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Scheduling with Release Times and Deadlines

A job will be a tuple (r , d , t) where

r is the release time
d is the deadline by which the job must be completed
t is the duration it takes to complete the job, once you started it

Allocate jobs to one machine. Our machine

can only run one job at a time,
once started on job, must finish it before taking on another job.

Input: Set of jobs {(ri , di , ti )}ni=1 ⊂ N3

Output: can we schedule all jobs so that each is completed by its
deadline?

We will show this problem is NP-complete

Membership in NP:

Proof/witness: the proof/witness is a scheduling (linear size)
verification algorithm: check that the scheduling satisfies the resease
time and deadline (linear time)
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Proof of Hardness

Polynomial transformation from SUBSET-SUM to our problem

Let X = {x1, . . . , xn} ⊂ N and T ∈ N be an instance of the
SUBSET-SUM problem.

Let S :=
∑n

i=1 xi , and consider the following jobs:

(0,S + 1,wi ), for i ∈ [n]
(T ,T + 1, 1)

Note that there is a good scheduling iff the job (T ,T + 1, 1) gets
scheduled at time T , which can only happen if there is a subset of
the other jobs that can be scheduled exactly between [0,T ].
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Solving System of Equations

0-1 QUADEQ (quadratic equations problem)

Input: System of quadratic equations
{Qi (x1, . . . , xn) = 0}i∈[m] ∪ {x2i − xi = 0}ni=1

Output: YES ⇔ there is a solution to the system above.

QUADEQ is NP-complete

Membership in NP: proof/witness is a solution to the equations.

Completeness for NP: reduction from 3SAT

Encode each clause as a quadratic equation.
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Integer Programming

IPROG
Input: System of linear inequalities {

∑n
j=1 aijxj ≥ bi}i∈[m], where

xi ∈ Z
Output: YES ⇔ there is a solution to the system above.

IPROG is NP-complete

Membership in NP: proof/witness is a solution to the inequalities.

Completeness for NP: reduction from 3SAT

Encode each clause as a linear inequality.
Enforce boolean constraint by adding linear inequalities.

x1 ∨ x2 ∨ x3 7→ x1 + (1− x2) + x3 ≥ 1
0 ≤ xi ≤ 1
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Packing Problems

Packing problems: given a collection of objects (with certain conflicts
between them), want to choose at least k of them.

NP-complete packing problems:
1 Clique
2 Independent Set
3 Set packing

Input: collection of subsets S1, S2, . . . , Sm of [n], number k ∈ N
Output: YES ⇔ there is collection of k sets with empty pairwise
intersection
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Covering Problems

Covering Problems: given collection of objects and a particular goal,
want to choose a subset of objects of size at most k that achieve this goal

NP-complete covering problems:
1 Vertex Cover
2 Set Cover

Input: subsets S1, . . . , Sm of [n], k ∈ N
Output: YES ⇔ there are at most k subsets Si whose union is all of [n]
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Partitioning Problems

Partitioning Problems: dividing collection of objects into subsets such
that each object appears in exactly one of these subsets

NP-complete partitioning problems

Graph Coloring
3-dimensional matching

Input: given disjoint sets X ,Y ,Z each of size n, and subset
T ⊂ X × Y × Z
Output: YES ⇔ there are n triple such that every element of
X ∪ Y ∪ Z is contained in exactly one of the triples
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Sequencing Problems

NP-complete sequencing problems

directed hamiltonian cycle
directed hamiltonian path
TSP
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Numerical & Mathematical Programming Problems

NP-complete numerical & mathematical programming problems

Subset-Sum
Integer Programming
0-1 Quadratic Programming
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Constraint Satisfaction Problems

NP-complete constraint satisfaction problems

SAT
3SAT
Circuit SAT
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What have we learned

Decision problems are not very restrictive - thus good to build theory
upon

Reductions between problems

allows us to put partial order on hardness of problems
classify problems according to their difficulty

Three important classes of decision problems: P, NP and coNP

Completeness for NP

Problems that are NP-hard but not in NP
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What else is there?

this is just the tip of the iceberg

parallel computation
non-uniform computation

What if we could give a different algorithm for each input size?

randomized computation
What about space requirements?
What about problems with more quantifiers (∃,∀)?

distributed
streaming (low memory, few passes through data)
online algorithms
algebraic algorithms
approximation algorithms
numerical methods
parallel algorithms
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Algorithmic Side

Courses being offered in Winter 2024

Prof Assadi’s CS 860: modern topics in graph algorithms
Prof Khanna’s CS 860: algorithmic gems
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Complexity Side

Courses being offered in Winter 2024

Prof Blais CS 365: undergraduate complexity
Prof Blais CS 764: graduate complexity
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Research Opportunities at UW!

Consider doing a URA, URF or USRA with a U Waterloo faculty!
See research openings at:

Undergraduate Research Assistanship (URA):

https://cs.uwaterloo.ca/computer-science/

current-undergraduate-students/research-opportunities/

undergraduate-research-assistantship-ura-program

Undergraduate Research Fellowship (URF):

https://cs.uwaterloo.ca/current-undergraduate-students/

research-opportunities/undergraduate-research-fellowship-urf

Mathematics Undergraduate Research Assistanship (MURA):

https://uwaterloo.ca/math/

undergraduate-research-assistantships-faculty-mathematics

For Canadians, please check out NSERC’s USRA:

https://cs.uwaterloo.ca/usra
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AMA

Ask me anything!
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