring & 3SAT
- Subset Sum & Vertex Cover
- Web of Reductions
- Acknowledgements

Hamiltonian Cycle & Traveling Salesman Problem (TSP)

- Claim 1: hamiltonian cycle \leq_m TSP
- **Reduction:** different edge weights (for edges in graph vs edges not in graph)

3 / 34

More Reductions

• Hamiltonian Cycle and Traveling Salesman Problem (TSP)

• SAT, 3SAT & Independent Set

- Graph Coloring & 3SAT
- Subset Sum & Vertex Cover

• Web of Reductions

• Acknowledgements

x₁,...,x_n are boolean variables
a *literal* is a variable, or its negation

(i.e., take values in $\{0,1\}$) (i.e., $x_i, \overline{x_i}$)

SAT

- x₁,..., x_n are boolean variables (i.e., take values in {0,1})
 a *literal* is a variable, or its negation (i.e., x_i, x_i)
 CNF: a boolean formula is in conjunctive normal form (CNF) if:

 it is the (conjunction) AND of a number of *clauses*,
 each clause being an (disjunction) OR of some *literals*
 - Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor \overline{x_5} \lor x_6) \land (\overline{x_2} \lor x_4)$$

SAT

- x_1, \ldots, x_n are boolean variables (i.e., take values in $\{0, 1\}$)
- a *literal* is a variable, or its negation
- CNF: a boolean formula is in conjunctive normal form (CNF) if:
 - it is the (conjunction) AND of a number of *clauses*,
 - each clause being an (disjunction) OR of some literals

Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor \overline{x_5} \lor x_6) \land (\overline{x_2} \lor x_4)$$

- SAT problem
 - Input: a CNF formula
 - Output: YES, if it has a satisfying assignment; NO otherwise

(i.e., $x_i, \overline{x_i}$)

• a *3CNF* formula is a CNF formula with *exactly 3 literals* per clause Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor \overline{x_5}) \land (\overline{x_2} \lor x_4 \lor x_5)$$

• a *3CNF* formula is a CNF formula with *exactly 3 literals* per clause Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor \overline{x_5}) \land (\overline{x_2} \lor x_4 \lor x_5)$$

- 3SAT problem
 - Input: a 3CNF formula
 - Output: YES, if it has a satisfying assignment; NO otherwise

• a *3CNF* formula is a CNF formula with *exactly 3 literals* per clause Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor \overline{x_5}) \land (\overline{x_2} \lor x_4 \lor x_5)$$

- 3SAT problem
 - Input: a 3CNF formula
 - Output: YES, if it has a satisfying assignment; NO otherwise
- Why are we talking about this problem?

Exercise: prove that SAT \leq_m 3SAT.

3SAT & Independent Set

• Claim 2: $3SAT \leq_m IS$

3SAT & Independent Set

• Claim 2: $3SAT \leq_m IS$

Proof: construct "conflict graph." Example: (XVYVZ) \ (XVYVZ

More Reductions

- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT & Independent Set
- Graph Coloring & 3SAT
- Subset Sum & Vertex Cover
- Web of Reductions
- Acknowledgements

Graph Coloring

Given graph G(V, E) and k ∈ N, a proper k-coloring of G is a function C : V → {1, 2, ..., k} such that
 For all {u, v} ∈ E we have C(u) ≠ C(v).

Graph Coloring

• Given graph G(V, E) and $k \in \mathbb{N}$, a *proper k-coloring* of G is a function $C: V \to \{1, 2, \dots, k\}$ such that

For all $\{u, v\} \in E$ we have $C(u) \neq C(v)$.

- Graph Coloring problem
 - Input: graph G(V, E), $k \in \mathbb{N}$
 - **Output:** does G admit a proper k-coloring?

Graph Coloring

• Given graph G(V, E) and $k \in \mathbb{N}$, a *proper k-coloring* of G is a function $C: V \to \{1, 2, \dots, k\}$ such that

For all $\{u, v\} \in E$ we have $C(u) \neq C(v)$.

- Graph Coloring problem
 - Input: graph G(V, E), $k \in \mathbb{N}$
 - **Output:** does G admit a proper k-coloring?
- 3 Coloring (3COLOR) problem
 - Input: graph G(V, E)
 - Output: does G admit a proper 3-coloring?

