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Divide-and-Conquer

Structure of divide-and-conquer:
1 Divide: given instance I , construct smaller instances I1, . . . , Ia

(subproblems)

Ideally want |Ij | small compared to |I | (say constant fraction)

2 Conquer: recursively solve instances I1, . . . , Ia, obtaining solutions
S1, . . . ,Sa

3 Combine: solutions S1, . . . ,Sa 7→ solution S to instance I

“Recursion for running time:”

T (I ) = T (I1) + · · ·+ T (Ia) + time to combine
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Greedy Algorithms

Greedy strategy based on following principles:
1 choose a “progress measure”
2 preprocess input accordingly
3 make next decision based on what is best given current partial solution
4 Main idea: must show that the greedy solution is always no worse

than any other optimal solution!

Usually can prove this by begin able to “transform” any optimal
solution into the greedy one without losing anything.

Exchange Argument

5 Optimal Substructure: a problem has optimal substructure if any
optimal solution contains optimal solutions to subproblems.
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Dynamic Programming

Sometimes, when trying a divide and conquer approach, we are only
able to divide in a way which makes us perform ”exhaustive search”

Looks like it is going to be a bad divide and conquer

However, in several situations, it turns out that a small set of
particular subproblems appear several times in our recurrence

Instead of recomputing the subproblems, we can:
1 solve them once
2 save them to memory
3 and if we need them again, we already precomputed them! (savings)

DP template
1 identify small set of subproblems
2 devise proper recursion
3 show how bottom-up approach correctly compute the subproblems
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Graph Search & Connectivity
Undirected graphs:

BFS
1 Finds shortest paths
2 Can be used to detect graph is bipartite
3 Shortest paths encoded in the BFS tree
4 Non-tree edges in adjacent layers

DFS
1 Parenthesis lemma: start and finish time intervals are either disjoint, or

one contains the other
2 non-tree edges (in DFS tree) must be back edges
3 checks for cut vertices or cut edges

BFS still gives you shortest paths from source

BFS and DFS trees have less structure, but parenthesis lemma still
holds for DFS tree

DAGs (directed acyclic graphs) (topological sort)

Any directed graph is a DAG of SCCs (strongly connected
components)

Linear time algorithm to find all SCCs!
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Minimum Spanning Trees (MSTs)

Greedy for the rescue!

Boruvka’s algorithm:
1 pick cheapest edge from a vertex, and contract it
2 recurse on contracted graph

Cut property: given any cut (S , S), there is an MST containing edge
with smallest weight across cut.

Prim’s algorithm:
1 start from arbitrary vertex and grow connected component one vertex

at a time

Kruskal’s algorithm:
1 consider edges from cheapest to most expensive, add edge to solution

so long as it does not create a cycle
2 needs UNION-FIND for that last step

All of the above can be assumed to run in O(m log n) time.
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Shortest Paths

Single-source, all weights non-negative: Dijkstra

Similar to Prim’s algorithm (greedy)
Start from source, and build shortest paths by adding one vertex at a
time
efficiently simulates the “water down the pipes” idea
Runtime O((m + n) log n)

Single-source, arbitrary weights: Bellman-Ford

Now cannot do the greedy approach, because of negative weights
DP for the rescue!
Subproblems D[v , i ] := captures shortest s → v distance using at most
i edges
Runtime O(mn)

All-pairs shortest-paths (arbitrary weights, no negative cycles)

Floyd-Warshall

Subproblems: D[u, v , k] := shortest u → v path using only {1, . . . , k}
as intermediate vertices
Runtime O(n3)
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Max-Flow & Min-Cut

Let G (V ,E , c) be an undirected graph, with capacity (weight) function
C : E → R≥0, two special vertices s, t ∈ V

Flows: f : E → R≥0 satisfying:
1 Capacity: f (e) ≤ c(e) for all e ∈ E
2 Conservation: fin(u) = fout(u) for all u ∈ V \ {s, t}
3 Value: fout(s)− fin(s)

Flow decomposition theorem: any integral flow f : E → N of value
r can be decomposed into paths P1, . . . ,Pr and cycles C1, . . . ,Cm

such that each e ∈ E appears in exactly f (e) of the paths and cycles.

Cuts: a cut is a partition of the vertices into two sets (S ,V \ S).
Capacity of a cut: Cout(S) is the total capacity coming out of S

Max-Flow Min-Cut Theorem: the value of the maximum flow
equals the minimum capacity of a cut

Ford-Fulkerson algorithm: keep finding s → t paths in residual
graph, when there is none, found a max-flow and a min-cut
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Reductions

How do we prove problem A is “easier than” another problem B?

Intuitive notion is: if we can efficiently solve B, then we can also
efficiently solve A

Turing reductions (a.k.a. Cook reductions)

A ≤T
p B ⇔ there is a poly-time algorithm MB with oracle access to B

such that MB solves A.

Oracle access: algorithm MB can query the oracle on inputs to problem
B, and each query is counted as 1 unit of time

Karp reductions (a.k.a. polynomial transformations)

A ≤p B ⇔ there is a poly-time computable function f : A → B such
that

x is a YES instance of A ⇔ f (x) is YES instance of B
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NP-completeness

NP is a class of decision problems

To prove a problem B is NP-complete, need to prove
1 B ∈ NP
2 there is an NP-complete problem A such that

A ≤p B

Example:
HittingSet

Input: collection of sets S1, . . . , Sm ⊂ [n], integer k ∈ N
Is there a collection of k sets Si which contain all elements of [n]?
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NP-hardness

A problem B is NP-hard if there is an NP-complete problem A such
that

A ≤T
p B

Notation: A ≤T
p B is the same as I have used as A ≤T B.

These are Cook reductions (which I have denoted as Turing
reductions).

Note that the class of NP-hard problems can contain problems which
are not decision problems

Bonus: a bogus video on super mario bros and NP-hardness

https://www.youtube.com/watch?v=HhGI-GqAK9c

Disclaimer: if you are still confused about the complexity part, please
do not watch it!

A real proof can be found here
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Based on
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