# Lecture 23: Intractability III 

Rafael Oliveira<br>University of Waterloo<br>Cheriton School of Computer Science<br>rafael.oliveira.teaching@gmail.com

November 30, 2023

## Overview

- Intractability
- Scheduling Problems
- Algebraic Problems
- Mathematical Programming Problems
- Taxonomy of Hard Problems
- Further Explorations
- Computational view of the world
- Courses
- Research
- AMA
- Acknowledgements


## Scheduling with Release Times and Deadlines

- A job will be a tuple $(r, d, t)$ where
- $r$ is the release time
- $d$ is the deadline by which the job must be completed
- $t$ is the duration it takes to complete the job, once you started it


## Scheduling with Release Times and Deadlines

- A job will be a tuple $(r, d, t)$ where
- $r$ is the release time
- $d$ is the deadline by which the job must be completed
- $t$ is the duration it takes to complete the job, once you started it
- Allocate jobs to one machine. Our machine
- can only run one job at a time,
- once started on job, must finish it before taking on another job.


## Scheduling with Release Times and Deadlines

- A job will be a tuple $(r, d, t)$ where
- $r$ is the release time
- $d$ is the deadline by which the job must be completed
- $t$ is the duration it takes to complete the job, once you started it
- Allocate jobs to one machine. Our machine
- can only run one job at a time,
- once started on job, must finish it before taking on another job.
- Input: Set of jobs $\left\{\left(r_{i}, d_{i}, t_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{N}^{3}$
- Output: can we schedule all jobs so that each is completed by its deadline?


## Scheduling with Release Times and Deadlines

- A job will be a tuple $(r, d, t)$ where
- $r$ is the release time
- $d$ is the deadline by which the job must be completed
- $t$ is the duration it takes to complete the job, once you started it
- Allocate jobs to one machine. Our machine
- can only run one job at a time,
- once started on job, must finish it before taking on another job.
- Input: Set of jobs $\left\{\left(r_{i}, d_{i}, t_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{N}^{3}$
- Output: can we schedule all jobs so that each is completed by its deadline?
- We will show this problem is NP-complete


## Scheduling with Release Times and Deadlines

- A job will be a tuple $(r, d, t)$ where
- $r$ is the release time
- $d$ is the deadline by which the job must be completed
- $t$ is the duration it takes to complete the job, once you started it
- Allocate jobs to one machine. Our machine
- can only run one job at a time,
- once started on job, must finish it before taking on another job.
- Input: Set of jobs $\left\{\left(r_{i}, d_{i}, t_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{N}^{3}$
- Output: can we schedule all jobs so that each is completed by its deadline?
- We will show this problem is NP-complete
- Membership in NP:
- Proof/witness: the proof/witness is a scheduling (linear size)
- verification algorithm: check that the scheduling satisfies the resease time and deadline


## Proof of Hardness

- Polynomial transformation from SUBSET-SUM to our problem


## Proof of Hardness

- Polynomial transformation from SUBSET-SUM to our problem
- Let $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{N}$ and $T \in \mathbb{N}$ be an instance of the SUBSET-SUM problem.


## Proof of Hardness

- Polynomial transformation from SUBSET-SUM to our problem
- Let $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{N}$ and $T \in \mathbb{N}$ be an instance of the SUBSET-SUM problem.
- Let $S:=\sum_{i=1}^{n} x_{i}$, and consider the following jobs:
- $\left(0, S+1, w_{i}\right)$, for $i \in[n]$
- $(T, T+1,1)$


## Proof of Hardness

- Polynomial transformation from SUBSET-SUM to our problem
- Let $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{N}$ and $T \in \mathbb{N}$ be an instance of the SUBSET-SUM problem.
- Let $S:=\sum_{i=1}^{n} x_{i}$, and consider the following jobs:
- $\left(0, S+1, w_{i}\right)$, for $i \in[n]$
- $(T, T+1,1)$
- Note that there is a good scheduling iff the job $(T, T+1,1)$ gets scheduled at time $T$, which can only happen if there is a subset of the other jobs that can be scheduled exactly between $[0, T]$.


