
Lecture 21: Intractability - NP and coNP

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 23, 2023

1 / 33



Overview

Complexity Classes & Complete Problems
NP
coNP
Completeness for NP

Completing Karp Reductions/Polynomial Transformations
NP-completeness of 3SAT
Current Worldview

Acknowledgements

2 / 33



NP

Let Π be a decision problem and let LΠ be the set of all YES
instances of Π. Then LΠ ⊆ {0, 1}∗

decision problems ↔ subsets of all boolean strings

3 / 33



NP

Let Π be a decision problem and let LΠ be the set of all YES
instances of Π. Then LΠ ⊆ {0, 1}∗

decision problems ↔ subsets of all boolean strings

NP := class of decision problems Π with following property:
There is a poly-time algorithm VΠ and a constant c > 0 such that

For any x ∈ LΠ (i.e., YES instance) of size n, there is a proof/witness y
of size nc such that VΠ(x , y) = 1
For any x ′ ̸∈ LΠ (i.e., NO instance) there is no such proof z of size nc

such that VΠ(x
′, z) = 1.

4 / 33



NP

Let Π be a decision problem and let LΠ be the set of all YES
instances of Π. Then LΠ ⊆ {0, 1}∗

decision problems ↔ subsets of all boolean strings

NP := class of decision problems Π with following property:
There is a poly-time algorithm VΠ and a constant c > 0 such that

For any x ∈ LΠ (i.e., YES instance) of size n, there is a proof/witness y
of size nc such that VΠ(x , y) = 1
For any x ′ ̸∈ LΠ (i.e., NO instance) there is no such proof z of size nc

such that VΠ(x
′, z) = 1.

In other words, NP is the class of decision problems where the YES
instances have a small proof that can be verified in poly-time

5 / 33



Problems in NP

Clique

Independent Set

SAT (and 3SAT)

TSP

Hamilton cycle (and Hamilton path)

Subset Sum

Vertex Cover

3COLOR (and the graph coloring problem)

every problem in P

6 / 33



Complexity Classes & Complete Problems
NP
coNP
Completeness for NP

Completing Karp Reductions/Polynomial Transformations
NP-completeness of 3SAT
Current Worldview

Acknowledgements

7 / 33



coNP

The class coNP is essentially the opposite of NP.

for a decision problem Π, let Π be the opposite problem to Π, that is,

x ∈ LΠ ⇔ x ̸∈ LΠ

equivalently, LΠ = LΠ.

In simpler terms, every YES instance of Π is a NO instance of Π (and
vice-versa)

8 / 33



coNP

The class coNP is essentially the opposite of NP.

for a decision problem Π, let Π be the opposite problem to Π, that is,

x ∈ LΠ ⇔ x ̸∈ LΠ

equivalently, LΠ = LΠ.

In simpler terms, every YES instance of Π is a NO instance of Π (and
vice-versa)

coNP := class of decision problems Π such that Π ∈ NP.

9 / 33



Relation between P, NP and coNP

10 / 33



Complexity Classes & Complete Problems
NP
coNP
Completeness for NP

Completing Karp Reductions/Polynomial Transformations
NP-completeness of 3SAT
Current Worldview

Acknowledgements

11 / 33



A remark about reductions

Given a particular reduction ≤ (Turing, Karp), we can define a
complete problem for a complexity class C as follows:

Hardness: Π is C-hard if for every problem Γ ∈ C, we have

Γ ≤ Π

Membership in C: Π ∈ C

12 / 33



A remark about reductions

Given a particular reduction ≤ (Turing, Karp), we can define a
complete problem for a complexity class C as follows:

Hardness: Π is C-hard if for every problem Γ ∈ C, we have

Γ ≤ Π

Membership in C: Π ∈ C
Complexity theorists prefer to define NP-completeness under Karp
reductions (or polynomial transformations) because, as we will see,
NP is closed under such reductions

Note that we do not know whether NP is closed under Turing
reductions
The above would imply NP = coNP, which is considered unlikely

Under Turing reductions, UNSAT ≡ SAT

13 / 33



CIRCUIT-SAT

A boolean circuit is a DAG with:

input gates
AND/OR/NOT gates,
and a special gate (the output gate)

14 / 33



CIRCUIT-SAT

A boolean circuit is a DAG with:

input gates
AND/OR/NOT gates,
and a special gate (the output gate)

CIRCUIT-SAT problem:

Input: a boolean circuit Φ
Output: YES, if there is a truth assignment α such that Φ(α) = 1,
NO otherwise.

