CS 341: Algorithms

Douglas R. Stinson

David R. Cheriton School of Computer Science
University of Waterloo

February 7, 2019
1 Course Information
2 Introduction
3 Divide-and-Conquer Algorithms
4 Greedy Algorithms
5 Dynamic Programming Algorithms
6 Graph Algorithms
7 Intractability and Undecidability
Table of Contents

4 Greedy Algorithms
- Optimization Problems
- Design Strategy
- Interval Selection
- Interval Colouring
- Knapsack
- Coin Changing
- Stable Matching Problem
Optimization Problems

Problem: Given a problem instance, find a feasible solution that maximizes (or minimizes) a certain objective function.

Problem Instance: Input for the specified problem.

Problem Constraints: Requirements that must be satisfied by any feasible solution.

Feasible Solution: For any problem instance I, $\text{feasible}(I)$ is the set of all outputs (i.e., solutions) for the instance I that satisfy the given constraints.

Objective Function: A function $f : \text{feasible}(I) \rightarrow \mathbb{R}^+ \cup \{0\}$. We often think of f as being a profit or a cost function.

Optimal Solution: A feasible solution $X \in \text{feasible}(I)$ such that the profit $f(X)$ is maximized (or the cost $f(X)$ is minimized).
The Greedy Method

partial solutions

Given a problem instance I, it should be possible to write a feasible solution X as a tuple $[x_1, x_2, \ldots, x_n]$ for some integer n. A tuple $[x_1, \ldots, x_i]$ where $i < n$ is a **partial solution** if no constraints are violated. **Note:** it may be the case that a partial solution cannot be extended to a feasible solution.

choice set

For a partial solution $X = [x_1, \ldots, x_i]$ where $i < n$, we define the **choice set**

$$choice(X) = \{ y : [x_1, \ldots, x_i, y] \text{ is a partial solution} \}.$$
The Greedy Method (cont.)

local evaluation criterion

A local evaluation criterion is a function g such that, for any partial solution $X = [x_1, \ldots, x_i]$ and any $y \in \text{choice}(X)$, $g(x_1, \ldots, x_i, y)$ measures the cost or profit of extending the partial solution X to include y.

extension

Given a partial solution $X = [x_1, \ldots, x_i]$ where $i < n$, choose $y \in \text{choice}(X)$ so that $g(y)$ is as small (or large) as possible. Update X to be the $(i + 1)$-tuple $[x_1, \ldots, x_i, y]$.

greedy algorithm

Starting with the “empty” partial solution, repeatedly extend it until a feasible solution X is constructed. This feasible solution may or may not be optimal.
Features of the Greedy Method

Greedy algorithms do no **looking ahead** and no **backtracking**.

Greedy algorithms can usually be implemented efficiently. Often they consist of a **preprocessing step** based on the function g, followed by a **single pass** through the data.

In a greedy algorithm, only **one feasible solution** is constructed.

The execution of a greedy algorithm is based on **local criteria** (i.e., the values of the function g).

Correctness: For certain greedy algorithms, it is possible to prove that they always yield optimal solutions. However, these proofs can be tricky and complicated!
Interval Selection

Problem 4.1

Interval Selection

Instance: A set $\mathcal{A} = \{A_1, \ldots, A_n\}$ of intervals.

For $1 \leq i \leq n$, $A_i = [s_i, f_i)$, where s_i is the start time of interval A_i and f_i is the finish time of A_i.

Feasible solution: A subset $\mathcal{B} \subseteq \mathcal{A}$ of pairwise disjoint intervals.

Find: A feasible solution of maximum size (i.e., one that maximizes $|\mathcal{B}|$).
Possible Greedy Strategies for Interval Selection

1. Sort the intervals in increasing order of starting times. At any stage, choose the earliest starting interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is s_i).

2. Sort the intervals in increasing order of duration. At any stage, choose the interval of minimum duration that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is $f_i - s_i$).

3. Sort the intervals in increasing order of finishing times. At any stage, choose the earliest finishing interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is f_i).

Does one of these strategies yield a correct greedy algorithm?
A Greedy Algorithm for Interval Selection

Algorithm: \textit{GreedyIntervalSelection}(A)

rename the intervals, by sorting if necessary, so that $f_1 \leq \cdots \leq f_n$

$B \leftarrow \{A_1\}$

$prev \leftarrow 1$

\textbf{comment:} $prev$ is the index of the last selected interval

\textbf{for} $i \leftarrow 2 \textbf{ to } n$

\textbf{do} \begin{align*}
\text{if } s_i \geq f_{prev} \\
\text{then } \begin{cases}
B \leftarrow B \cup \{A_i\} \\
prev \leftarrow i
\end{cases}
\end{align*}

\textbf{return} (B)
Correctness Proof

We give an induction proof.

Let B be the greedy solution,

$$B = (A_{i_1}, \ldots, A_{i_k}),$$

where $i_1 < \cdots < i_k$.

Let O be any optimal solution,

$$O = (A_{j_1}, \ldots, A_{j_\ell}),$$

where $j_1 < \cdots < j_\ell$.

Observe that $\ell \geq k$ since O is optimal.

We want to prove that $\ell = k$.
Correctness Proof (cont.)

Lemma 4.2 (Greedy stays ahead)

\[f_{i_m} \leq f_{j_m} \text{ for } m = 1, 2, \ldots \]

Proof.

Initial case \(m = 1 \). We have \(f_{i_1} \leq f_{j_1} \) since the greedy algorithm begins by choosing \(i_1 = 1 \). (\(A_1 \) has the earliest finishing time.)

Induction assumption: \(f_{i_{m-1}} \leq f_{j_{m-1}} \). Consider \(A_{i_m} \) and \(A_{j_m} \). We have

\[s_{j_m} \geq f_{j_{m-1}} \geq f_{i_{m-1}}. \]

\(A_{i_m} \) has the earliest finishing time of any interval that starts after \(f_{i_{m-1}} \) finishes. Therefore \(f_{i_m} \leq f_{j_m} \).\]
Correctness Proof (cont.)

Now we complete the proof.

From the Lemma, we have $f_{ik} \leq f_{jk}$.

Suppose that $\ell > k$.

A_{jk+1} starts after A_{jk} finishes, and $f_{ik} \leq f_{jk}$.

So A_{jk+1} is feasible WRT the greedy solution, and therefore the greedy solution would not have terminated with A_{ik}.

This contradiction shows that $\ell = k$.
A Slick Proof

Induction is a standard way to prove correctness of greedy algorithms; however, sometimes shorter “slick” proofs are possible.

Let \(F = \{f_{i_1}, \ldots, f_{i_k}\} \) be the finishing times of the intervals in \(\mathcal{B} \).

There is no interval in \(\mathcal{O} \) that is “between” \(f_{i_m-1} \) and \(f_{i_m} \) for any \(m \geq 2 \), since \(A_{i_m} \) would not be chosen by the greedy algorithm in this case.

As well, there is no interval in \(\mathcal{O} \) that finishes before \(f_{i_1} \), or one that starts after \(f_{i_k} \).

Therefore every interval in \(\mathcal{O} \) contains a point in \(F \) (or has a point in \(F \) as a finishing time).

No two intervals in \(\mathcal{O} \) contain the same point in \(F \) because the intervals are disjoint.

Hence, there is an injective mapping from \(\mathcal{O} \) to \(F \) and therefore \(|\mathcal{O}| \leq |F| \).

Then we have

\[
\ell = |\mathcal{O}| \leq |F| = |\mathcal{B}| = k.
\]
Interval Colouring

Problem 4.3

Interval Colouring

Instance: A set $\mathcal{A} = \{A_1, \ldots, A_n\}$ of intervals.

For $1 \leq i \leq n$, $A_i = [s_i, f_i)$, where s_i is the start time of interval A_i and f_i is the finish time of A_i.

Feasible solution: A c-colouring is a mapping $col : \mathcal{A} \rightarrow \{1, \ldots, c\}$ that assigns each interval a colour such that two intervals receiving the same colour are always disjoint.

Find: A c-colouring of \mathcal{A} with the minimum number of colours.
Greedy Strategies for Interval Colouring

As usual, we consider the intervals one at a time.

At a given point in time, suppose we have coloured the first \(i < n \) intervals using \(d \) colours.

We will colour the \((i + 1) \)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d \) colours, then we introduce a new colour and \(d \) is increased by 1.

Question: In what order should we consider the intervals?

Consider the following example:

\[
A_1 = [0, 3) \quad A_2 = [8, 11) \quad A_3 = [14, 20) \quad A_4 = [4, 9) \\
A_5 = [16, 20) \quad A_6 = [6, 13) \quad A_7 = [10, 15) \quad A_8 = [0, 7) \\
A_9 = [12, 20) \quad A_{10} = [0, 5)
\]
A Greedy Algorithm for Interval Colouring

Algorithm: \textit{GreedyIntervalColouring}(\mathcal{A})

- sort the intervals so that \(s_1 \leq \cdots \leq s_n \)
- \(d \leftarrow 1 \)
- \(\text{colour}[1] \leftarrow 1 \)
- \(\text{finish}[1] \leftarrow f_1 \)

\textbf{for } i \leftarrow 2 \textbf{ to } n \textbf{ do}

\[\begin{align*}
\text{flag} & \leftarrow \text{false} \\
c & \leftarrow 1 \\
\text{while } c \leq d \text{ and (not flag)} \textbf{ do} & \\
\quad \text{do} & \\
\quad \quad \text{if } \text{finish}[c] \leq s_i \text{ then} & \\
\quad \quad \quad \text{colour}[i] \leftarrow c \\
\quad \quad \quad \text{finish}[c] \leftarrow f_i \\
\quad \quad \quad \text{flag} \leftarrow \text{true} \\
\quad \quad \text{else } c & \leftarrow c + 1 \\
\quad \text{if not flag} \textbf{ then} & \\
\quad \quad d & \leftarrow d + 1 \\
\quad \quad \text{colour}[i] & \leftarrow d \\
\quad \quad \text{finish}[d] & \leftarrow f_i \\
\text{return } (d, \text{colour})
\end{align*} \]
Correctness of the Algorithm

The correctness of this greedy algorithm can be proven inductively as well as by a “slick” method—we give the “slick” proof:

Let D denote the number of colours used by the algorithm.

Suppose $A_i = [s_i, f_i)$ is the first interval to receive the last colour, D.

For every colour $c < D$, there is an interval $A_c = [s_c, f_c)$ such that $s_c \leq s_i < f_c$ (i.e., A_c overlaps A_i).

Therefore we have D intervals, all of which contain the point s_i.

These D intervals must all receive different colours, so there is no colouring with fewer than D colours.
Comments and Questions

Excluding the sort, the complexity of the algorithm is $O(nD)$, where D is the value of d returned by the algorithm.

We don’t know the value of D ahead of time; all we know is that $1 \leq D \leq n$.

If it turns out that $D \in \Omega(n)$, then the best we can say is that the complexity is $O(n^2)$.

What **inefficiencies** exist in this algorithm?

What **data structure** would allow a more efficient algorithm to be designed?

What would be the complexity of an algorithm making use of an appropriate data structure?
Implementation Details

For each interval, suppose we searched the d existing colours to find if one of them is suitable. This is a linear search.

A modification is to use the colour of the interval having the earliest finishing time among the most recently chosen intervals of each colour. We can use a priority queue to keep track of these finishing times.

Whenever we colour interval A_i with colour c, we insert (f_i, c) into the priority queue (here f_i is the “key”).

When we want to want to colour the next interval A_i, we look at the minimum key f in the priority queue. If $f \leq s_i$, then we do a deletemin operation, yielding the pair (f, c) and we use colour c for interval A_i. If $f > s_i$, we introduce a new colour.

Note that each interval is inserted once and deleted once from the priority queue. Therefore, the complexity of this approach is $O(n \log D)$. Since $D \leq n$, it is $O(n \log n)$. (The initial sort is also $O(n \log n)$.)
Knapsack Problems

Problem 4.4

Knapsack

Instance: Profits $P = [p_1, \ldots, p_n]$; weights $W = [w_1, \ldots, w_n]$; and a capacity, M. These are all positive integers.

Feasible solution: An n-tuple $X = [x_1, \ldots, x_n]$ where $\sum_{i=1}^{n} w_i x_i \leq M$.

In the 0-1 Knapsack problem (often denoted just as Knapsack), we require that $x_i \in \{0, 1\}, 1 \leq i \leq n$.

In the Rational Knapsack problem, we require that $x_i \in \mathbb{Q}$ and $0 \leq x_i \leq 1, 1 \leq i \leq n$.

Find: A feasible solution X that maximizes $\sum_{i=1}^{n} p_i x_i$.
Possible Greedy Strategies for Knapsack Problems

1. Consider the items in decreasing order of profit (i.e., the local evaluation criterion is p_i).
2. Consider the items in increasing order of weight (i.e., the local evaluation criterion is w_i).
3. Consider the items in decreasing order of profit divided by weight (i.e., the local evaluation criterion is p_i/w_i).

Does one of these strategies yield a correct greedy algorithm for the Rational Knapsack problem?
A Greedy Algorithm for Rational Knapsack

Algorithm: \textit{GreedyRationalKnapsack}(P, W : array; M : integer)

\begin{itemize}
 \item sort the items so that \(\frac{p_1}{w_1} \geq \cdots \geq \frac{p_n}{w_n} \)
 \item \(X \leftarrow [0, \ldots, 0] \)
 \item \(i \leftarrow 1 \)
 \item \(CurW \leftarrow 0 \)
 \item \textbf{while} \((CurW < M) \text{ and } (i \leq n) \)
 \begin{itemize}
 \item \textbf{if} \(CurW + w_i \leq M \)
 \begin{itemize}
 \item \(x_i \leftarrow 1 \)
 \item \(CurW \leftarrow CurW + w_i \)
 \item \(i \leftarrow i + 1 \)
 \end{itemize}
 \item \textbf{else}
 \begin{itemize}
 \item \(x_i \leftarrow (M - CurW)/w_i \)
 \item \(CurW := M \)
 \end{itemize}
 \end{itemize}
\end{itemize}

\textbf{return} \((X) \)
Correctness Proof

For simplicity, assume that the profit / weight ratios are all distinct, so

\[
\frac{p_1}{w_1} > \frac{p_2}{w_2} > \cdots > \frac{p_n}{w_n}.
\]

Suppose the greedy solution is \(X = (x_1, \ldots, x_n) \) and the optimal solution is \(Y = (y_1, \ldots, y_n) \).

We will prove that \(X = Y \), i.e., \(x_j = y_j \) for \(j = 1, \ldots, n \). Therefore there is a unique optimal solution and it is equal to the greedy solution.

Suppose \(X \neq Y \).

Pick the smallest integer \(j \) such that \(x_j \neq y_j \).

It is impossible that \(x_j < y_j \), so we have \(x_j > y_j \).

There exists an index \(k > j \) such that \(y_k > 0 \) (otherwise \(Y \) is not optimal).
Correctness Proof (cont.)

Let \(\delta = \min\{w_k y_k, w_j (x_j - y_j)\} \); note that \(\delta > 0 \).

Define

\[
y'_j = y_j + \frac{\delta}{w_j} \quad \text{and} \quad y'_k = y_k - \frac{\delta}{w_k}.
\]

Then let \(Y' \) be \(Y \) with \(y_j \) and \(y_k \) updated to \(y'_j \) and \(y'_k \), respectively.