## Solving System of Equations

- 0-1 QUADEQ (quadratic equations problem)
- Input: System of quadratic equations $\left\{Q_{i}\left(x_{1}, \ldots, x_{n}\right)=0\right\}_{i \in[m]} \cup\left\{x_{i}^{2}-x_{i}=0\right\}_{i=1}^{n}$
- Output: YES $\Leftrightarrow$ there is a solution to the system above.


## Solving System of Equations

- 0-1 QUADEQ (quadratic equations problem)
- Input: System of quadratic equations $\left\{Q_{i}\left(x_{1}, \ldots, x_{n}\right)=0\right\}_{i \in[m]} \cup\left\{x_{i}^{2}-x_{i}=0\right\}_{i=1}^{n}$
- Output: YES $\Leftrightarrow$ there is a solution to the system above.
- QUADEQ is NP-complete


## Solving System of Equations

- 0-1 QUADEQ (quadratic equations problem)
- Input: System of quadratic equations

$$
\left\{Q_{i}\left(x_{1}, \ldots, x_{n}\right)=0\right\}_{i \in[m]} \cup\left\{x_{i}^{2}-x_{i}=0\right\}_{i=1}^{n}
$$

- Output: YES $\Leftrightarrow$ there is a solution to the system above.
- QUADEQ is NP-complete
- Membership in NP: proof/witness is a solution to the equations.


## Solving System of Equations

- 0-1 QUADEQ (quadratic equations problem)
- Input: System of quadratic equations $\left\{Q_{i}\left(x_{1}, \ldots, x_{n}\right)=0\right\}_{i \in[m]} \cup\left\{x_{i}^{2}-x_{i}=0\right\}_{i=1}^{n}$
- Output: YES $\Leftrightarrow$ there is a solution to the system above.
- QUADEQ is NP-complete
- Membership in NP: proof/witness is a solution to the equations.
- Completeness for NP: reduction from 3SAT

Encode each clause as a quadratic equation.

## Integer Programming

- IPROG
- Input: System of linear inequalities $\left\{\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}\right\}_{i \in[m]}$, where $x_{i} \in \mathbb{Z}$
- Output: YES $\Leftrightarrow$ there is a solution to the system above.


## Integer Programming

- IPROG
- Input: System of linear inequalities $\left\{\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}\right\}_{i \in[m]}$, where $x_{i} \in \mathbb{Z}$
- Output: YES $\Leftrightarrow$ there is a solution to the system above.
- IPROG is NP-complete


## Integer Programming

- IPROG
- Input: System of linear inequalities $\left\{\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}\right\}_{i \in[m]}$, where $x_{i} \in \mathbb{Z}$
- Output: YES $\Leftrightarrow$ there is a solution to the system above.
- IPROG is NP-complete
- Membership in NP: proof/witness is a solution to the inequalities.


## Integer Programming

- IPROG
- Input: System of linear inequalities $\left\{\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}\right\}_{i \in[m]}$, where $x_{i} \in \mathbb{Z}$
- Output: YES $\Leftrightarrow$ there is a solution to the system above.
- IPROG is NP-complete
- Membership in NP: proof/witness is a solution to the inequalities.
- Completeness for NP: reduction from 3SAT

Encode each clause as a linear inequality.
Enforce boolean constraint by adding linear inequalities.

## Integer Programming

- IPROG
- Input: System of linear inequalities $\left\{\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}\right\}_{i \in[m]}$, where $x_{i} \in \mathbb{Z}$
- Output: YES $\Leftrightarrow$ there is a solution to the system above.
- IPROG is NP-complete
- Membership in NP: proof/witness is a solution to the inequalities.
- Completeness for NP: reduction from 3SAT

Encode each clause as a linear inequality.
Enforce boolean constraint by adding linear inequalities.

- $x_{1} \vee \overline{x_{2}} \vee x_{3} \mapsto x_{1}+\left(1-x_{2}\right)+x_{3} \geq 1$
- $0 \leq x_{i} \leq 1$
- Intractability
- Scheduling Problems
- Algebraic Problems
- Mathematical Progranming Problems
- Taxonomy of Hard Problems
- Further Explorations
- Computational view of the world
- Courses
- Research
- AMA
- Acknowledgements


## Packing Problems

Packing problems: given a collection of objects (with certain conflicts between them), want to choose at least $k$ of them.

