
Lecture 22: Intractability II
NP-Hardness

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 28, 2023

1 / 45



Overview

Navigating the world of P and NP
2SAT

Beyond decision problems: NP-hardness
NP-hard reductions

Acknowledgements

2 / 45



Subtleties
Similar looking problems, wildly different complexity:

Hamilton Cycle:
Input: undirected graph G (V ,E )
Output: YES, iff there is a cycle that visits every vertex exactly once

3 / 45



Subtleties
Similar looking problems, wildly different complexity:

Hamilton Cycle:
Input: undirected graph G (V ,E )
Output: YES, iff there is a cycle that visits every vertex exactly once

Euler Tour:
Input: undirected graph G (V ,E )
Output: YES iff there is closed walk traversing every edge exactly once

4 / 45



Subtleties
Similar looking problems, wildly different complexity:

Hamilton Cycle:
Input: undirected graph G (V ,E )
Output: YES, iff there is a cycle that visits every vertex exactly once

Euler Tour:
Input: undirected graph G (V ,E )
Output: YES iff there is closed walk traversing every edge exactly once

Hamilton Cycle is NP-complete, whereas Euler tour has a linear time
algorithm (depth-first search).

Theorem (Euler’s theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

5 / 45



Subtleties
Similar looking problems, wildly different complexity:

Hamilton Cycle:
Input: undirected graph G (V ,E )
Output: YES, iff there is a cycle that visits every vertex exactly once

Euler Tour:
Input: undirected graph G (V ,E )
Output: YES iff there is closed walk traversing every edge exactly once

Hamilton Cycle is NP-complete, whereas Euler tour has a linear time
algorithm (depth-first search).

Theorem (Euler’s theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

Similar situation for hamiltonian path vs eulerian path!

6 / 45



Subtleties
Similar looking problems, wildly different complexity:

Hamilton Cycle:
Input: undirected graph G (V ,E )
Output: YES, iff there is a cycle that visits every vertex exactly once

Euler Tour:
Input: undirected graph G (V ,E )
Output: YES iff there is closed walk traversing every edge exactly once

Hamilton Cycle is NP-complete, whereas Euler tour has a linear time
algorithm (depth-first search).

Theorem (Euler’s theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

Similar situation for hamiltonian path vs eulerian path!

In general, we need to be careful when distinguishing or making
reductions between problems.

7 / 45



Navigating the world of P and NP
2SAT

Beyond decision problems: NP-hardness
NP-hard reductions

Acknowledgements

8 / 45



2SAT

2SAT
Input: 2CNF φ(x1, . . . , xn)
Output: YES ⇔ φ is satisfiable

9 / 45



2SAT

2SAT
Input: 2CNF φ(x1, . . . , xn)
Output: YES ⇔ φ is satisfiable

Theorem

2SAT is in P

10 / 45



2SAT

2SAT
Input: 2CNF φ(x1, . . . , xn)
Output: YES ⇔ φ is satisfiable

Theorem

2SAT is in P

Proof: “implication graph”

Example: (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2)

11 / 45



2SAT

2SAT
Input: 2CNF φ(x1, . . . , xn)
Output: YES ⇔ φ is satisfiable

Theorem

2SAT is in P

Proof: “implication graph”

Example: (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2)

Let Gφ([2n],E ) be the directed graph generated by the implication
graph process.

12 / 45



2SAT

2SAT
Input: 2CNF φ(x1, . . . , xn)
Output: YES ⇔ φ is satisfiable

Theorem

2SAT is in P

Proof: “implication graph”

Example: (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2)

Let Gφ([2n],E ) be the directed graph generated by the implication
graph process.

Run BFS or DFS from each literal y , and call it bad if for some
i ∈ [n], the BFS from y visits both xi , xi

13 / 45



2SAT

2SAT
Input: 2CNF φ(x1, . . . , xn)
Output: YES ⇔ φ is satisfiable

Theorem

2SAT is in P

Proof: “implication graph”

Example: (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2)

Let Gφ([2n],E ) be the directed graph generated by the implication
graph process.

