Lecture 22: Intractability Il
NP-Hardness

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 28, 2023

1/45

Overview

@ Navigating the world of P and NP
e 2SAT

@ Beyond decision problems: NP-hardness
o NP-hard reductions

@ Acknowledgements

2/45

Subtleties
Similar looking problems, wildly different complexity:
o Hamilton Cycle:

o Input: undirected graph G(V, E)
o Output: YES, iff there is a cycle that visits every vertex exactly once

3/45

Subtleties
Similar looking problems, wildly different complexity:
o Hamilton Cycle:
o Input: undirected graph G(V, E)
e Output: YES, iff there is a cycle that visits every vertex exactly once
o Euler Tour:
e Input: undirected graph G(V, E)
o Output: YES iff there is closed walk traversing every edge exactly once

4/45

Subtleties
Similar looking problems, wildly different complexity:
o Hamilton Cycle:
o Input: undirected graph G(V, E)
o Output: YES, iff there is a cycle that visits every vertex exactly once
o Euler Tour:
o Input: undirected graph G(V, E)
o Output: YES iff there is closed walk traversing every edge exactly once
@ Hamilton Cycle is NP-complete, whereas Euler tour has a linear time
algorithm (depth-first search).

Theorem (Euler's theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

5/45

Subtleties
Similar looking problems, wildly different complexity:
o Hamilton Cycle:
o Input: undirected graph G(V, E)
o Output: YES, iff there is a cycle that visits every vertex exactly once
o Euler Tour:
o Input: undirected graph G(V, E)
o Output: YES iff there is closed walk traversing every edge exactly once
@ Hamilton Cycle is NP-complete, whereas Euler tour has a linear time
algorithm (depth-first search).

Theorem (Euler's theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

@ Similar situation for hamiltonian path vs eulerian path!

6/45

Subtleties
Similar looking problems, wildly different complexity:
o Hamilton Cycle:
o Input: undirected graph G(V, E)
o Output: YES, iff there is a cycle that visits every vertex exactly once
o Euler Tour:
e Input: undirected graph G(V, E)
o Output: YES iff there is closed walk traversing every edge exactly once
@ Hamilton Cycle is NP-complete, whereas Euler tour has a linear time
algorithm (depth-first search).

Theorem (Euler's theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

@ Similar situation for hamiltonian path vs eulerian path!

@ In general, we need to be careful when distinguishing or making
reductions between problems.

7/45

@ Navigating the world of P and NP
o 2SAT

@ Beyond decision problems: NP-hardness

@ Acknowledgements

8/45

2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES < ¢ is satisfiable

9/45

2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES & ¢ is satisfiable

25AT is in P l

10/45

2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES & ¢ is satisfiable

25AT is in P]

@ Proof: “implication graph”

Example: (x1 VX2) A (X1 Vx3) A (2 VX3) A (x1V x2)
< Ca Cs Cy

11/45

2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES & ¢ is satisfiable

25AT is in P ‘

@ Proof: “implication graph”
Example: (x1 VX2) A (X1 Vx3) A (2 VX3) A (x1V x2)
o Let G,([2n], E) be the directed graph generated by the implication
graph process.

12/45

2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES & ¢ is satisfiable

25AT is in P

@ Proof: “implication graph”
Example: (x1 VX2) A (X1 Vx3) A (2 VX3) A (x1V x2)
o Let G,([2n], E) be the directed graph generated by the implication
graph process.

@ Run BFS or DFS from each literal y, and call it bad if for some
i € [n], the BFS from y visits both x;, x;

13/45

2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES & ¢ is satisfiable

25AT is in P

@ Proof: “implication graph”
Example: (x1 VX2) A (X1 Vx3) A (2 VX3) A (x1V x2)

o Let G,([2n], E) be the directed graph generated by the implication
graph process.

@ Run BFS or DFS from each literal y, and call it bad if for some
i € [n], the BFS from y visits both x;, x;

e If for some i € [n], both x; and X; are bad, then return NO.
Otherwise, return YES.