- NP-complete packing problems:
(1) Clique
(2) Independent Set
(3) Set packing
- Input: collection of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of [ $n$ ], number $k \in \mathbb{N}$
- Output: YES $\Leftrightarrow$ there is collection of $k$ sets with empty pairwise intersection


## Covering Problems

Covering Problems: given collection of objects and a particular goal, want to choose a subset of objects of size at most $k$ that achieve this goal

- NP-complete covering problems:
(1) Vertex Cover
(2) Set Cover
- Input: subsets $S_{1}, \ldots, S_{m}$ of $[n], k \in \mathbb{N}$
- Output: YES $\Leftrightarrow$ there are at most $k$ subsets $S_{i}$ whose union is all of $[n]$


## Partitioning Problems

Partitioning Problems: dividing collection of objects into subsets such that each object appears in exactly one of these subsets

- NP-complete partitioning problems
- Graph Coloring
- 3-dimensional matching
- Input: given disjoint sets $X, Y, Z$ each of size $n$, and subset $T \subset X \times Y \times Z$
- Output: YES $\Leftrightarrow$ there are $n$ triple such that every element of $X \cup Y \cup Z$ is contained in exactly one of the triples


## Sequencing Problems

- NP-complete sequencing problems
- directed hamiltonian cycle
- directed hamiltonian path
- TSP


## Numerical \& Mathematical Programming Problems

- NP-complete numerical \& mathematical programming problems
- Subset-Sum
- Integer Programming
- 0-1 Quadratic Programming


## Constraint Satisfaction Problems

- NP-complete constraint satisfaction problems
- SAT
- 3SAT
- Circuit SAT


## - Intractability

- Scheduling Problems
- Algebraic Problems
- Mathematical Programming Problems
- Taxonomy of Hard Problems
- Further Explorations
- Computational view of the world
- Courses
- Research
- AMA
- Acknowledgements


## What have we learned

- Decision problems are not very restrictive - thus good to build theory upon
- Reductions between problems
- allows us to put partial order on hardness of problems
- classify problems according to their difficulty
- Three important classes of decision problems: P, NP and coNP
- Completeness for NP
- Problems that are NP-hard but not in NP


## What else is there?

- this is just the tip of the iceberg
- parallel computation
- non-uniform computation

What if we could give a different algorithm for each input size?

- randomized computation
- What about space requirements?
- What about problems with more quantifiers $(\exists, \forall)$ ?
- distributed
- streaming (low memory, few passes through data)
- online algorithms
- algebraic algorithms
- approximation algorithms
- numerical methods
- parallel algorithms


## Algorithmic Side

- Courses being offered in Winter 2024
- Prof Assadi's CS 860: modern topics in graph algorithms
- Prof Khanna's CS 860: algorithmic gems


## Complexity Side

- Courses being offered in Winter 2024
- Prof Blais CS 365: undergraduate complexity
- Prof Blais CS 764: graduate complexity


## Research Opportunities at UW!

Consider doing a URA, URF or USRA with a U Waterloo faculty! See research openings at:

- Undergraduate Research Assistanship (URA):

```
https://cs.uwaterloo.ca/computer-science/
current-undergraduate-students/research-opportunities/
undergraduate-research-assistantship-ura-program
```

- Undergraduate Research Fellowship (URF):
https://cs.uwaterloo.ca/current-undergraduate-students/ research-opportunities/undergraduate-research-fellowship-urf
- Mathematics Undergraduate Research Assistanship (MURA):
https://uwaterloo.ca/math/
undergraduate-research-assistantships-faculty-mathematics
- For Canadians, please check out NSERC's USRA:
https://cs.uwaterloo.ca/usra


## AMA

## Ask me anything!

## Acknowledgement

## Based on

- [Kleinberg Tardos 2006, Chapter 8]


## References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009)

Introduction to Algorithms, third edition.
MIT Press
Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006) Algorithms

E- Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/
Relent Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

