Lecture 23: Intractability IlI

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 30, 2023

1/36


mailto:rafael.oliveira.teaching@gmail.com

Overview

@ Intractability
o Scheduling Problems
o Algebraic Problems
e Mathematical Programming Problems
e Taxonomy of Hard Problems

@ Further Explorations
o Computational view of the world
o Courses

e Research
o AMA

@ Acknowledgements

2/36



Scheduling with Release Times and Deadlines

@ A job will be a tuple (r, d, t) where
o r is the release time
e d is the deadline by which the job must be completed
e t is the duration it takes to complete the job, once you started it

3/36



Scheduling with Release Times and Deadlines

@ A job will be a tuple (r, d, t) where
o r is the release time
e d is the deadline by which the job must be completed
e t is the duration it takes to complete the job, once you started it

@ Allocate jobs to one machine. Our machine

e can only run one job at a time,
e once started on job, must finish it before taking on another job.

4/36



Scheduling with Release Times and Deadlines

@ A job will be a tuple (r, d, t) where
o r is the release time
e d is the deadline by which the job must be completed
e t is the duration it takes to complete the job, once you started it

@ Allocate jobs to one machine. Our machine

e can only run one job at a time,
e once started on job, must finish it before taking on another job.

e Input: Set of jobs {(r;, d;, t;)}7_; C N3

@ Output: can we schedule all jobs so that each is completed by its
deadline?

5/36



Scheduling with Release Times and Deadlines

@ A job will be a tuple (r, d, t) where
o r is the release time
e d is the deadline by which the job must be completed
e t is the duration it takes to complete the job, once you started it

@ Allocate jobs to one machine. Our machine

e can only run one job at a time,
e once started on job, must finish it before taking on another job.

e Input: Set of jobs {(r;, d;, t;)}7_; C N3

@ Output: can we schedule all jobs so that each is completed by its
deadline?

@ We will show this problem is NP-complete

6/36



Scheduling with Release Times and Deadlines

@ A job will be a tuple (r, d, t) where
o r is the release time
e d is the deadline by which the job must be completed
e t is the duration it takes to complete the job, once you started it

@ Allocate jobs to one machine. Our machine
e can only run one job at a time,
e once started on job, must finish it before taking on another job.
e Input: Set of jobs {(r;, d;, t;)}7_; C N3
@ Output: can we schedule all jobs so that each is completed by its
deadline?
@ We will show this problem is NP-complete

@ Membership in NP:

o Proof/witness: the proof/witness is a scheduling (linear size)
o verification algorithm: check that the scheduling satisfies the resease
time and deadline (linear time)

7/36



Proof of Hardness

@ Polynomial transformation from SUBSET-SUM to our problem

8/36



Proof of Hardness

@ Polynomial transformation from SUBSET-SUM to our problem

o Let X ={x1,...,x,} CNand T € N be an instance of the
SUBSET-SUM problem.

9/36



Proof of Hardness

@ Polynomial transformation from SUBSET-SUM to our problem

o Let X ={x1,...,x,} CNand T € N be an instance of the
SUBSET-SUM problem.

e Let S:=>"", x;, and consider the following jobs:

o (0,S+1,w;), for i€ [n]
o (T, T+1,1)

10/36



Proof of Hardness

@ Polynomial transformation from SUBSET-SUM to our problem

o Let X ={x1,...,x,} CNand T € N be an instance of the
SUBSET-SUM problem.
e Let S:=>"", x;, and consider the following jobs:
e (0,S+1,w;), for i € [n]
o (T, T+1,1)
@ Note that there is a good scheduling iff the job (T, T +1,1) gets
scheduled at time T, which can only happen if there is a subset of
the other jobs that can be scheduled exactly between [0, T].

11/36



Solving System of Equations

e 0-1 QUADEQ (quadratic equations problem)
o Input: System of quadratic equations
{Q,‘(Xl, e 7X,,) = 0},'6[,,,] U {X,2 — Xj = 0}7:1
e Output: YES < there is a solution to the system above.