14 /45

@ Beyond decision problems: NP-hardness
o NP-hard reductions

15/45

NP-hardness

e Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

16 /45

NP-hardness

e Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

@ In these cases, since the problems are not decision problems, they will
not belong to NP

17/45

NP-hardness

e Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

@ In these cases, since the problems are not decision problems, they will
not belong to NP

@ However, can still apply our original reasoning:

e want to prove that problem B (non-decision problem) is hard
o Can select an NP-complete problem A and show that “if we can solve
B efficiently, then we can solve A efficiently”
o In other words:
A<t B

18/45

NP-hardness

e Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

@ In these cases, since the problems are not decision problems, they will
not belong to NP
@ However, can still apply our original reasoning:

e want to prove that problem B (non-decision problem) is hard

o Can select an NP-complete problem A and show that “if we can solve
B efficiently, then we can solve A efficiently”

o In other words:

A<t B
@ The above is our definition of NP-hardness:

Problem B is NP-hard if there is NP-complete problem A such that
A<t B.

19/45

Examples of NP-hard problems

o MAX-CLIQUE
o Input: graph G(V,E)
e Output: maximum size of a clique in G

20/ 45

Examples of NP-hard problems

o MAX-CLIQUE

o Input: graph G(V,E)

e Output: maximum size of a clique in G
e MIS:

o Input: graph G(V, E)

e Output: maximum independent set in G

21/45

Examples of NP-hard problems

o MAX-CLIQUE
o Input: graph G(V,E)
e Output: maximum size of a clique in G
e MIS:
o Input: graph G(V, E)
e Output: maximum independent set in G
@ MIN-Vertex-Cover:
e Input: graph G(V, E)
o Output: size of minimum vertex cover in G

22/45

Examples of NP-hard problems

MAX-CLIQUE

o Input: graph G(V,E)

e Output: maximum size of a clique in G
e MIS:

o Input: graph G(V, E)

e Output: maximum independent set in G
MIN-Vertex-Cover:

e Input: graph G(V, E)

o Output: size of minimum vertex cover in G
TSP-OPT:

o Input: complete graph G(V, E, d) where d : E — R>g

e Output: hamiltonian cycle in G of minimum total distance

23/45

@ Navigating the world of P and NP

@ Beyond decision problems: NP-hardness

o NP-hard reductions

@ Acknowledgements

24 /45

Non-Trivial NP-hardness reduction

o (unweighted) MAX-CUT
o Input: graph G(V,E)
e Output: a cut S C V with maximum |§(S)]

25 /45

Non-Trivial NP-hardness reduction

o (unweighted) MAX-CUT
o Input: graph G(V,E)
o Output: a cut S C V with maximum |5(S)|

MAX-CUT is NP-hard I

26 /45

Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard l

e Proof: reduction from MIS. Let G(V/, E) be the input graph.

27 /45

Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard I

e Proof: reduction from MIS. Let G(V/, E) be the input graph.
o Vertex gadget:

@ add vertex x
o for each v € V, add edge {x, v}

%

PN

28 /45

Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard ‘

e Proof: reduction from MIS. Let G(V/, E) be the input graph.
o Vertex gadget:

@ add vertex x
o for each v € V, add edge {x, v}

o Edge gadget: for each edge e = {u, v}
® add vertices ue, Ve,
o and edges: {x, ue}, {x,ve}, {u, ue}, {v, ve}, {te, ve},

29 /45

Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard

e Proof: reduction from MIS. Let G(V/, E) be the input graph.
o Vertex gadget:

@ add vertex x

o for each v € V, add edge {x, v}
o Edge gadget: for each edge e = {u, v}

o add vertices ue, Ve,

o and edges: {x, ue}, {x,ve}, {u,ue}, {v, ve}, {ue, ve},
o Edge gadget H.:

30/45

Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard I

e Proof: reduction from MIS. Let G(V/, E) be the input graph.
o Vertex gadget:

@ add vertex x
o for each v € V, add edge {x, v}
o Edge gadget: for each edge e = {u, v}
o add vertices ue, Ve,
o and edges: {x, ue}, {x,ve}, {u,ue}, {v, ve}, {ue, ve},
o Edge gadget H.:
o Let H(U, F) be graph given by:
o U=VLU {X} U {u€7 Ve}{u,v}::eeE
o F= {{X, W}}weU\{X} u {{Uev Ve}}eéE u {{u, ”e}v {V7 Ve}}{u,V}::eeE
Note that H does not have any edges from G

