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Overview

@ Navigating the world of P and NP
e 2SAT

@ Beyond decision problems: NP-hardness
o NP-hard reductions

@ Acknowledgements
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Subtleties
Similar looking problems, wildly different complexity:
o Hamilton Cycle:

o Input: undirected graph G(V, E)
o Output: YES, iff there is a cycle that visits every vertex exactly once
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Subtleties
Similar looking problems, wildly different complexity:
o Hamilton Cycle:
o Input: undirected graph G(V, E)
o Output: YES, iff there is a cycle that visits every vertex exactly once
o Euler Tour:
o Input: undirected graph G(V, E)
o Output: YES iff there is closed walk traversing every edge exactly once
@ Hamilton Cycle is NP-complete, whereas Euler tour has a linear time
algorithm (depth-first search).

Theorem (Euler's theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.
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o Input: undirected graph G(V, E)
o Output: YES iff there is closed walk traversing every edge exactly once
@ Hamilton Cycle is NP-complete, whereas Euler tour has a linear time
algorithm (depth-first search).

Theorem (Euler's theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

@ Similar situation for hamiltonian path vs eulerian path!
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Subtleties
Similar looking problems, wildly different complexity:
o Hamilton Cycle:
o Input: undirected graph G(V, E)
o Output: YES, iff there is a cycle that visits every vertex exactly once
o Euler Tour:
e Input: undirected graph G(V, E)
o Output: YES iff there is closed walk traversing every edge exactly once
@ Hamilton Cycle is NP-complete, whereas Euler tour has a linear time
algorithm (depth-first search).

Theorem (Euler's theorem)

G has eulerian tour iff every vertex has even degree.
G has eulerian path iff exactly 2 vertices have odd degree.

@ Similar situation for hamiltonian path vs eulerian path!

@ In general, we need to be careful when distinguishing or making
reductions between problems.
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@ Navigating the world of P and NP
o 2SAT

@ Beyond decision problems: NP-hardness

@ Acknowledgements
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2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES < ¢ is satisfiable
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2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES & ¢ is satisfiable

25AT is in P ]

@ Proof: “implication graph”

Example: (x1 VX2) A (X1 Vx3) A (2 VX3) A (x1V x2)
< Ca Cs Cy
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2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES & ¢ is satisfiable

25AT is in P ‘

@ Proof: “implication graph”
Example: (x1 VX2) A (X1 Vx3) A (2 VX3) A (x1V x2)
o Let G,([2n], E) be the directed graph generated by the implication
graph process.
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Example: (x1 VX2) A (X1 Vx3) A (2 VX3) A (x1V x2)
o Let G,([2n], E) be the directed graph generated by the implication
graph process.

@ Run BFS or DFS from each literal y, and call it bad if for some
i € [n], the BFS from y visits both x;, x;
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2SAT

e 2SAT
o Input: 2CNF o(x1,...,x,)
o Output: YES & ¢ is satisfiable

25AT is in P

@ Proof: “implication graph”
Example: (x1 VX2) A (X1 Vx3) A (2 VX3) A (x1V x2)

o Let G,([2n], E) be the directed graph generated by the implication
graph process.

@ Run BFS or DFS from each literal y, and call it bad if for some
i € [n], the BFS from y visits both x;, x;

e If for some i € [n], both x; and X; are bad, then return NO.
Otherwise, return YES.
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@ Beyond decision problems: NP-hardness
o NP-hard reductions

15/45



NP-hardness

e Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard
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NP-hardness

e Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

@ In these cases, since the problems are not decision problems, they will
not belong to NP

@ However, can still apply our original reasoning:

e want to prove that problem B (non-decision problem) is hard
o Can select an NP-complete problem A and show that “if we can solve
B efficiently, then we can solve A efficiently”
o In other words:
A<t B
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NP-hardness

e Often times we want to know whether a non-decision problem (say
optimization problem or search problem) is hard

@ In these cases, since the problems are not decision problems, they will
not belong to NP
@ However, can still apply our original reasoning:

e want to prove that problem B (non-decision problem) is hard

o Can select an NP-complete problem A and show that “if we can solve
B efficiently, then we can solve A efficiently”

o In other words:

A<t B
@ The above is our definition of NP-hardness:

Problem B is NP-hard if there is NP-complete problem A such that
A<t B.
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Examples of NP-hard problems

o MAX-CLIQUE
o Input: graph G(V,E)
e Output: maximum size of a clique in G
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Examples of NP-hard problems

o MAX-CLIQUE

o Input: graph G(V,E)

e Output: maximum size of a clique in G
e MIS:

o Input: graph G(V, E)

e Output: maximum independent set in G
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Examples of NP-hard problems

o MAX-CLIQUE
o Input: graph G(V,E)
e Output: maximum size of a clique in G
e MIS:
o Input: graph G(V, E)
e Output: maximum independent set in G
@ MIN-Vertex-Cover:
e Input: graph G(V, E)
o Output: size of minimum vertex cover in G
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Examples of NP-hard problems

MAX-CLIQUE

o Input: graph G(V,E)

e Output: maximum size of a clique in G
e MIS:

o Input: graph G(V, E)

e Output: maximum independent set in G
MIN-Vertex-Cover:

e Input: graph G(V, E)

o Output: size of minimum vertex cover in G
TSP-OPT:

o Input: complete graph G(V, E, d) where d : E — R>g

e Output: hamiltonian cycle in G of minimum total distance
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@ Navigating the world of P and NP

@ Beyond decision problems: NP-hardness

o NP-hard reductions

@ Acknowledgements

24 /45



Non-Trivial NP-hardness reduction

o (unweighted) MAX-CUT
o Input: graph G(V,E)
e Output: a cut S C V with maximum |§(S)]
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Non-Trivial NP-hardness reduction

o (unweighted) MAX-CUT
o Input: graph G(V,E)
o Output: a cut S C V with maximum |5(S)|

