Integer Knapsack

Problem specification:
We are given n objects and a knapsack.
Each object i has a positive weight w_i and a positive value v_i.
The knapsack can carry a weight not exceeding W. Fill the knapsack so that the value of objects in the knapsack is maximized.

Brute force:
Try all possibilities. An object can be in or out and we sum weights to be sure we are not over W. This has complexity $\Theta(n2^n)$.

Greedy:
At each step add the object with the highest v_i/w_i ratio. Does not work. Counterexample?
Integer Knapsack - DP

Recall that objects are numbered from 1 to n.

Definition of a subproblem

Let $V[i, j]$ be the maximum value of the objects, selected from the first i objects, that can fit into a knapsack with upper weight limit j (the optimal value will be found in $V[n, W]$).

Key observation:

We either use object i in the optimal solution or we do not.

Suppose object i is not in the Knapsack. Then there is no difference between $V[i - 1, j]$ and $V[i, j]$.

Suppose object i is in the Knapsack. Our claim, for this case, is that $V[i, j] = V[i - 1, j - w_i] + v_i$.

Consider an optimal selection extracted from the first $i - 1$ objects with a weight limitation of $j - w_i$.
Integer Knapsack: Derivation of the Recurrence

Looking at only these first $i - 1$ objects, we can assume we have an optimal selection that is not more valuable than those chosen from the first $i - 1$ objects as used in $V[i, j]$.

This is true because:
A more valuable selection from objects 1 to $i - 1$ could be extended with object i and we would get a total value in excess of $V[i, j]$ in contradiction of the fact that $V[i, j]$ is optimal. So the value of $V[i, j]$ must be v_i plus the optimal solution for the first $i - 1$ objects with a weight limitation of $j - w_i$.

Considering the above facts we are able to make up the following recurrence for $V[i, j]$:

$$V[i, j] = \max\{V[i - 1, j], v_i + V[i - 1, j - w_i]\}$$

Base case: $V[0, j] = 0$.

Order of computation:
Use row-order from top-left down to the bottom-right corner.
Knapsack Problem: Pseudo-code for DP

for \(j := 0 \) to \(W \) do
 \(V[0,j] := 0; \)
for \(i := 1 \) to \(n \) do
 for \(j := 1 \) to \(W \) do
 sol := \(V[i-1, j] \);
 if (\(w[i] \leq j \)) then
 othersol := \(V[i-1, j-w[i]] + v[i] \);
 if (\(\text{othersol} > \text{sol} \)) then
 sol := othersol;
 \(V[i, j] := \text{sol}; \)
return \(V[n, W] \);

Complexity? \(\Theta(nW) \). Is it good or bad???
Note

We can make the program more memory efficient. Note that to compute value $V[i, j]$, we need only the cells from the previous line and to the left of $V[i - 1, j]$ (including $V[i - 1, j]$).
for j := 0 to W do
 V[j] := 0;
for i := 1 to n do
 for j := W downto 1 do
 sol := V[j];
 if (w[i] <= j) then
 othersol := V[j-w[i]] + v[i];
 if (othersol > sol) then
 sol := othersol;
 V[j] := sol;
return V[W];
More simplifications..

for j := 0 to W do
 V[j] := 0;
for i := 1 to n do
 for j := W downto 1 do
 if (w[i] <= j) then
 othersol := V[j-w[i]] + v[i];
 if (othersol > V[j]) then
 V[j] := othersol;
 return V[W];
Recovery of the solution added

```plaintext
for j := 0 to W do
    V[j] := 0; D[j] := 0;
for i := 1 to n do
    for j := W downto 1 do
        if (w[i] <= j) then
            othersol := V[j-w[i]] + v[i];
            if (othersol > V[j]) then
                V[j] := othersol; D[j] := i;
    print V[W];
\ \ recover the items in knapsack
j := W;
while (j>0) and (D[j]>0) do
    print(D[j]); j := j-w[D[j]];
```
Minimum Length Triangulation

Problem 4.4

Minimum Length Triangulation v1

Instance: n points q_1, \ldots, q_n in the Euclidean plane that form a convex $n - gon$ P.

