CS 341: Algorithms
Module 7: Graph Algorithms

Armin Jamshidpey, Eugene Zima
Based on lecture notes by many previous CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2019
Depth-first search

- Idea: instead of a queue to store gray nodes, use a stack.
- Algorithm visits new (white) vertices before dealing with older gray ones.
- Hence it tends to explore deeply first.
- More valuable than BFS, especially for directed graphs.
- We add a timestamp of colour changes to indicate when node turned gray ($d[u]$) and black ($f[u]$).
Pseudocode for DFS

DFS (G)
 colour_all_vertices_white(); time<-0
 while there is a white vertex s do
 DFS_visit(s)
 done
DFS_visit(v)
 colour v gray; time++; d[v]<-time
 for each w adjacent to v do
 if w white then
 \((v,w)\) tree edge
 DFS_visit(w)
 else
 \((v,w)\) is non-tree edge
 colour v black; time++; f[v]<-time
Analysis of DFS

- Note stack is implicit here (stores parameters for recursive calls)
- “v on stack” means call to DFS-Visit(v) has not terminated
- DFS-Visit called once on every white node
- Each adjacency list run through once
- As with BFS, running time is \(\Theta(|V| + |E|) \) or \(\Theta(n + m) \).
DFS on undirected graphs

- Let \((v, w)\) be an edge, \(d[v] < d[w]\)
- If \(w\) found first on \(v\)'s adjacency list
 - \(w\) must have been white
 - \((v, w)\) is a tree edge
- If \(v\) found first on \(w\)'s adjacency list
 - \(v\) is gray
 - \((v, w)\) is a back edge
Tree Edges and Back Edges

DFS on an undirected graph:

▶ For undirected graphs we have tree edges and all other edges not in the spanning tree are called back edges.
Absence of Cross Links

- Again, consider DFS on an undirected graph:
 - Let u and v be two vertices such that neither is a descendant of the other. Then there is no back edge between any descendant of u and any descendant of v.
The parenthesis theorem

Theorem 1

The intervals \([d[u], f[u]]\) and \([d[v], f[v]]\) are either nested (in which case the inner one is a descendant of the outer) or disjoint.
The parenthesis theorem

Proof: WLOG assume $d[u] < d[v]$,

- If $d[v] < f[u]$, v was discovered while u was gray (on the stack), so v is a descendant of u and $f[v] < f[u]$ (nested)

\[
\begin{array}{c}
 d[u] & f[v] \\
 1 \quad d[v] \downarrow f[u] \\
 \hline
 n \quad 2n
\end{array}
\]
The parenthesis theorem

If \(f[u] < d[v] \), then intervals are disjoint

\[
\begin{array}{cccccc}
1 & & & & \downarrow \\
\end{array}
\]

\[
2n
\]

Corollary 3

\(v \) is descendant of \(u \) if and only if

\[
d[u] < d[v] < f[v] < f[u]
\]
The white-path theorem

Theorem 2

v is a descendant of u if and only if at time $d[u]$, v is reachable by a white path from u
The white-path theorem

Proof: If v a descendant of u, by Corollary 3, every vertex on tree path from u to v has higher dvalue, so is white at time $d[u]$. If v reachable by white path at time $d[u]$ but does not become descendant, assume every other vertex on path does (otherwise repeat argument for closest one to u that doesn't).
The white-path theorem

Predecessor w of v in path is descendant of u, so $f[w] \leq f[u]$ (w could be u)

$d[u] < d[v]$ (v white when u discovered)
 $< f[w]$ (v must be discovered before w finished)
 $\leq f[u]$ (by above)
The white-path theorem

\[d[u] < d[v] < f[w] \leq f[u] \] (from last slide)

Since \([d[v], f[v]]\) nested inside \([d[u], f[u]]\), the parenthesis theorem says that \(v\) is a descendant of \(u\) (contradiction to the assumption that it was not).
Articulations

Definition:
- A node v of a connected graph G is an articulation point (also called a cut vertex) if the removal of v and all its incident edges causes G to become disconnected.

Motivation for articulations:
- Articulations are important in communication networks.
- In traffic flows they identify places which will stop traffic between two areas of a city if they become blocked.
Finding Articulations

Problem:
- Given any graph $G = (V, E)$, find all the articulation points.

Possible strategy:
- For all vertices v in V:
 - Remove v and its incident edges
 - Test connectivity using a DFS.
- Execution time: $\Theta(n(n + m))$.
 - Can we do better?
A DFS tree can be used to discover articulation points in $\Theta(n + m)$ time.

- We start with a program that computes a DFS tree labeling the vertices with their discovery times.
- We also compute a function called $low(v)$ that can be used to characterize each vertex as an articulation or non-articulation point.
 - The root of the DFS tree (the root has a $d[\]$ value of 1) will be treated as a special case:
Finding Articulation Points

The root of the DFS tree is an articulation point if and only if it has two children.

- Suppose the root has two or more children.
 - Recall that the back edges never link the vertices in two different subtrees.
 - So, the subtrees are only linked through the root vertex and if it is removed we will get two or more connected components (i.e. the root is an articulation point).

- Suppose the root is an articulation point.
 - This means that its removal would produce two or more connected components each previously connected to this root vertex.
 - So, the root has two or more children.
We need another function defined on vertices: This quantity will be used in our articulation finding algorithm:

$$low(v) = \min\{d[v], d[w] \mid (u, w) \text{ is a back edge for some descendent } u \text{ of } v\}$$

So, $low(v)$ is the discovery time of the vertex closest to the root and reachable from v by following zero or more edges downward, and then at most one back edge.
Finding Articulation Points

- For non-root vertices we have a different test.
 - Suppose \(v \) is a non-root vertex of the DFS tree \(T \). Then \(v \) is an articulation point of \(G \) if and only if there is a child \(w \) of \(v \) in \(T \) with \(\text{low}(w) \geq d[v] \).
 - Sufficiency: Assume such a child \(w \) exists.
 - There is no descendent vertex of \(v \) that has a back edge going "above" vertex \(v \).
 - Also, there is no cross link from a descendent of \(v \) to any other subtree.
 - So, when \(v \) is removed the subtree with \(w \) as its root will be disconnected from the rest of the graph.
Finding Articulation Points

- Necessity: Assume no such child w exists.
 - In this case all children of v have a descendent with a back edge going to an ancestor of v.
 - When v is removed each of the children of v will still be connected to some vertex on the path going from the root to the vertex.
 - The graph stays connected and so v would not be an articulation point in this case.
function dfs-visit(v)
 status[v] := gray; time := time+1; d[v] := time;
 low[v] := d[v];
 for each w in out(v)
 if status[w] = white
 //--- (v,w) is a TREE edge
 dfs-visit(w); // low[w] is now computed!
 if low[w] >= d[v] then
 record that vertex v is an articulation
 if low[w] < low[v] then low[v] := low[w];
 else if w is not the parent of v then
 //--- (v,w) is a BACK edge
 if d[w] < low[v] then low[v] := d[w];
 status[v] := black;