MAX-CUT is NP-hard I
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Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard l

e Proof: reduction from MIS. Let G(V/, E) be the input graph.
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Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard I

e Proof: reduction from MIS. Let G(V/, E) be the input graph.
o Vertex gadget:

@ add vertex x
o for each v € V, add edge {x, v}

%

PN
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Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard ‘

e Proof: reduction from MIS. Let G(V/, E) be the input graph.
o Vertex gadget:

@ add vertex x
o for each v € V, add edge {x, v}

o Edge gadget: for each edge e = {u, v}
® add vertices ue, Ve,
o and edges: {x, ue}, {x,ve}, {u, ue}, {v, ve}, {te, ve},

29 /45



Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard

e Proof: reduction from MIS. Let G(V/, E) be the input graph.
o Vertex gadget:

@ add vertex x

o for each v € V, add edge {x, v}
o Edge gadget: for each edge e = {u, v}

o add vertices ue, Ve,

o and edges: {x, ue}, {x,ve}, {u,ue}, {v, ve}, {ue, ve},
o Edge gadget H.:
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Non-Trivial NP-hardness reduction

MAX-CUT is NP-hard I

e Proof: reduction from MIS. Let G(V/, E) be the input graph.
o Vertex gadget:

@ add vertex x
o for each v € V, add edge {x, v}
o Edge gadget: for each edge e = {u, v}
o add vertices ue, Ve,
o and edges: {x, ue}, {x,ve}, {u,ue}, {v, ve}, {ue, ve},
o Edge gadget H.:
o Let H(U, F) be graph given by:
o U=VLU {X} U {u€7 Ve}{u,v}::eeE
o F= {{X, W}}weU\{X} u {{Uev Ve}}eéE u {{u, ”e}v {V7 Ve}}{u,V}::eeE
Note that H does not have any edges from G
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Proof of Correctness - Part 1

e Claim 1: G contains independent set | C V with |/| = k = there is
cut S C U in H such that

0(5)| = k +4- |E]|
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Proof of Correctness - Part 1

e Claim 1: G contains independent set | C V with |/| = k = there is
cut S C U in H such that

0(5)| = k +4- |E]|

@ Start with S = 1.
@ For each edge e = {u,v} € E do
o ifuel v¢l, then add ve to S
o ifudl, vel, then add u. to S
o if u,v &1, then add ue, ve to S.
In all above cases, add four of five edge gadget H. edges
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Proof of Correctness - Part 1

e Claim 1: G contains independent set | C V with |/| = k = there is
cut S C U in H such that

15(S)] > k+4-|E|

@ Start with S = 1.
@ For each edge e = {u,v} € E do
o ifuel, v¢l, then add ve to S
o ifudl, vel, then add u. to S
o if u,v &/, then add ue, ve to S.
In all above cases, add four of five edge gadget H. edges
Analyzing the cut given by S:

o For every w € [, the edge {x,w} is cut by S
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Proof of Correctness - Part 1

e Claim 1: G contains independent set | C V with |/| = k = there is
cut S C U in H such that

15(S)] > k+4-|E|

@ Start with S = 1.
@ For each edge e = {u,v} € E do
o ifuel, v¢l, then add ve to S
o ifudl, vel, then add u. to S
o if u,v &/, then add ue, ve to S.
In all above cases, add four of five edge gadget H. edges
Analyzing the cut given by S:
o For every w € [, the edge {x,w} is cut by S
o For every edge {u,v} =: e € E, exactly 4 edges of H, are cut.

35/45



Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.
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Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.
o W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)
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Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with
16(S)| = k+4-|E|

then G contains independent set | C V of size > k.
o W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)

o let/=5nV (vertices in G)
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o W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)
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Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.
o W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)
o let/=5nV (vertices in G)
o Ifu,velarest. {uv}=:ecE, then S cuts at most 3 edges of H,
o Otherwise, we saw in part 1 how to get 4 edges of H, across the cut.
o Letting e(/) be number of edges between elements of / in G:

16(S)] = 1+ 161.(S)] < [1]+3e(1)+4(|E|—e(1)) = |I|+4]E| —e(/)

ecE
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Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.

W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)

Let /=5NnV (vertices in G)
If u,v el arest. {u,v}=:ecE, then S cuts at most 3 edges of H,
Otherwise, we saw in part 1 how to get 4 edges of H, across the cut.
Letting e(/) be number of edges between elements of / in G:

16(S)] = 1+ 161.(S)] < [1]+3e(1)+4(|E|—e(1)) = |I|+4]E| —e(/)

ecE

As |5(S)| > k + 4(E

, we have

[l] > k+e(l)
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Proof of Correctness - Part 2
@ Claim 2: Given cut S C U in H with

0(S)| = k +4- |E]|

then G contains independent set | C V of size > k.

W.l.o.g. can assume x ¢ S (otherwise take complement V' \ S)

Let /=5NnV (vertices in G)
If u,v el arest. {u,v}=:ecE, then S cuts at most 3 edges of H,
Otherwise, we saw in part 1 how to get 4 edges of H, across the cut.
Letting e(/) be number of edges between elements of / in G:

6(S) = 111+ 16n.(S)] < |1]+3e(/)+4(|E|—e(1)) = |I|+4]E|—e(/)
ecE

As |6(S)| > k + 4|E|, we have

|| > k+e(l)

So for each u,v € | with {u, v} € E, we can afford to remove one of
the endpoints from S, decreasing |/| by one. After e(/) removals, get
our independent set.
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