Lecture 22: Intractability II NP-Hardness

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 28, 2023

Overview

- Navigating the world of P and NP
- 2SAT
- Beyond decision problems: NP-hardness
- NP-hard reductions
- Acknowledgements

Subtleties

Similar looking problems, wildly different complexity:

- Hamilton Cycle:
- Input: undirected graph $G(V, E)$
- Output: YES, iff there is a cycle that visits every vertex exactly once

Subtleties

Similar looking problems, wildly different complexity:

- Hamilton Cycle:
- Input: undirected graph $G(V, E)$
- Output: YES, iff there is a cycle that visits every vertex exactly once
- Euler Tour:
- Input: undirected graph $G(V, E)$
- Output: YES iff there is closed walk traversing every edge exactly once

Subtleties

Similar looking problems, wildly different complexity:

- Hamilton Cycle:
- Input: undirected graph $G(V, E)$
- Output: YES, iff there is a cycle that visits every vertex exactly once
- Euler Tour:
- Input: undirected graph $G(V, E)$
- Output: YES iff there is closed walk traversing every edge exactly once
- Hamilton Cycle is NP-complete, whereas Euler tour has a linear time algorithm (depth-first search).

Theorem (Euler's theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

Subtleties

Similar looking problems, wildly different complexity:

- Hamilton Cycle:
- Input: undirected graph $G(V, E)$
- Output: YES, iff there is a cycle that visits every vertex exactly once
- Euler Tour:
- Input: undirected graph $G(V, E)$
- Output: YES iff there is closed walk traversing every edge exactly once
- Hamilton Cycle is NP-complete, whereas Euler tour has a linear time algorithm (depth-first search).

Theorem (Euler's theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

- Similar situation for hamiltonian path vs eulerian path!

Subtleties

Similar looking problems, wildly different complexity:

- Hamilton Cycle:
- Input: undirected graph $G(V, E)$
- Output: YES, iff there is a cycle that visits every vertex exactly once
- Euler Tour:
- Input: undirected graph $G(V, E)$
- Output: YES iff there is closed walk traversing every edge exactly once
- Hamilton Cycle is NP-complete, whereas Euler tour has a linear time algorithm (depth-first search).

Theorem (Euler's theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

- Similar situation for hamiltonian path vs eulerian path!
- In general, we need to be careful when distinguishing or making reductions between problems.
- Navigating the world of P and NP
- 2SAT
- Beyond decision problems: NP-hardness
- NP-hard reductions
- Acknowledgements

2SAT

- 2SAT
- Input: 2CNF $\varphi\left(x_{1}, \ldots, x_{n}\right)$
- Output: YES $\Leftrightarrow \varphi$ is satisfiable

2SAT

- 2SAT
- Input: 2CNF $\varphi\left(x_{1}, \ldots, x_{n}\right)$
- Output: YES $\Leftrightarrow \varphi$ is satisfiable

Theorem
2SAT is in P

LSAT

- LSAT
- Input: 2CNF $\varphi\left(x_{1}, \ldots, x_{n}\right)$
- Output: YES $\Leftrightarrow \varphi$ is satisfiable

Theorem

2SAT is in P

- Proof: "implication graph"

2SAT

- 2SAT
- Input: 2CNF $\varphi\left(x_{1}, \ldots, x_{n}\right)$
- Output: YES $\Leftrightarrow \varphi$ is satisfiable

Theorem

2SAT is in P

- Proof: "implication graph"

Example: $\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right)$

- Let $G_{\varphi}([2 n], E)$ be the directed graph generated by the implication graph process.

2SAT

- 2SAT
- Input: 2CNF $\varphi\left(x_{1}, \ldots, x_{n}\right)$
- Output: YES $\Leftrightarrow \varphi$ is satisfiable

Theorem

2SAT is in P

- Proof: "implication graph"

Example: $\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right)$

- Let $G_{\varphi}([2 n], E)$ be the directed graph generated by the implication graph process.
- Run BFS or DFS from each literal y, and call it bad if for some $i \in[n]$, the BFS from y visits both $x_{i}, \overline{x_{i}}$

2SAT

- 2SAT
- Input: 2CNF $\varphi\left(x_{1}, \ldots, x_{n}\right)$
- Output: YES $\Leftrightarrow \varphi$ is satisfiable