Run BFS or DFS from each literal y , and call it bad if for some
i ∈ [n], the BFS from y visits both xi , xi

If for some i ∈ [n], both xi and xi are bad, then return NO.
Otherwise, return YES.

14 / 45



Navigating the world of P and NP
2SAT

Beyond decision problems: NP-hardness
NP-hard reductions

Acknowledgements

15 / 45



NP-hardness

Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

16 / 45



NP-hardness

Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

In these cases, since the problems are not decision problems, they will
not belong to NP

17 / 45



NP-hardness

Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

In these cases, since the problems are not decision problems, they will
not belong to NP

However, can still apply our original reasoning:

want to prove that problem B (non-decision problem) is hard
Can select an NP-complete problem A and show that “if we can solve
B efficiently, then we can solve A efficiently”
In other words:

A ≤T B

18 / 45



NP-hardness

Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

In these cases, since the problems are not decision problems, they will
not belong to NP

However, can still apply our original reasoning:

want to prove that problem B (non-decision problem) is hard
Can select an NP-complete problem A and show that “if we can solve
B efficiently, then we can solve A efficiently”
In other words:

A ≤T B

The above is our definition of NP-hardness:

Problem B is NP-hard if there is NP-complete problem A such that
A ≤T B .

19 / 45



Examples of NP-hard problems

MAX-CLIQUE

Input: graph G (V ,E )
Output: maximum size of a clique in G

20 / 45



Examples of NP-hard problems

MAX-CLIQUE

Input: graph G (V ,E )
Output: maximum size of a clique in G

MIS:

Input: graph G (V ,E )
Output: maximum independent set in G

21 / 45



Examples of NP-hard problems

MAX-CLIQUE

Input: graph G (V ,E )
Output: maximum size of a clique in G

MIS:

Input: graph G (V ,E )
Output: maximum independent set in G

MIN-Vertex-Cover:

Input: graph G (V ,E )
Output: size of minimum vertex cover in G

22 / 45



Examples of NP-hard problems

MAX-CLIQUE

Input: graph G (V ,E )
Output: maximum size of a clique in G

MIS:

Input: graph G (V ,E )
Output: maximum independent set in G

MIN-Vertex-Cover:

Input: graph G (V ,E )
Output: size of minimum vertex cover in G

TSP-OPT:

Input: complete graph G (V ,E , d) where d : E → R≥0

Output: hamiltonian cycle in G of minimum total distance

23 / 45



Navigating the world of P and NP
2SAT

Beyond decision problems: NP-hardness
NP-hard reductions

Acknowledgements

24 / 45



Non-Trivial NP-hardness reduction

(unweighted) MAX-CUT
Input: graph G (V ,E )
Output: a cut S ⊂ V with maximum |δ(S)|

25 / 45



Non-Trivial NP-hardness reduction
(unweighted) MAX-CUT

Input: graph G (V ,E )
Output: a cut S ⊂ V with maximum |δ(S)|

Theorem

MAX-CUT is NP-hard

26 / 45



Non-Trivial NP-hardness reduction
Theorem

MAX-CUT is NP-hard

Proof: reduction from MIS. Let G (V ,E ) be the input graph.

27 / 45



Non-Trivial NP-hardness reduction
Theorem

MAX-CUT is NP-hard

Proof: reduction from MIS. Let G (V ,E ) be the input graph.
Vertex gadget:

add vertex x
for each v ∈ V , add edge {x , v}

28 / 45



Non-Trivial NP-hardness reduction
Theorem

MAX-CUT is NP-hard

Proof: reduction from MIS. Let G (V ,E ) be the input graph.
Vertex gadget:

add vertex x
for each v ∈ V , add edge {x , v}

Edge gadget: for each edge e = {u, v}
add vertices ue , ve ,
and edges: {x , ue}, {x , ve}, {u, ue}, {v , ve}, {ue , ve},

29 / 45



Non-Trivial NP-hardness reduction
Theorem

MAX-CUT is NP-hard

Proof: reduction from MIS. Let G (V ,E ) be the input graph.
Vertex gadget:

add vertex x
for each v ∈ V , add edge {x , v}

Edge gadget: for each edge e = {u, v}
add vertices ue , ve ,
and edges: {x , ue}, {x , ve}, {u, ue}, {v , ve}, {ue , ve},

Edge gadget He :

30 / 45



Non-Trivial NP-hardness reduction
Theorem

MAX-CUT is NP-hard

Proof: reduction from MIS. Let G (V ,E ) be the input graph.
Vertex gadget:

add vertex x
for each v ∈ V , add edge {x , v}

Edge gadget: for each edge e = {u, v}
add vertices ue , ve ,
and edges: {x , ue}, {x , ve}, {u, ue}, {v , ve}, {ue , ve},

Edge gadget He :
Let H(U,F ) be graph given by:

U = V ⊔ {x} ⊔ {ue , ve}{u,v}=:e∈E

F = {{x ,w}}w∈U\{x} ⊔ {{ue , ve}}e∈E ⊔ {{u, ue}, {v , ve}}{u,v}=:e∈E

Note that H does not have any edges from G

31 / 45



Proof of Correctness - Part 1

Claim 1: G contains independent set I ⊂ V with |I | = k ⇒ there is
cut S ⊂ U in H such that

|δ(S)| ≥ k + 4 · |E |

32 / 45



Proof of Correctness - Part 1

Claim 1: G contains independent set I ⊂ V with |I | = k ⇒ there is
cut S ⊂ U in H such that

|δ(S)| ≥ k + 4 · |E |

1 Start with S = I .
2 For each edge e = {u, v} ∈ E do

if u ∈ I , v ̸∈ I , then add ve to S
if u ̸∈ I , v ∈ I , then add ue to S
if u, v ̸∈ I , then add ue , ve to S .

In all above cases, add four of five edge gadget He edges

33 / 45



Proof of Correctness - Part 1

Claim 1: G contains independent set I ⊂ V with |I | = k ⇒ there is
cut S ⊂ U in H such that

|δ(S)| ≥ k + 4 · |E |

1 Start with S = I .
2 For each edge e = {u, v} ∈ E do

if u ∈ I , v ̸∈ I , then add ve to S
if u ̸∈ I , v ∈ I , then add ue to S
if u, v ̸∈ I , then add ue , ve to S .

In all above cases, add four of five edge gadget He edges

Analyzing the cut given by S :

For every w ∈ I , the edge {x ,w} is cut by S

34 / 45



Proof of Correctness - Part 1

Claim 1: G contains independent set I ⊂ V with |I | = k ⇒ there is
cut S ⊂ U in H such that

|δ(S)| ≥ k + 4 · |E |

1 Start with S = I .
2 For each edge e = {u, v} ∈ E do

if u ∈ I , v ̸∈ I , then add ve to S
if u ̸∈ I , v ∈ I , then add ue to S
if u, v ̸∈ I , then add ue , ve to S .

In all above cases, add four of five edge gadget He edges

Analyzing the cut given by S :

For every w ∈ I , the edge {x ,w} is cut by S
For every edge {u, v} =: e ∈ E , exactly 4 edges of He are cut.

35 / 45



Proof of Correctness - Part 2
Claim 2: Given cut S ⊂ U in H with

|δ(S)| ≥ k + 4 · |E |
then G contains independent set I ⊂ V of size ≥ k .

36 / 45



Proof of Correctness - Part 2
Claim 2: Given cut S ⊂ U in H with

|δ(S)| ≥ k + 4 · |E |
then G contains independent set I ⊂ V of size ≥ k .

W.l.o.g. can assume x ̸∈ S (otherwise take complement V \ S)

37 / 45



Proof of Correctness - Part 2
Claim 2: Given cut S ⊂ U in H with

|δ(S)| ≥ k + 4 · |E |
then G contains independent set I ⊂ V of size ≥ k .

W.l.o.g. can assume x ̸∈ S (otherwise take complement V \ S)
Let I = S ∩ V (vertices in G )

38 / 45



Proof of Correctness - Part 2
Claim 2: Given cut S ⊂ U in H with

|δ(S)| ≥ k + 4 · |E |
then G contains independent set I ⊂ V of size ≥ k .

