Lecture 21: Intractability - NP and coNP

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 23, 2023

・ロト ・四ト ・ヨト ・ヨト - ヨ

1/33

Overview

• Complexity Classes & Complete Problems

- NP
- coNP
- Completeness for NP
- Completing Karp Reductions/Polynomial Transformations
 - NP-completeness of 3SAT
 - Current Worldview
- Acknowledgements

Let Π be a decision problem and let L_Π be the set of all YES instances of Π. Then L_Π ⊆ {0,1}*

decision problems \leftrightarrow subsets of all boolean strings

NP

Let Π be a decision problem and let L_Π be the set of all YES instances of Π. Then L_Π ⊆ {0,1}*

decision problems \leftrightarrow subsets of all boolean strings

- NP := class of decision problems Π with following property:
 - There is a poly-time algorithm V_{Π} and a constant c>0 such that
 - For any x ∈ L_Π (i.e., YES instance) of size n, there is a proof/witness y of size n^c such that V_Π(x, y) = 1
 - For any x' ∉ L_Π (i.e., NO instance) there is no such proof z of size n^c such that V_Π(x', z) = 1.

NP

Let Π be a decision problem and let L_Π be the set of all YES instances of Π. Then L_Π ⊆ {0,1}*

decision problems \leftrightarrow subsets of all boolean strings

- NP := class of decision problems Π with following property:
 - There is a poly-time algorithm V_{Π} and a constant c>0 such that
 - For any x ∈ L_Π (i.e., YES instance) of size n, there is a proof/witness y of size n^c such that V_Π(x, y) = 1
 - For any x' ∉ L_Π (i.e., NO instance) there is no such proof z of size n^c such that V_Π(x', z) = 1.
- In other words, NP is the class of decision problems where the YES instances have a *small proof* that can be *verified* in poly-time

Problems in NP

- Clique
- Independent Set
- SAT (and 3SAT)
- TSP
- Hamilton cycle (and Hamilton path)
- Subset Sum
- Vertex Cover
- 3COLOR (and the graph coloring problem)
- every problem in P

• Complexity Classes & Complete Problems

- NP
- coNP
- Completeness for NP

• Completing Karp Reductions/Polynomial Transformations

- NP-completeness of 3SAT
- Current Worldview
- Acknowledgements

coNP

- The class coNP is essentially the opposite of NP.
- for a decision problem Π , let $\overline{\Pi}$ be the *opposite* problem to Π , that is,

$$x \in L_{\Pi} \Leftrightarrow x \notin L_{\overline{\Pi}}$$

equivalently, $L_{\overline{\Pi}} = \overline{L_{\Pi}}$.

In simpler terms, every YES instance of Π is a NO instance of Π (and vice-versa)

coNP

- The class coNP is essentially the opposite of NP.
- for a decision problem Π , let $\overline{\Pi}$ be the *opposite* problem to Π , that is,

$$x \in L_{\Pi} \Leftrightarrow x \not\in L_{\overline{\Pi}}$$

equivalently, $L_{\overline{\Pi}} = \overline{L_{\Pi}}$.

- In simpler terms, every YES instance of Π is a NO instance of Π (and vice-versa)
- coNP := class of decision problems Π such that $\overline{\Pi} \in NP.$

Relation between P, NP and coNP

Unknown:
1) is
$$P = NP \cap coNP$$
?
2) is $NP = coNP$?
3) is $P = NP$?
(D) (3)

• Complexity Classes & Complete Problems

- NP
- coNP
- Completeness for NP

• Completing Karp Reductions/Polynomial Transformations

- NP-completeness of 3SAT
- Current Worldview
- Acknowledgements

A remark about reductions

- Given a particular reduction ≤ (Turing, Karp), we can define a complete problem for a complexity class C as follows:
 - **Hardness:** Π is *C*-hard if for *every* problem $\Gamma \in C$, we have

$$\Gamma \leq \Pi$$

• Membership in \mathcal{C} : $\Pi \in \mathcal{C}$

A remark about reductions

- Given a particular reduction ≤ (Turing, Karp), we can define a complete problem for a complexity class C as follows:
 - Hardness: Π is C-hard if for *every* problem $\Gamma \in C$, we have

$$\Gamma \leq \Pi$$

- Membership in $\mathcal{C} \colon \Pi \in \mathcal{C}$
- Complexity theorists prefer to define NP-completeness under *Karp reductions* (or polynomial transformations) because, as we will see, NP is closed under such reductions
 - Note that we *do not know* whether NP is closed under Turing reductions
 - The above would imply NP = coNP, which is considered unlikely

Under Turing reductions, $UNSAT \equiv SAT$

CIRCUIT-SAT

• A *boolean circuit* is a DAG with:

- input gates
- AND/OR/NOT gates,
- and a special gate (the output gate)

CIRCUIT-SAT

• A *boolean circuit* is a DAG with:

- input gates
- AND/OR/NOT gates,
- and a special gate (the output gate)

• CIRCUIT-SAT problem:

- Input: a boolean circuit Φ
- Output: YES, if there is a truth assignment α such that Φ(α) = 1, NO otherwise.