12/36



Solving System of Equations

e 0-1 QUADEQ (quadratic equations problem)
o Input: System of quadratic equations
{Q,‘(Xl, e 7X,,) = 0}ie[m] U {X,2 — Xj = 0}7:1
e Output: YES < there is a solution to the system above.

o QUADEQ is NP-complete

13/36



Solving System of Equations

e 0-1 QUADEQ (quadratic equations problem)
o Input: System of quadratic equations
{Q,‘(Xl, e 7X,,) = O}I'e[m] U {X,2 — Xj = 0}7:1
e Output: YES < there is a solution to the system above.

o QUADEQ is NP-complete

@ Membership in NP: proof /witness is a solution to the equations.

14/36



Solving System of Equations

e 0-1 QUADEQ (quadratic equations problem)
o Input: System of quadratic equations
{Q,‘(Xl, e 7X,,) = O}ie[m] U {X,2 — Xj = 0}7:1
e Output: YES < there is a solution to the system above.

o QUADEQ is NP-complete
@ Membership in NP: proof /witness is a solution to the equations.
@ Completeness for NP: reduction from 3SAT

Encode each clause as a quadratic equation.

15/36



Integer Programming

e IPROG
o Input: System of linear inequalities {>_7; a;x; > b;}ic[m|, where
X; € 7
o Output: YES < there is a solution to the system above.

16/36



Integer Programming

e IPROG
o Input: System of linear inequalities {>_7; a;x; > b;}ic[m|, where
X; € 7
o Output: YES < there is a solution to the system above.

o IPROG is NP-complete

17/36



Integer Programming

e IPROG
o Input: System of linear inequalities {>_7; a;x; > b;}ic[m|, where
X; € 7
o Output: YES < there is a solution to the system above.

o IPROG is NP-complete

@ Membership in NP: proof/witness is a solution to the inequalities.

18/36



Integer Programming

e IPROG
o Input: System of linear inequalities {>_7; a;x; > b;}ic[m|, where
X; € 7
o Output: YES < there is a solution to the system above.
o IPROG is NP-complete
@ Membership in NP: proof/witness is a solution to the inequalities.
@ Completeness for NP: reduction from 3SAT

Encode each clause as a linear inequality.
Enforce boolean constraint by adding linear inequalities.

19/36



Integer Programming

e IPROG
o Input: System of linear inequalities {>_7; a;x; > b;}ic[m|, where
X; € 7
o Output: YES < there is a solution to the system above.
o IPROG is NP-complete
@ Membership in NP: proof/witness is a solution to the inequalities.
@ Completeness for NP: reduction from 3SAT

Encode each clause as a linear inequality.
Enforce boolean constraint by adding linear inequalities.

e x1VaVxi—rxi+(1l—x)+x>1
-] OSX,'S].

20/36



@ Intractability

e Taxonomy of Hard Problems

@ Further Explorations

@ Acknowledgements

21/36



Packing Problems

Packing problems: given a collection of objects (with certain conflicts
between them), want to choose at least k of them.

@ NP-complete packing problems:

@ Clique
@ Independent Set
© Set packing
o Input: collection of subsets 51, S, ..., Sm of [n], number k € N
o Output: YES < there is collection of k sets with empty pairwise
intersection

22/36



Covering Problems

Covering Problems: given collection of objects and a particular goal,
want to choose a subset of objects of size at most k that achieve this goal
@ NP-complete covering problems:

© Vertex Cover
@ Set Cover

o Input: subsets Sy,..., S, of [n], k €N
o Output: YES & there are at most k subsets S; whose union is all of [n]

23/36



Partitioning Problems

Partitioning Problems: dividing collection of objects into subsets such
that each object appears in exactly one of these subsets
@ NP-complete partitioning problems

o Graph Coloring
o 3-dimensional matching
o Input: given disjoint sets X, Y, Z each of size n, and subset
TCXxYx[Z
@ Output: YES < there are n triple such that every element of
X U Y UZ is contained in exactly one of the triples

24/36



Sequencing Problems

@ NP-complete sequencing problems

o directed hamiltonian cycle
o directed hamiltonian path
o TSP

25/36



Numerical & Mathematical Programming Problems

@ NP-complete numerical & mathematical programming problems

o Subset-Sum
o Integer Programming
e 0-1 Quadratic Programming

26/36



Constraint Satisfaction Problems

@ NP-complete constraint satisfaction problems
o SAT
e 3SAT
o Circuit SAT

27/36



@ Further Explorations
o Computational view of the world
e Courses
o Research
o AMA

28/36



What have we learned

@ Decision problems are not very restrictive - thus good to build theory
upon
@ Reductions between problems

o allows us to put partial order on hardness of problems
e classify problems according to their difficulty

Three important classes of decision problems: P, NP and coNP

Completeness for NP
Problems that are NP-hard but not in NP

29/36



What else is there?

@ this is just the tip of the iceberg

e parallel computation
e non-uniform computation

What if we could give a different algorithm for each input size?

randomized computation

What about space requirements?

o What about problems with more quantifiers (3,V)?
distributed

streaming (low memory, few passes through data)
online algorithms

algebraic algorithms

approximation algorithms

numerical methods

parallel algorithms

30/36



Algorithmic Side

@ Courses being offered in Winter 2024

e Prof Assadi’s CS 860: modern topics in graph algorithms
e Prof Khanna's CS 860: algorithmic gems

31/36


https://sepehr.assadi.info/courses/cs860-w24/

Complexity Side

@ Courses being offered in Winter 2024

o Prof Blais CS 365: undergraduate complexity
e Prof Blais CS 764: graduate complexity

32/36



Research Opportunities at UW!

Consider doing a URA, URF or USRA with a U Waterloo faculty!
See research openings at:

e Undergraduate Research Assistanship (URA):

https://cs.uwaterloo.ca/computer-science/
current-undergraduate-students/research-opportunities/
undergraduate-research-assistantship-ura-program

@ Undergraduate Research Fellowship (URF):

https://cs.uwaterloo.ca/current-undergraduate-students/
research-opportunities/undergraduate-research-fellowship-urf

@ Mathematics Undergraduate Research Assistanship (MURA):

https://uwaterloo.ca/math/
undergraduate-research-assistantships-faculty-mathematics

@ For Canadians, please check out NSERC's USRA:
https://cs.uwaterloo.ca/usra

33/36


https://cs.uwaterloo.ca/computer-science/current-undergraduate-students/research-opportunities/undergraduate-research-assistantship-ura-program
https://cs.uwaterloo.ca/computer-science/current-undergraduate-students/research-opportunities/undergraduate-research-assistantship-ura-program
https://cs.uwaterloo.ca/computer-science/current-undergraduate-students/research-opportunities/undergraduate-research-assistantship-ura-program
https://cs.uwaterloo.ca/current-undergraduate-students/research-opportunities/undergraduate-research-fellowship-urf
https://cs.uwaterloo.ca/current-undergraduate-students/research-opportunities/undergraduate-research-fellowship-urf
https://uwaterloo.ca/math/undergraduate-research-assistantships-faculty-mathematics
https://uwaterloo.ca/math/undergraduate-research-assistantships-faculty-mathematics
https://cs.uwaterloo.ca/usra

AMA

Ask me anything!

34/36



Acknowledgement

Based on
o [Kleinberg Tardos 2006, Chapter 8]

35/36



References |

ﬁ Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford
(2009)

Introduction to Algorithms, third edition.
MIT Press

ﬁ Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)
Algorithms

[3 Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/

ﬁ Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley

36/36


https://jeffe.cs.illinois.edu/teaching/algorithms/

	Intractability
	Scheduling Problems
	Algebraic Problems
	Mathematical Programming Problems
	Taxonomy of Hard Problems

	Further Explorations
	Computational view of the world
	Courses
	Research
	AMA

	Acknowledgements