31/45

Proof of Correctness - Part 1

e Claim 1: G contains independent set | C V with |/| = k = there is
cut S C U in H such that

0(5)| = k +4- |E]|

32/45

Proof of Correctness - Part 1

e Claim 1: G contains independent set | C V with |/| = k = there is
cut S C U in H such that

0(5)| = k +4- |E]|

@ Start with S = 1.
@ For each edge e = {u,v} € E do
o ifuel v¢l, then add ve to S
o ifudl, vel, then add u. to S
o if u,v &1, then add ue, ve to S.
In all above cases, add four of five edge gadget H. edges

33/45

Proof of Correctness - Part 1

e Claim 1: G contains independent set | C V with |/| = k = there is
cut S C U in H such that

15(S)] > k+4-|E|

@ Start with S = 1.
@ For each edge e = {u,v} € E do
o ifuel, v¢l, then add ve to S
o ifudl, vel, then add u. to S
o if u,v &/, then add ue, ve to S.
In all above cases, add four of five edge gadget H. edges
Analyzing the cut given by S:

o For every w € [, the edge {x,w} is cut by S

34/45

Proof of Correctness - Part 1

e Claim 1: G contains independent set | C V with |/| = k = there is
cut S C U in H such that

15(S)] > k+4-|E|

@ Start with S = 1.
@ For each edge e = {u,v} € E do
o ifuel, v¢l, then add ve to S
o ifudl, vel, then add u. to S
o if u,v &/, then add ue, ve to S.
In all above cases, add four of five edge gadget H. edges
Analyzing the cut given by S:
o For every w € [, the edge {x,w} is cut by S
o For every edge {u,v} =: e € E, exactly 4 edges of H, are cut.

35/45

Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.

36/45

Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.
o W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)

37/45

Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with
16(S)| = k+4-|E|

then G contains independent set | C V of size > k.
o W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)

o let/=5nV (vertices in G)

38/45

Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.
o W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)
o let/=5nV (vertices in G)
o Ifu,velarest. {uv}=:ecE, then S cuts at most 3 edges of H,

39/45

Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.
o W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)
o let/=5nV (vertices in G)
o Ifu,velarest. {uv}=:ecE, then S cuts at most 3 edges of H,
o Otherwise, we saw in part 1 how to get 4 edges of H, across the cut.

40 /45

Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.
o W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)
o let/=5nV (vertices in G)
o Ifu,velarest. {uv}=:ecE, then S cuts at most 3 edges of H,
o Otherwise, we saw in part 1 how to get 4 edges of H, across the cut.
o Letting e(/) be number of edges between elements of / in G:

16(S)] = 1+ 161.(S)] < [1]+3e(1)+4(|E|—e(1)) = |I|+4]E| —e(/)

ecE

41/45

Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.

W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)

Let /=5NnV (vertices in G)
If u,v el arest. {u,v}=:ecE, then S cuts at most 3 edges of H,
Otherwise, we saw in part 1 how to get 4 edges of H, across the cut.
Letting e(/) be number of edges between elements of / in G:

16(S)] = 1+ 161.(S)] < [1]+3e(1)+4(|E|—e(1)) = |I|+4]E| —e(/)

ecE

As |5(S)| > k + 4(E

, we have

[l] > k+e(l)

42/45

Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.

W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)

Let /=5NnV (vertices in G)
If u,v el arest. {u,v}=:ecE, then S cuts at most 3 edges of H,
Otherwise, we saw in part 1 how to get 4 edges of H, across the cut.
Letting e(/) be number of edges between elements of / in G:

6(S) = 111+ 16n.(S)] < |1]+3e(/)+4(|E|—e(1)) = |I|+4]E|—e(/)
ecE

As |6(S)| > k + 4|E|, we have

|| > k+e(l)

So for each u,v € | with {u, v} € E, we can afford to remove one of
the endpoints from S, decreasing |/| by one. After e(/) removals, get
our independent set.

43 /45

Acknowledgement

Based on
o [Erickson 2019, Chapter 12]
@ Debmalya's Lecture 22

https://courses.cs.duke.edu/fall19/compsci638/falll9_
notes/lecture22.pdf

44 /45

References |

@ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford
(2009)

Introduction to Algorithms, third edition.
MIT Press

@ Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)
Algorithms

[3 Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/

@ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

45 /45