Theorem

2SAT is in P

- Proof: "implication graph"

Example: $\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right)$

- Let $G_{\varphi}([2 n], E)$ be the directed graph generated by the implication graph process.
- Run BFS or DFS from each literal y, and call it bad if for some $i \in[n]$, the BFS from y visits both $x_{i}, \overline{x_{i}}$
- If for some $i \in[n]$, both x_{i} and $\overline{x_{i}}$ are bad, then return NO. Otherwise, return YES.
- Navigating the world of P and NP
- 2SAT
- Beyond decision problems: NP-hardness
- NP-hard reductions
- Acknowledgements

NP-hardness

- Often times we want to know whether a non-decision problem (say optimization problem or search problem) is hard

NP-hardness

- Often times we want to know whether a non-decision problem (say optimization problem or search problem) is hard
- In these cases, since the problems are not decision problems, they will not belong to NP

NP-hardness

- Often times we want to know whether a non-decision problem (say optimization problem or search problem) is hard
- In these cases, since the problems are not decision problems, they will not belong to NP
- However, can still apply our original reasoning:
- want to prove that problem B (non-decision problem) is hard
- Can select an NP-complete problem A and show that "if we can solve B efficiently, then we can solve A efficiently"
- In other words:

$$
A \leq_{T} B
$$

NP-hardness

- Often times we want to know whether a non-decision problem (say optimization problem or search problem) is hard
- In these cases, since the problems are not decision problems, they will not belong to NP
- However, can still apply our original reasoning:
- want to prove that problem B (non-decision problem) is hard
- Can select an NP-complete problem A and show that "if we can solve B efficiently, then we can solve A efficiently"
- In other words:

$$
A \leq_{T} B
$$

- The above is our definition of NP-hardness:

Problem B is NP-hard if there is NP-complete problem A such that

$$
A \leq_{T} B .
$$

Examples of NP-hard problems

- MAX-CLIQUE
- Input: graph $G(V, E)$
- Output: maximum size of a clique in G

Examples of NP-hard problems

- MAX-CLIQUE
- Input: graph $G(V, E)$
- Output: maximum size of a clique in G
- MIS:
- Input: graph $G(V, E)$
- Output: maximum independent set in G

Examples of NP-hard problems

- MAX-CLIQUE
- Input: graph $G(V, E)$
- Output: maximum size of a clique in G
- MIS:
- Input: graph $G(V, E)$
- Output: maximum independent set in G
- MIN-Vertex-Cover:
- Input: graph $G(V, E)$
- Output: size of minimum vertex cover in G

Examples of NP-hard problems

- MAX-CLIQUE
- Input: graph $G(V, E)$
- Output: maximum size of a clique in G
- MIS:
- Input: graph $G(V, E)$
- Output: maximum independent set in G
- MIN-Vertex-Cover:
- Input: graph $G(V, E)$
- Output: size of minimum vertex cover in G
- TSP-OPT:
- Input: complete graph $G(V, E, d)$ where $d: E \rightarrow \mathbb{R}_{\geq 0}$
- Output: hamiltonian cycle in G of minimum total distance
- Navigating the world of P and NP
- 2SAT
- Beyond decision problems: NP-hardness
- NP-hard reductions
- Acknowledgements

Non-Trivial NP-hardness reduction

- (unweighted) MAX-CUT
- Input: graph $G(V, E)$
- Output: a cut $S \subset V$ with maximum $|\delta(S)|$

Non-Trivial NP-hardness reduction

- (unweighted) MAX-CUT
- Input: graph $G(V, E)$
- Output: a cut $S \subset V$ with maximum $|\delta(S)|$

Non-Trivial NP-hardness reduction

Theorem
MAX-CUT is NP-hard

- Proof: reduction from MIS. Let $G(V, E)$ be the input graph.