• Claim 3: $3SAT \leq_m 3COLOR$

- Claim 3: $3SAT \leq_m 3COLOR$
- **Proof:** let $\varphi = C_1 \land \cdots \land C_m$ be a 3CNF

- Claim 3: $3SAT \leq_m 3COLOR$
- **Proof:** let $\varphi = C_1 \wedge \cdots \wedge C_m$ be a 3CNF

ullet we use gadgets - subgraphs enforcing semantics of input formula φ

• *Truth gadget*: triangle with 3 vertices *T*, *F*, *X* (standing for True, False, Other)

Enforces that T will be assigned color True, F will be assigned color False and X will be assigned the third color

- Claim 3: $3SAT \leq_m 3COLOR$
- **Proof:** let $\varphi = C_1 \wedge \cdots \wedge C_m$ be a 3CNF

ullet we use gadgets - subgraphs enforcing semantics of input formula φ

• *Truth gadget*: triangle with 3 vertices T, F, X (standing for True, False, Other)

Enforces that T will be assigned color True, F will be assigned color False and X will be assigned the third color

• Literal gadget: for each $x_i, \overline{x_i}$, we have a triangle with vertices $X, x_i, \overline{x_i}$ Enforces x_i and $\overline{x_i}$ get a proper assignment.

- Claim 3: $3SAT \leq_m 3COLOR$
- **Proof:** let $\varphi = C_1 \wedge \cdots \wedge C_m$ be a 3CNF
- ullet we use gadgets subgraphs enforcing semantics of input formula φ
 - Truth gadget: triangle with 3 vertices T, F, X (standing for True, False, Other)

Enforces that T will be assigned color True, F will be assigned color False and X will be assigned the third color

- Literal gadget: for each $x_i, \overline{x_i}$, we have a triangle with vertices $X, x_i, \overline{x_i}$ Enforces x_i and $\overline{x_i}$ get a proper assignment.
- Clause gadget: enforces each clause that becomes true under assignment will have a 3 coloring (iff)

Need to prove following claims:

- Literal gadget enforces every variable is properly assigned in a coloring
- Clause gadget enforces that every valid 3-coloring of the graph corresponds to a variable assignment which makes corresponding clause true

More Reductions

- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT & Independent Set
- Graph Coloring & 3SAT
- Subset Sum & Vertex Cover
- Web of Reductions
- Acknowledgements

Subset Sum & Vertex Cover

• Claim 4: Vertex Cover \leq_m Subset Sum

Subset Sum & Vertex Cover

- Claim 4: Vertex Cover \leq_m Subset Sum
- **Proof:** given G(V, E) and k, need to construct (in poly-time) a (multi)set X of integers and T such that:

X has a subset that sums to $T \Leftrightarrow G$ has a vertex cover of size k.

Subset Sum & Vertex Cover

- Claim 4: Vertex Cover \leq_m Subset Sum
- **Proof:** given G(V, E) and k, need to construct (in poly-time) a (multi)set X of integers and T such that:

X has a subset that sums to $T \Leftrightarrow G$ has a vertex cover of size k.

- Reduction:
 - Number edges (arbitrarily) from 0 to *m* − 1. Edge *i* will correspond to integer *b_i* := 4^{*i*}
 - For each vertex $u \in V$ assign number

$$a_u := 4^m + \sum_{i \in \delta(u)} 4^i$$

where $\delta(u)$ is the set of edges with u as one endpoint.

Let

$$T := k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

• Let $X = \{a_u, b_i\}_{u \in V, 0 \le i < m}$

26 / 34

Subset Sum & Vertex Cover - proof of reduction

 Need to prove that (G, k) has a vertex cover of size k iff X has a subset of elements with sum T

Subset Sum & Vertex Cover - proof of reduction

- Need to prove that (G, k) has a vertex cover of size k iff X has a subset of elements with sum T
- (\Rightarrow) Let $C \subset V$ be a vertex cover of size k. Consider the subset

 $Y := \{a_u \mid u \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}$

easy to check it has sum T

Subset Sum & Vertex Cover - proof of reduction

 Need to prove that (G, k) has a vertex cover of size k iff X has a subset of elements with sum T

• (\Leftarrow) Let $\{a_u\}_{u \in C} \cup \{b_i\}_{i \in F} =: Y \subset X$ be a subset with sum T. Must have:

$$\sum_{u \in C} a_u + \sum_{i \in F} b_i = T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

since there are no carries from lower order base-4 digits (i.e., the b_i 's), it must be the case that |C| = k. moreover, to each 4^i , there is at most one b_i on LHS that contributes with 4^i , so C must be a vertex cover.

• More Reductions

- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT & Independent Set
- Graph Coloring & 3SAT
- Subset Sum & Vertex Cover

• Web of Reductions

Acknowledgements

Current algorithmic world view

• Wait, why haven't we proved the missing arrows? Do they even hold?

Foundational Question

- Is there a way to organize our world view?
 - Is there some property that unifies the problems we have seen so far?
 - Why would any of these be considered "hard"?
 - Can we "classify" problems according to their "difficulty"? How can we measure this?

Acknowledgement

Based on

- [Kleinberg Tardos 2006, Chapter 8]
- [Erickson 2019, Chapter 12]

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009) Introduction to Algorithms, third edition. *MIT Press*

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

Erickson, Jeff (2019)

Algorithms

https://jeffe.cs.illinois.edu/teaching/algorithms/

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley