The complexity class NPC denotes the set of all decision problems Π that satisfy the following two properties:

- $\Pi \in NP$
- For all $\Pi' \in NP$, $\Pi' \leq_p \Pi$.

NPC is an abbreviation for NP-complete. Note that the definition does not imply that NP-complete problems exist!
The Complexity Class NPC (cont.)

Theorem 1

If \(P \cap NPC \neq \emptyset \), then \(P = NP \).

Proof.

We know that \(P \subseteq NP \), so it suffices to show that \(NP \subseteq P \).

Suppose \(\Pi \in P \cap NPC \) and let \(\Pi' \in NP \). We will show that \(\Pi' \in P \).

1. Since \(\Pi \in NP \) and \(\Pi \in NPC \), it follows that \(\Pi' \leq_P \Pi \) (definition of NP-completeness).
2. Since \(\Pi' \leq_P \Pi \) and \(\Pi \in P \), it follows that \(\Pi' \in P \).
Satisfiability and the Cook-Levin Theorem

CNF-Satisfiability Problem

Instance: A boolean formula F in n boolean variables x_1, \ldots, x_n, such that F is the conjunction (logical “and”) of m clauses, where each clause is the disjunction (logical “or”) of literals. (A literal is a boolean variable or its negation.)

Question: Is there a truth assignment such that F evaluates to true?

Cook-Levin Theorem

$\text{CNF-Satisfiability} \in \text{NPC}$.

A. Jamshidpey, E. Zima (SCS, UW)
Module 8: Intractability and Undecidability
Spring 2019
Now, given any NP-complete problem, say Π_1, other problems in NP can be proven to be NP-complete via polynomial transformations from Π_1, as stated in the following theorem:

Theorem 2

Suppose that the following conditions are satisfied:

- $\Pi_1 \in NPC$,
- $\Pi_1 \leq_P \Pi_2$, and
- $\Pi_2 \in NP$.

Then $\Pi_2 \in NPC$.
More Satisfiability Problems

3-CNF-Satisfiability Problem

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly three literals.
Question: Is there a truth assignment such that F evaluates to true?

2-CNF-Satisfiability Problem

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly two literals.
Question: Is there a truth assignment such that F evaluates to true?

3-CNF-Satisfiability \in NPC, while 2-CNF-Satisfiability \in P
CNF-Satisfiability \leq_P 3-CNFSatisfiability

Suppose that (X, C) is an instance of CNF-SAT, where $X = \{x_1, \ldots, x_n\}$ and $C = \{C_1, \ldots, C_m\}$. For each C_j, do the following:

- **case 1:** If $|C_j| = 1$, say $C_j = \{z\}$, construct four clauses
 \[\{z, a, b\}, \{z, a, \overline{b}\}, \{z, \overline{a}, b\}, \{z, \overline{a}, \overline{b}\}\.\]
- **case 2:** If $|C_j| = 2$, say $C_j = \{z_1, z_2\}$, construct two clauses
 \[\{z_1, z_2, c\}, \{z_1, z_2, \overline{c}\}\.\]
- **case 3:** If $|C_j| = 3$, then leave C_j unchanged.
- **case 4:** If $|C_j| \geq 4$, say $C_j = \{z_1, z_2, \ldots, z_k\}$, then construct $k - 2$ new clauses

\[\{z_1, z_2, d_1\}, \{d_1, z_3, d_2\}, \{d_2, z_4, d_3\}, \ldots, \]
\[\{d_{k-4}, z_{k-2}, d_{k-3}\}, \{d_{k-3}, z_{k-1}, z_k\}\.\] (1)
Correctness of the Transformation

Suppose I is a yes-instance of CNF-SAT. We show that $f(I)$ is a yes-instance of 3-CNF-SAT. Fix a truth assignment for X in which every clause contains a true literal. We consider each clause C_j of the instance I.