Non-Trivial NP-hardness reduction

Theorem
MAX-CUT is NP-hard

- Proof: reduction from MIS. Let $G(V, E)$ be the input graph.
- Vertex gadget:
- add vertex x
- for each $v \in V$, add edge $\{x, v\}$

Non-Trivial NP-hardness reduction

Theorem

MAX-CUT is NP-hard

- Proof: reduction from MIS. Let $G(V, E)$ be the input graph.
- Vertex gadget:
- add vertex x
- for each $v \in V$, add edge $\{x, v\}$
- Edge gadget: for each edge $e=\{u, v\}$
- add vertices u_{e}, v_{e},
- and edges: $\left\{x, u_{e}\right\},\left\{x, v_{e}\right\},\left\{u, u_{e}\right\},\left\{v, v_{e}\right\},\left\{u_{e}, v_{e}\right\}$,

Non-Trivial NP-hardness reduction

Theorem
MAX-CUT is NP-hard

- Proof: reduction from MIS. Let $G(V, E)$ be the input graph.
- Vertex gadget:
- add vertex x
- for each $v \in V$, add edge $\{x, v\}$
- Edge gadget: for each edge $e=\{u, v\}$
- add vertices u_{e}, v_{e},
- and edges: $\left\{x, u_{e}\right\},\left\{x, v_{e}\right\},\left\{u, u_{e}\right\},\left\{v, v_{e}\right\},\left\{u_{e}, v_{e}\right\}$,
- Edge gadget H_{e} :

Non-Trivial NP-hardness reduction

Theorem

MAX-CUT is NP-hard

- Proof: reduction from MIS. Let $G(V, E)$ be the input graph.
- Vertex gadget:
- add vertex x
- for each $v \in V$, add edge $\{x, v\}$
- Edge gadget: for each edge $e=\{u, v\}$
- add vertices u_{e}, v_{e},
- and edges: $\left\{x, u_{e}\right\},\left\{x, v_{e}\right\},\left\{u, u_{e}\right\},\left\{v, v_{e}\right\},\left\{u_{e}, v_{e}\right\}$,
- Edge gadget H_{e} :
- Let $H(U, F)$ be graph given by:
- $U=V \sqcup\{x\} \sqcup\left\{u_{e}, v_{e}\right\}_{\{u, v\}=: e \in E}$
- $F=\{\{x, w\}\}_{w \in u \backslash\{x\}} \sqcup\left\{\left\{u_{e}, v_{e}\right\}\right\}_{e \in E} \sqcup\left\{\left\{u, u_{e}\right\},\left\{v, v_{e}\right\}\right\}_{\{u, v\}=: e \in E}$

Note that H does not have any edges from G

Proof of Correctness - Part 1

- Claim 1: G contains independent set $I \subset V$ with $|I|=k \Rightarrow$ there is cut $S \subset U$ in H such that

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

Proof of Correctness - Part 1

- Claim 1: G contains independent set $I \subset V$ with $|I|=k \Rightarrow$ there is cut $S \subset U$ in H such that

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

(1) Start with $S=1$.
(2) For each edge $e=\{u, v\} \in E$ do

- if $u \in I, v \notin I$, then add v_{e} to S
- if $u \notin I, v \in I$, then add u_{e} to S
- if $u, v \notin I$, then add u_{e}, v_{e} to S.

In all above cases, add four of five edge gadget H_{e} edges

Proof of Correctness - Part 1

- Claim 1: G contains independent set $I \subset V$ with $|I|=k \Rightarrow$ there is cut $S \subset U$ in H such that

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

(1) Start with $S=I$.
(2) For each edge $e=\{u, v\} \in E$ do

- if $u \in I, v \notin I$, then add v_{e} to S
- if $u \notin I, v \in I$, then add u_{e} to S
- if $u, v \notin I$, then add u_{e}, v_{e} to S.

In all above cases, add four of five edge gadget H_{e} edges
Analyzing the cut given by S :

- For every $w \in I$, the edge $\{x, w\}$ is cut by S

Proof of Correctness - Part 1

- Claim 1: G contains independent set $I \subset V$ with $|I|=k \Rightarrow$ there is cut $S \subset U$ in H such that

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

(1) Start with $S=1$.
(2) For each edge $e=\{u, v\} \in E$ do

- if $u \in I, v \notin I$, then add v_{e} to S
- if $u \notin I, v \in I$, then add u_{e} to S
- if $u, v \notin I$, then add u_{e}, v_{e} to S.

In all above cases, add four of five edge gadget H_{e} edges
Analyzing the cut given by S :

- For every $w \in I$, the edge $\{x, w\}$ is cut by S
- For every edge $\{u, v\}=: e \in E$, exactly 4 edges of H_{e} are cut.

Proof of Correctness - Part 2

- Claim 2: Given cut $S \subset U$ in H with

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

then G contains independent set $I \subset V$ of size $\geq k$.