W.l.o.g. can assume x ̸∈ S (otherwise take complement V \ S)
Let I = S ∩ V (vertices in G )
If u, v ∈ I are s.t. {u, v} =: e ∈ E , then S cuts at most 3 edges of He

39 / 45



Proof of Correctness - Part 2
Claim 2: Given cut S ⊂ U in H with

|δ(S)| ≥ k + 4 · |E |
then G contains independent set I ⊂ V of size ≥ k .

W.l.o.g. can assume x ̸∈ S (otherwise take complement V \ S)
Let I = S ∩ V (vertices in G )
If u, v ∈ I are s.t. {u, v} =: e ∈ E , then S cuts at most 3 edges of He

Otherwise, we saw in part 1 how to get 4 edges of He across the cut.

40 / 45



Proof of Correctness - Part 2
Claim 2: Given cut S ⊂ U in H with

|δ(S)| ≥ k + 4 · |E |
then G contains independent set I ⊂ V of size ≥ k .

W.l.o.g. can assume x ̸∈ S (otherwise take complement V \ S)
Let I = S ∩ V (vertices in G )
If u, v ∈ I are s.t. {u, v} =: e ∈ E , then S cuts at most 3 edges of He

Otherwise, we saw in part 1 how to get 4 edges of He across the cut.
Letting e(I ) be number of edges between elements of I in G :

|δ(S)| = |I |+
X

e∈E

|δHe (S)| ≤ |I |+3e(I )+4(|E |−e(I )) = |I |+4|E |−e(I )

41 / 45



Proof of Correctness - Part 2
Claim 2: Given cut S ⊂ U in H with

|δ(S)| ≥ k + 4 · |E |
then G contains independent set I ⊂ V of size ≥ k .

W.l.o.g. can assume x ̸∈ S (otherwise take complement V \ S)
Let I = S ∩ V (vertices in G )
If u, v ∈ I are s.t. {u, v} =: e ∈ E , then S cuts at most 3 edges of He

Otherwise, we saw in part 1 how to get 4 edges of He across the cut.
Letting e(I ) be number of edges between elements of I in G :

|δ(S)| = |I |+
X

e∈E

|δHe (S)| ≤ |I |+3e(I )+4(|E |−e(I )) = |I |+4|E |−e(I )

As |δ(S)| ≥ k + 4|E |, we have

|I | ≥ k + e(I )

42 / 45



Proof of Correctness - Part 2
Claim 2: Given cut S ⊂ U in H with

|δ(S)| ≥ k + 4 · |E |
then G contains independent set I ⊂ V of size ≥ k .

W.l.o.g. can assume x ̸∈ S (otherwise take complement V \ S)
Let I = S ∩ V (vertices in G )
If u, v ∈ I are s.t. {u, v} =: e ∈ E , then S cuts at most 3 edges of He

Otherwise, we saw in part 1 how to get 4 edges of He across the cut.
Letting e(I ) be number of edges between elements of I in G :

|δ(S)| = |I |+
X

e∈E

|δHe (S)| ≤ |I |+3e(I )+4(|E |−e(I )) = |I |+4|E |−e(I )

As |δ(S)| ≥ k + 4|E |, we have

|I | ≥ k + e(I )

So for each u, v ∈ I with {u, v} ∈ E , we can afford to remove one of
the endpoints from S , decreasing |I | by one. After e(I ) removals, get
our independent set.

43 / 45



Acknowledgement

Based on

[Erickson 2019, Chapter 12]

Debmalya’s Lecture 22

https://courses.cs.duke.edu/fall19/compsci638/fall19_

notes/lecture22.pdf

44 / 45



References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford
(2009)

Introduction to Algorithms, third edition.

MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)

Algorithms

Erickson, Jeff (2019)

Algorithms

https://jeffe.cs.illinois.edu/teaching/algorithms/

Kleinberg, Jon and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

45 / 45