15 / 33



Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

16 / 33



Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

Want to prove that for any Π ∈ NP, we have Π ≤m CIRCUIT-SAT

Proof sketch: computation is local

Π ∈ NP ⇒ ∃ poly-time verification algorithm VΠ and c > 0 such that
for any instance x ∈ {0, 1}n,

x ∈ LΠ ⇔ ∃y ∈ {0, 1}nc s.t. VΠ(x , y) = 1

17 / 33



Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

Want to prove that for any Π ∈ NP, we have Π ≤m CIRCUIT-SAT

Proof sketch: computation is local
Π ∈ NP ⇒ ∃ poly-time verification algorithm VΠ and c > 0 such that
for any instance x ∈ {0, 1}n,

x ∈ LΠ ⇔ ∃y ∈ {0, 1}nc s.t. VΠ(x , y) = 1

If VΠ(x , y) runs in time O(nγ) (since it is polynomial in terms of the
input size), there is circuit of size O(nγ) simulating computation of VΠ

Can construct this circuit (from description of VΠ) in poly(n)-time!

18 / 33



Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

Want to prove that for any Π ∈ NP, we have Π ≤m CIRCUIT-SAT

Proof sketch: computation is local

Π ∈ NP ⇒ ∃ poly-time verification algorithm VΠ and c > 0 such that
for any instance x ∈ {0, 1}n,

x ∈ LΠ ⇔ ∃y ∈ {0, 1}nc s.t. VΠ(x , y) = 1

If VΠ(x , y) runs in time O(nγ) (since it is polynomial in terms of the
input size), there is circuit of size O(nγ) simulating computation of VΠ

So, we get a poly(n)-sized circuit Φx(y) which is satisfiable iff x ∈ LΠ!

19 / 33



Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

Want to prove that for any Π ∈ NP, we have Π ≤m CIRCUIT-SAT

Proof sketch: computation is local

Π ∈ NP ⇒ ∃ poly-time verification algorithm VΠ and c > 0 such that
for any instance x ∈ {0, 1}n,

x ∈ LΠ ⇔ ∃y ∈ {0, 1}nc s.t. VΠ(x , y) = 1

If VΠ(x , y) runs in time O(nγ) (since it is polynomial in terms of the
input size), there is circuit of size O(nγ) simulating computation of VΠ

So, we get a poly(n)-sized circuit Φx(y) which is satisfiable iff x ∈ LΠ!
Thus, we have a transformation

x 7→ Φx

such that x ∈ LΠ ⇔ Φx ∈ CIRCUIT-SAT.

20 / 33



Complexity Classes & Complete Problems
NP
coNP
Completeness for NP

Completing Karp Reductions/Polynomial Transformations
NP-completeness of 3SAT
Current Worldview

Acknowledgements

21 / 33



3SAT is NP-complete

To prove this, by Cook-Levin theorem, need to show that

CIRCUIT-SAT ≤m 3SAT

22 / 33



3SAT is NP-complete

To prove this, by Cook-Levin theorem, need to show that

CIRCUIT-SAT ≤m 3SAT

By transitivity of polynomial transformations, enough to show

CIRCUIT-SAT ≤m SAT

23 / 33



3SAT is NP-complete

To prove this, by Cook-Levin theorem, need to show that

CIRCUIT-SAT ≤m 3SAT

By transitivity of polynomial transformations, enough to show

CIRCUIT-SAT ≤m SAT

Let Φ ∈ CIRCUIT-SAT of size n (i.e., n gates and wires). We will
construct CNF Ψ with O(n) clauses such that

Φ is satisfiable ⇔ Ψ is satisfiable.

24 / 33



3SAT is NP-complete

To prove this, by Cook-Levin theorem, need to show that

CIRCUIT-SAT ≤m 3SAT

By transitivity of polynomial transformations, enough to show

CIRCUIT-SAT ≤m SAT

Let Φ ∈ CIRCUIT-SAT of size n (i.e., n gates and wires). We will
construct CNF Ψ with O(n) clauses such that

Φ is satisfiable ⇔ Ψ is satisfiable.

Can do the above simulating gate-by-gate (wire-by-wire):

each gate has a new variable, which will tell us the value of the gate
Simulate each gate operation (AND/OR/NOT) as a CNF
ensure that output gate variable should be true

25 / 33



Gate Simulations
AND: CNF

(g ∨ u1) ∧ (g ∨ u2) ∧ (g ∨ u1 ∨ u2)

26 / 33



Gate Simulations

OR: CNF
(g ∨ u1) ∧ (g ∨ u2) ∧ (g ∨ u1 ∨ u2)

27 / 33



Gate Simulations

NOT: CNF
(g ∨ u) ∧ (g ∨ u)

28 / 33



Gate Simulations

1: CNF is simply literal g

29 / 33



Gate Simulations

0: CNF is simply literal g

30 / 33



Updated Worldview

31 / 33





Acknowledgement

Based on

[Erickson 2019, Chapter 12]

Prof. Lau’s Lecture 18 notes

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L18.pdf

32 / 33



References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford
(2009)

Introduction to Algorithms, third edition.

MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)

Algorithms

Erickson, Jeff (2019)

Algorithms

https://jeffe.cs.illinois.edu/teaching/algorithms/

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

33 / 33