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in \mathsf{NP}$, we have $\Pi \leq_m \mathsf{CIRCUIT}\operatorname{-SAT}$
- Proof sketch: computation is local
 - $\Pi \in \mathsf{NP} \Rightarrow \exists$ poly-time verification algorithm V_{Π} and c > 0 such that for any instance $x \in \{0, 1\}^n$,

$$x \in L_{\Pi} \Leftrightarrow \exists y \in \{0,1\}^{n^c} \text{ s.t. } V_{\Pi}(x,y) = 1$$

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in \mathsf{NP}$, we have $\Pi \leq_m \mathsf{CIRCUIT}\operatorname{-SAT}$
- Proof sketch: computation is local
 - $\Pi \in \mathsf{NP} \Rightarrow \exists$ poly-time verification algorithm V_{Π} and c > 0 such that for any instance $x \in \{0, 1\}^n$,

$$x \in L_{\Pi} \Leftrightarrow \exists y \in \{0,1\}^{n^c} \text{ s.t. } V_{\Pi}(x,y) = 1$$

If V_Π(x, y) runs in time O(n^γ) (since it is polynomial in terms of the input size), there is circuit of size O(n^γ) simulating computation of V_Π Can construct this circuit (from description of V_Π) in poly(n)-time!

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in \mathsf{NP}$, we have $\Pi \leq_m \mathsf{CIRCUIT}\operatorname{-SAT}$
- Proof sketch: computation is local
 - $\Pi \in \mathsf{NP} \Rightarrow \exists$ poly-time verification algorithm V_{Π} and c > 0 such that for any instance $x \in \{0, 1\}^n$,

$$x \in L_{\Pi} \Leftrightarrow \exists y \in \{0,1\}^{n^c} \text{ s.t. } V_{\Pi}(x,y) = 1$$

- If $V_{\Pi}(x, y)$ runs in time $O(n^{\gamma})$ (since it is polynomial in terms of the input size), there is circuit of size $O(n^{\gamma})$ simulating computation of V_{Π}
- So, we get a poly(n)-sized circuit $\Phi_x(y)$ which is satisfiable iff $x \in L_{\Pi}!$

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in \mathsf{NP}$, we have $\Pi \leq_m \mathsf{CIRCUIT}\operatorname{-SAT}$
- Proof sketch: computation is local
 - $\Pi \in NP \Rightarrow \exists$ poly-time verification algorithm V_{Π} and c > 0 such that for any instance $x \in \{0, 1\}^n$,

$$x \in L_{\Pi} \Leftrightarrow \exists y \in \{0,1\}^{n^c} \text{ s.t. } V_{\Pi}(x,y) = 1$$

- If V_Π(x, y) runs in time O(n^γ) (since it is polynomial in terms of the input size), there is circuit of size O(n^γ) simulating computation of V_Π
- So, we get a poly(n)-sized circuit $\Phi_x(y)$ which is satisfiable iff $x \in L_{\Pi}!$
- Thus, we have a transformation

$$x \mapsto \Phi_x$$

such that $x \in L_{\Pi} \Leftrightarrow \Phi_x \in \mathsf{CIRCUIT}\operatorname{-SAT}$.

20 / 33

• Complexity Classes & Complete Problems

- NP
- coNP
- Completeness for NP
- Completing Karp Reductions/Polynomial Transformations
 - NP-completeness of 3SAT
 - Current Worldview
- Acknowledgements

• To prove this, by Cook-Levin theorem, need to show that CIRCUIT-SAT $\leq_m 3SAT$

 To prove this, by Cook-Levin theorem, need to show that CIRCUIT-SAT ≤_m 3SAT
 By transitivity of polynomial transformations, enough to show CIRCUIT-SAT ≤_m SAT

- To prove this, by Cook-Levin theorem, need to show that CIRCUIT-SAT $\leq_m 3SAT$
- By transitivity of polynomial transformations, enough to show CIRCUIT-SAT \leq_m SAT
- Let Φ ∈ CIRCUIT-SAT of size n (i.e., n gates and wires). We will construct CNF Ψ with O(n) clauses such that

 $\Phi \text{ is satisfiable} \Leftrightarrow \Psi \text{ is satisfiable}.$

• To prove this, by Cook-Levin theorem, need to show that CIRCUIT-SAT $\leq_m 3SAT$

- By transitivity of polynomial transformations, enough to show CIRCUIT-SAT \leq_m SAT
- Let Φ ∈ CIRCUIT-SAT of size n (i.e., n gates and wires). We will construct CNF Ψ with O(n) clauses such that

 Φ is satisfiable $\Leftrightarrow \Psi$ is satisfiable.

- Can do the above simulating gate-by-gate (wire-by-wire):
 - each gate has a new variable, which will tell us the value of the gate
 - Simulate each gate operation (AND/OR/NOT) as a CNF
 - ensure that output gate variable should be true

• AND: CNF

$$(\overline{g} \lor u_1) \land (\overline{g} \lor u_2) \land (g \lor \overline{u_1} \lor \overline{u_2})$$

$$(\bar{g} \vee u_1) \wedge (\bar{g} \vee u_2)$$

if u_1 or $u_2 = 0$ then
must have $g = 0$ to
satisfy above
 $(g \vee \overline{u}, \vee \overline{u}_2)$
if both $u_1 = u_2 = 1$
then $g = 1$

<ロ><一><一><一><一><一><一><一</td>26/33

• OR: CNF

 $(g \lor \overline{u_1}) \land (g \lor \overline{u_2}) \land (\overline{g} \lor u_1 \lor u_2)$

1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• 1: CNF is simply literal g

• 0: CNF is simply literal \overline{g}

Updated Worldview

All NP-complete problems!

Acknowledgement

Based on

- [Erickson 2019, Chapter 12]
- Prof. Lau's Lecture 18 notes

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L18.pdf

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009) Introduction to Algorithms, third edition. *MIT Press*

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

Erickson, Jeff (2019)

Algorithms

https://jeffe.cs.illinois.edu/teaching/algorithms/

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley