Lecture 21: Intractability - NP and coNP

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 23, 2023

Overview

- Complexity Classes \& Complete Problems
- NP
- coNP
- Completeness for NP
- Completing Karp Reductions/Polynomial Transformations
- NP-completeness of 3SAT
- Current Worldview
- Acknowledgements
- Let Π be a decision problem and let L_{Π} be the set of all YES instances of Π. Then $L_{\Pi} \subseteq\{0,1\}^{*}$
decision problems \leftrightarrow subsets of all boolean strings
- Let Π be a decision problem and let L_{Π} be the set of all YES instances of Π. Then $L_{\Pi} \subseteq\{0,1\}^{*}$ decision problems \leftrightarrow subsets of all boolean strings
- NP := class of decision problems Π with following property:
- There is a poly-time algorithm V_{Π} and a constant $c>0$ such that
- For any $x \in L_{\Pi}$ (i.e., YES instance) of size n, there is a proof/witness y of size n^{c} such that $V_{\Pi}(x, y)=1$
- For any $x^{\prime} \notin L_{\square}$ (i.e., NO instance) there is no such proof z of size n^{c} such that $V_{\Pi}\left(x^{\prime}, z\right)=1$.
- Let Π be a decision problem and let L_{Π} be the set of all YES instances of Π. Then $L_{\Pi} \subseteq\{0,1\}^{*}$ decision problems \leftrightarrow subsets of all boolean strings
- NP := class of decision problems Π with following property:
- There is a poly-time algorithm V_{Π} and a constant $c>0$ such that
- For any $x \in L_{\Pi}$ (i.e., YES instance) of size n, there is a proof/witness y of size n^{c} such that $V_{\Pi}(x, y)=1$
- For any $x^{\prime} \notin L_{\Pi}$ (i.e., NO instance) there is no such proof z of size n^{c} such that $V_{\Pi}\left(x^{\prime}, z\right)=1$.
- In other words, NP is the class of decision problems where the YES instances have a small proof that can be verified in poly-time

Problems in NP

- Clique
- Independent Set
- SAT (and 3SAT)
- TSP
- Hamilton cycle (and Hamilton path)
- Subset Sum
- Vertex Cover
- 3COLOR (and the graph coloring problem)
- every problem in P
- Complexity Classes \& Complete Problems
- NP
- coNP
- Completeness for NP
- Completing Karp Reductions/Polynomial Transformations
- NP-completeness of 3SAT
- Current Worldview
- Acknowledgements

coNP

- The class coNP is essentially the opposite of NP.
- for a decision problem Π, let $\bar{\Pi}$ be the opposite problem to Π, that is,

$$
x \in L_{\Pi} \Leftrightarrow x \notin L_{\Pi}
$$

equivalently, $L_{\bar{\Pi}}=\overline{L_{\Pi}}$.

- In simpler terms, every YES instance of Π is a NO instance of $\bar{\Pi}$ (and vice-versa)

coNP

- The class coNP is essentially the opposite of NP.
- for a decision problem Π, let $\bar{\Pi}$ be the opposite problem to Π, that is,

$$
x \in L_{\Pi} \Leftrightarrow x \notin L_{\Pi}
$$

equivalently, $L_{\bar{\Pi}}=\overline{L_{\Pi}}$.

- In simpler terms, every YES instance of Π is a NO instance of $\bar{\Pi}$ (and vice-versa)
- coNP $:=$ class of decision problems Π such that $\bar{\Pi} \in$ NP.

Relation between P, NP and coNS

Unknown:

$$
\begin{aligned}
& \text { 1) is } P=N P \cap \operatorname{coNP} \text { ? } \\
& \text { 2) is } N P=\operatorname{coNP} \text { ? } \\
& 3 \text {) is } P=N P ?
\end{aligned}
$$

- Complexity Classes \& Complete Problems
- NP
- coNP
- Completeness for NP
- Completing Karp Reductions/Polynomial Transformations
- NP-completeness of 3SAT
- Current Worldview
- Acknowledgements