1. If $C = \{z\}$, then z must be true. The corresponding four clauses in $f(I)$ each contain z, so they are all satisfied.
2. If $C_j = \{z_1, z_2\}$, then at least one of the z_1 or z_2 is true. The corresponding two clauses in $f(I)$ each contain z_1, z_2, so they are both satisfied.
3. If $C_j = \{z_1, z_2, z_3\}$, then C occurs unchanged in $f(I)$.
4. Suppose $C = \{z_1, z_2, z_3, \ldots, z_k\}$ where $k > 3$ and suppose $z_t \in C_j$ is a true literal. Define $d_i = true$ for $1 \leq i \leq t - 2$ and define $d_i = false$ for $t - 1 \leq i \leq k$. It is straightforward to verify that the $k - 2$ corresponding clauses in $f(I)$ each contain a true literal.
Correctness of the Transformation (cont.)

Conversely, suppose \(f(I) \) is a yes-instance of 3-CNF-SAT. We show that \(I \) is a yes-instance of CNF-SAT.

1. Four clauses in \(f(I) \) having the form
 \(\{z, a, b\}, \{z, a, \bar{b}\}, \{z, \bar{a}, b\}\{z, \bar{a}, \bar{b}\} \) are all satisfied if and only if \(z = \text{true} \). Then the corresponding clause \(\{z\} \) in \(I \) is satisfied.

2. Two clauses in \(f(I) \) having the form \(\{z_1, z_2, c\}, \{z_1, z_2, \bar{c}\} \) are both satisfied if and only if at least one of \(z_1, z_2 = \text{true} \). Then the corresponding clause \(\{z_1, z_2\} \) in \(I \) is satisfied.

3. If \(C_j = \{z_1, z_2, z_3\} \) is a clause in \(f(I) \), then \(C_j \) occurs unchanged in \(I \).
Finally, consider the \(k - 2 \) clauses in \(f(I) \) arising from a clause \(C_j = \{ z_1, z_2, z_3, \ldots, z_k \} \) in \(I \), where \(k > 3 \). We show that at least one of \(z_1, z_2, \ldots, z_k = true \) if all \(k - 2 \) of these clauses contain a true literal.

Assume all of \(z_1, z_2, \ldots, z_k = false \). In order for the first clause to contain a true literal, \(d_1 = true \). Then, in order for the second clause to contain a true literal, \(d_2 = true \). This pattern continues, and in order for the second last clause to contain a true literal, \(d_{k-3} = true \). But then the last clause contains no true literal, which is a contradiction. We have shown that at least one of \(z_1, z_2, \ldots, z_k = true \), which says that the clause \(\{ z_1, z_2, z_3, \ldots, z_k \} \) contains a true literal, as required.
3-CNF-Satisfiability \leq_P Clique

Let I be the instance of 3-CNF-SAT consisting of n variables, x_1, \ldots, x_n, and m clauses, C_1, \ldots, C_m. Let $C_i = \{z_{i1}^i, z_{i2}^i, z_{i3}^i\}, 1 \leq i \leq m$. Define $f(I) = (G, k)$, where $G = (V, E)$ according to the following rules:

- $V = \{v_j^i : 1 \leq i \leq m, 1 \leq j \leq 3\}$,
- $v_j^i v_j^{i'} \in E$ if and only if $i \neq i'$ and $z_j^i \neq \overline{z_j^{i'}}$, and
- $k = m$.

Non-edges of the constructed graph correspond to

1. inconsistent truth assignments of literals from two different clauses; or
2. any two literals in the same clause.
Example

\[
I : \left\{ \begin{array}{l}
C_1 = \{x_1, \bar{x}_2, \bar{x}_3\} \\
C_2 = \{\bar{x}_1, x_2, x_3\} \\
C_3 = \{x_1, x_2, x_3\}
\end{array} \right.
\]

\[
x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}
\]

\[
f(I) : \quad v_1^1 \rightarrow v_1^3 \rightarrow v_1^2 \rightarrow v_2^2 \rightarrow v_3^2 \rightarrow v_3^3
\]