Proof of Correctness - Part 2

- Claim 2: Given cut $S \subset U$ in H with

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.I.o.g. can assume $x \notin S$ (otherwise take complement $V \backslash S$)

Proof of Correctness - Part 2

- Claim 2: Given cut $S \subset U$ in H with

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.I.o.g. can assume $x \notin S$ (otherwise take complement $V \backslash S$)
- Let $I=S \cap V$
(vertices in G)

Proof of Correctness - Part 2

- Claim 2: Given cut $S \subset U$ in H with

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.I.o.g. can assume $x \notin S$ (otherwise take complement $V \backslash S$)
- Let $I=S \cap V$
(vertices in G)
- If $u, v \in I$ are s.t. $\{u, v\}=: e \in E$, then S cuts at most 3 edges of H_{e}

Proof of Correctness - Part 2

- Claim 2: Given cut $S \subset U$ in H with

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.I.o.g. can assume $x \notin S$ (otherwise take complement $V \backslash S$)
- Let $I=S \cap V$
(vertices in G)
- If $u, v \in I$ are s.t. $\{u, v\}=: e \in E$, then S cuts at most 3 edges of H_{e}
- Otherwise, we saw in part 1 how to get 4 edges of H_{e} across the cut.

Proof of Correctness - Part 2

- Claim 2: Given cut $S \subset U$ in H with

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.I.o.g. can assume $x \notin S$ (otherwise take complement $V \backslash S$)
- Let $I=S \cap V$
(vertices in G)
- If $u, v \in I$ are s.t. $\{u, v\}=: e \in E$, then S cuts at most 3 edges of H_{e}
- Otherwise, we saw in part 1 how to get 4 edges of H_{e} across the cut.
- Letting $e(I)$ be number of edges between elements of I in G :

$$
|\delta(S)|=|I|+\sum_{e \in E}\left|\delta_{H_{e}}(S)\right| \leq|I|+3 e(I)+4(|E|-e(I))=|I|+4|E|-e(I)
$$

Proof of Correctness - Part 2

- Claim 2: Given cut $S \subset U$ in H with

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.I.o.g. can assume $x \notin S$ (otherwise take complement $V \backslash S$)
- Let $I=S \cap V$
(vertices in G)
- If $u, v \in I$ are s.t. $\{u, v\}=: e \in E$, then S cuts at most 3 edges of H_{e}
- Otherwise, we saw in part 1 how to get 4 edges of H_{e} across the cut.
- Letting $e(I)$ be number of edges between elements of I in G :

$$
|\delta(S)|=|I|+\sum_{e \in E}\left|\delta_{H_{e}}(S)\right| \leq|I|+3 e(I)+4(|E|-e(I))=|I|+4|E|-e(I)
$$

- As $|\delta(S)| \geq k+4|E|$, we have

$$
|I| \geq k+e(I)
$$

Proof of Correctness - Part 2

- Claim 2: Given cut $S \subset U$ in H with

$$
|\delta(S)| \geq k+4 \cdot|E|
$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.I.o.g. can assume $x \notin S$ (otherwise take complement $V \backslash S$)
- Let $I=S \cap V$
(vertices in G)
- If $u, v \in I$ are s.t. $\{u, v\}=: e \in E$, then S cuts at most 3 edges of H_{e}
- Otherwise, we saw in part 1 how to get 4 edges of H_{e} across the cut.
- Letting $e(I)$ be number of edges between elements of I in G :

$$
|\delta(S)|=|I|+\sum_{e \in E}\left|\delta_{H_{e}}(S)\right| \leq|I|+3 e(I)+4(|E|-e(I))=|I|+4|E|-e(I)
$$

- As $|\delta(S)| \geq k+4|E|$, we have

$$
|I| \geq k+e(I)
$$

- So for each $u, v \in I$ with $\{u, v\} \in E$, we can afford to remove one of the endpoints from S, decreasing $|I|$ by one. After $e(I)$ removals, get our independent set.

Acknowledgement

Based on

- [Erickson 2019, Chapter 12]
- Debmalya's Lecture 22
https://courses.cs.duke.edu/fall19/compsci638/fall19_ notes/lecture22.pdf

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009)

Introduction to Algorithms, third edition.
MIT Press
Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

E- Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/
Relenberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