A remark about reductions

- Given a particular reduction \leq (Turing, Karp), we can define a complete problem for a complexity class \mathcal{C} as follows:
- Hardness: Π is \mathcal{C}-hard if for every problem $\Gamma \in \mathcal{C}$, we have

$$
\Gamma \leq \Pi
$$

- Membership in $\mathcal{C}: \Pi \in \mathcal{C}$

A remark about reductions

- Given a particular reduction \leq (Turing, Karp), we can define a complete problem for a complexity class \mathcal{C} as follows:
- Hardness: Π is \mathcal{C}-hard if for every problem $\Gamma \in \mathcal{C}$, we have

$$
\Gamma \leq \Pi
$$

- Membership in $\mathcal{C}: \Pi \in \mathcal{C}$
- Complexity theorists prefer to define NP-completeness under Karp reductions (or polynomial transformations) because, as we will see, NP is closed under such reductions
- Note that we do not know whether NP is closed under Turing reductions
- The above would imply NP = coNP, which is considered unlikely

Under Turing reductions, UNSAT \equiv SAT

CIRCUIT-SAT

- A boolean circuit is a DAG with:
- input gates
- AND/OR/NOT gates,
- and a special gate (the output gate)

CIRCUIT-SAT

- A boolean circuit is a DAG with:
- input gates
- AND/OR/NOT gates,
- and a special gate (the output gate)
- CIRCUIT-SAT problem:
- Input: a boolean circuit Φ
- Output: YES, if there is a truth assignment α such that $\Phi(\alpha)=1$, NO otherwise.

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)
CIRCUIT-SAT is NP-complete under polynomial transformations.

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in$ NP, we have $\Pi \leq_{m}$ CIRCUIT-SAT
- Proof sketch: computation is local
- $\Pi \in \mathrm{NP} \Rightarrow \exists$ poly-time verification algorithm V_{Π} and $c>0$ such that for any instance $x \in\{0,1\}^{n}$,

$$
x \in L_{\Pi} \Leftrightarrow \exists y \in\{0,1\}^{n^{c}} \text { s.t. } V_{\Pi}(x, y)=1
$$

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in$ NP, we have $\Pi \leq_{m}$ CIRCUIT-SAT
- Proof sketch: computation is local
- $\Pi \in N P \Rightarrow \exists$ poly-time verification algorithm V_{Π} and $c>0$ such that for any instance $x \in\{0,1\}^{n}$,

$$
x \in L_{\Pi} \Leftrightarrow \exists y \in\{0,1\}^{n^{c}} \text { s.t. } V_{\Pi}(x, y)=1
$$

- If $V_{\Pi}(x, y)$ runs in time $O\left(n^{\gamma}\right)$ (since it is polynomial in terms of the input size), there is circuit of size $O\left(n^{\gamma}\right)$ simulating computation of V_{Π}
Can construct this circuit (from description of V_{Π}) in poly (n)-time!

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in N P$, we have $\Pi \leq_{m}$ CIRCUIT-SAT
- Proof sketch: computation is local
- $\Pi \in \mathrm{NP} \Rightarrow \exists$ poly-time verification algorithm V_{Π} and $c>0$ such that for any instance $x \in\{0,1\}^{n}$,

$$
x \in L_{\Pi} \Leftrightarrow \exists y \in\{0,1\}^{n^{c}} \text { s.t. } V_{\Pi}(x, y)=1
$$

- If $V_{\Pi}(x, y)$ runs in time $O\left(n^{\gamma}\right)$ (since it is polynomial in terms of the input size), there is circuit of size $O\left(n^{\gamma}\right)$ simulating computation of V_{Π}
- So, we get a $\operatorname{poly}(n)$-sized circuit $\Phi_{x}(y)$ which is satisfiable iff $x \in L_{\Pi}$!

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in$ NP, we have $\Pi \leq_{m}$ CIRCUIT-SAT
- Proof sketch: computation is local
- $\Pi \in \mathrm{NP} \Rightarrow \exists$ poly-time verification algorithm V_{Π} and $c>0$ such that for any instance $x \in\{0,1\}^{n}$,

$$
x \in L_{\Pi} \Leftrightarrow \exists y \in\{0,1\}^{n^{c}} \text { s.t. } V_{\Pi}(x, y)=1
$$

- If $V_{\Pi}(x, y)$ runs in time $O\left(n^{\gamma}\right)$ (since it is polynomial in terms of the input size), there is circuit of size $O\left(n^{\gamma}\right)$ simulating computation of V_{Π}
- So, we get a $\operatorname{poly}(n)$-sized circuit $\Phi_{x}(y)$ which is satisfiable iff $x \in L_{\Pi}$!
- Thus, we have a transformation

$$
x \mapsto \Phi_{x}
$$

such that $x \in L_{\Pi} \Leftrightarrow \Phi_{x} \in$ CIRCUIT-SAT.

- Complexity Classes \& Complete Problems
- NP
- coNP
- Completeness for NP
- Completing Karp Reductions/Polynomial Transformations
- NP-completeness of 3SAT
- Current Worldview
- Acknowledgements

3SAT is NP-complete

- To prove this, by Cook-Levin theorem, need to show that CIRCUIT-SAT \leq_{m} 3SAT

3SAT is NP-complete

- To prove this, by Cook-Levin theorem, need to show that CIRCUIT-SAT \leq_{m} 3SAT
- By transitivity of polynomial transformations, enough to show CIRCUIT-SAT \leq_{m} SAT

3SAT is NP-complete

- To prove this, by Cook-Levin theorem, need to show that CIRCUIT-SAT \leq_{m} 3SAT
- By transitivity of polynomial transformations, enough to show CIRCUIT-SAT \leq_{m} SAT
- Let $\Phi \in$ CIRCUIT-SAT of size n (i.e., n gates and wires). We will construct CNF Ψ with $O(n)$ clauses such that Φ is satisfiable $\Leftrightarrow \Psi$ is satisfiable.

3SAT is NP-complete

- To prove this, by Cook-Levin theorem, need to show that

$$
\text { CIRCUIT-SAT } \leq_{m} 3 \text { SAT }
$$

- By transitivity of polynomial transformations, enough to show

$$
\text { CIRCUIT-SAT } \leq_{m} \text { SAT }
$$

- Let $\Phi \in$ CIRCUIT-SAT of size n (i.e., n gates and wires). We will construct CNF Ψ with $O(n)$ clauses such that Φ is satisfiable $\Leftrightarrow \Psi$ is satisfiable.
- Can do the above simulating gate-by-gate (wire-by-wire):
- each gate has a new variable, which will tell us the value of the gate
- Simulate each gate operation (AND/OR/NOT) as a CNF
- ensure that output gate variable should be true

Gate Simulations

- AND: CNF

$$
\left(\bar{g} \vee u_{1}\right) \wedge\left(\bar{g} \vee u_{2}\right) \wedge\left(g \vee \overline{u_{1}} \vee \overline{u_{2}}\right)
$$

$$
\left(\bar{g} v u_{1}\right) \wedge\left(\bar{g} v u_{2}\right)
$$

if u_{1} or $u_{2}=0$ then must have $g=0$ to satisfy above
$\left(g \vee \bar{u}_{1} \vee \bar{u}_{2}\right)$
if both $u_{1}=u_{2}=1$ then $g=1$

Gate Simulations

- OR: CNF

$$
\left(g \vee \overline{u_{1}}\right) \wedge\left(g \vee \overline{u_{2}}\right) \wedge\left(\bar{g} \vee u_{1} \vee u_{2}\right)
$$

 if u_{1} or $u_{2}=1$ then
 $g_{a \text { move }}^{\text {mast }} 1$ to satisfy

$$
\left(\bar{g} v u_{1} v u_{2}\right)
$$

if $u_{1}=u_{2}=0$ then g must be 0 to satisfy above clause.

Gate Simulations

- NOT: CNF

$$
\begin{gathered}
(\bar{g} \vee \bar{u}) \wedge(g \vee u) \\
\bar{g} \vee \bar{u}
\end{gathered}
$$

if $u=1$ then $g=0$ to satisfy above claus x

$$
g v u
$$

if $u=0$ then $g=1$ to satisfy d hove clause

Gate Simulations

- 1: CNF is simply literal g

Gate Simulations

- 0: CNF is simply literal \bar{g}

Updated Worldview

All NP-complete problems!

Where do we go next?

- CS 360/365

Formalization of Algorithms, full proof of Cook-Levin \& much more!
(Prof Blain teaching it nexterm)

- Are there harder problems?

For sure! See CS 360/365 or more advanced courses

Acknowledgement

Based on

- [Erickson 2019, Chapter 12]
- Prof. Lau's Lecture 18 notes
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L18.pdf

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009)

Introduction to Algorithms, third edition.
MIT Press
Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

E- Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/
Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