Find: A triangulation of P such that the sum S_c of the lengths of the $n - 3$ chords is minimized.

Problem 4.5

Minimum Length Triangulation v2

Instance: n points q_1, \ldots, q_n in the Euclidean plane that form a convex $n - gon$ P.

Find: A triangulation of P such that the sum S_p of the perimeters of the $n - 2$ triangles is minimized.

Let L denote the perimeter of P. Then we have that $S_p = L + 2S_c$.

Hence the two versions have the same optimal solutions.
We consider version 2 of the problem. The edge q_nq_1 is in a triangle with a third vertex q_k, where $k \in 2, \cdots, n - 1$.

For a given k, we have:

1. the triangle $q_1q_kq_n$,
2. the polygon with vertices q_1, \cdots, q_k,
3. the polygon with vertices q_k, \cdots, q_n.

The optimal solution will consist of optimal solutions to the two subproblems in (2) and (3), along with the triangle in (1).
Recurrence Relation

For $1 \leq i < j \leq n$, let $S[i, j]$ denote the optimal solution to the subproblem consisting of the polygon having vertices q_i, \ldots, q_j. Let $\Delta(q_i, q_k, q_j)$ denote the perimeter of the triangle having vertices q_i, q_k, q_j.

Then we have the recurrence relation

$$S[i, j] = \min \{ \Delta(q_i, q_k, q_j) + S[i, k] + S[k, j] : i < k < j \}$$

the base cases are given by

$$S[i, i+1] = 0$$

for all i.

We compute all $S[i, j]$ with $j - i = c$, for $c = 2, 3, \ldots, n - 1$.
Problem 4.6

Problem: Weighted Interval Scheduling.
Instance: A set \(I \) of \(n \) intervals \([s_1, f_1], \cdots, [s_n, f_n]\) with weights \(\omega_1, \cdots, \omega_n \).
Question: Find subset \(S \) of disjoint intervals that maximizes \(\sum_{i \in S} \omega_i \).

Greedy approach does not work (example?)
Denote: $OPT(I)$ - optimum set S; $\omega_{OPT(I)}$ - corresponding weight.

The structure of optimal solution:
Consider interval i: it is either in $OPT(I)$ or not.
If $i \in OPT(I)$ then $OPT(I) = \{i\} \cup OPT(I')$, where I' denotes intervals disjoint from i.
If $i \notin OPT(I)$ then $OPT(I) = OPT(I - \{i\})$. Therefore

$$\omega_{OPT(I)} = \max \left\{ \omega_{OPT(I - \{i\})}, \omega_i + \omega_{OPT(I')} \right\}$$

Using this directly one ends up with exponential running time (solving subproblems for 2^n subsets of I).
Rename the intervals, by sorting if necessary, so that $f_1 \leq f_2 \leq \cdots \leq f_n$.

Denote $p(j)$ the largest index $i < j$ such that interval i is disjoint from the interval j.

Let $opt(j)$ be the weight of optimal solution that considers intervals $1, 2, \cdots, j$.

Then $opt(0) = 0$ and

$$opt(j) = \max \{ \omega_j + opt(p(j)), opt(j - 1) \}$$
Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)

<table>
<thead>
<tr>
<th>j</th>
<th>p(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
Sort intervals according to finish time
Compute \(p[j] \) for each \(j \)
\(\text{opt}[0] = 0 \)
for \(j \) from 1 to \(n \)
\[\text{opt}[j] = \max\{\text{opt}[j-1], \text{opt}[p[j]] + w[j]\} \]
Output \(\text{opt}[n] \)

Complexity?
Solution recovery ...

j = n
while (j>=0) do
if (opt[p[j]]+w[j] > opt[j-1])
print j
j = p[j]
else
j = j-1