The idea is to show that

1. \(Y' \) is feasible, and
2. \(\text{profit}(Y') > \text{profit}(Y) \).

This contradicts the optimality of \(Y \) and proves that \(X = Y \).
Correctness Proof (cont.)

To show Y' is feasible, show that $y'_k \geq 0$, $y'_j \leq 1$ and weight(Y') $\leq M$.

First, we have

$$y'_k = y_k - \frac{\delta}{w_k} \geq y_k - \frac{w_k y_k}{w_k} = 0.$$

Second,

$$y'_j = y_j + \frac{\delta}{w_j} \leq y_j + \frac{w_j(x_j - y_j)}{w_j} = x_j \leq 1.$$

Third,

$$\text{weight}(Y') = \text{weight}(Y) + \frac{\delta}{w_j} w_j - \frac{\delta}{w_k} w_k = \text{weight}(Y) \leq M.$$

Finally, we compute

$$\text{profit}(Y') = \text{profit}(Y) + \frac{\delta p_j}{w_j} - \frac{\delta p_k}{w_k} = \text{profit}(Y) + \delta \left(\frac{p_j}{w_j} - \frac{p_k}{w_k}\right) > \text{profit}(Y),$$

since $\delta > 0$ and $p_j/w_j > p_k/w_k$.
Coin Changing

Problem 4.5

Coin Changing

Instance: A list of coin denominations, \(d_1, d_2, \ldots, d_n\), and a positive integer \(T\), which is called the target sum.

Find: An \(n\)-tuple of non-negative integers, say \(A = [a_1, \ldots, a_n]\), such that \(T = \sum_{i=1}^{n} a_i d_i\) and such that \(N = \sum_{i=1}^{n} a_i\) is minimized.

In the **Coin Changing** problem, \(a_i\) denotes the number of coins of denomination \(d_i\) that are used, for \(i = 1, \ldots, n\).

The total value of all the chosen coins must be exactly equal to \(T\). We want to **minimize** the number of coins used, which is denoted by \(N\).
A Greedy Algorithm for Coin Changing

Algorithm: GreedyCoinChanging($D : array; T : integer$)

comment: $D = [d_1, \ldots, d_n]$

sort the coins so that $d_1 > \cdots > d_n$

$N \leftarrow 0$

for $i \leftarrow 1$ to n

$$a_i \leftarrow \left\lfloor \frac{T}{d_i} \right\rfloor$$

$T \leftarrow T - a_id_i$

$N \leftarrow N + a_i$

if $T > 0$

then return (fail)

else return ($[a_1, \ldots, a_n], N$)
Proof of Optimality for $D = [100, 25, 10, 5, 1]$

We will prove that the greedy algorithm always finds an optimal solution for coin denominations $D = [100, 25, 10, 5, 1]$.

We will make use of the following properties of any optimal solution:

1. the number of pennies is at most 4 (replace five pennies by a nickel)
2. the number of nickels is at most 1 (replace two nickels by a dime)
3. the number of quarters is at most 3 (replace four quarters by a loonie), and
4. the number of nickels + the number of dimes is at most 2 (replace three dimes by a quarter and a nickel; replace two dimes and a nickel by a quarter; the number of nickels is at most one).

The proof is by induction on T. As (trivial) base cases, we can take $T = 1, 2, 3, 4$.
Proof of Optimality (cont.)

Suppose $5 \leq T < 10$. First, assume there is no nickel in the optimal solution. Then the optimal solution consists only of pennies, so $T \leq 4$ (property (1)); contradiction. Therefore the optimal solution contains at least one nickel. Clearly the greedy solution contains at least one nickel. By induction, the greedy solution for $T - 5$ is optimal. Therefore the greedy solution for T is also optimal.

Suppose $10 \leq T < 25$. First, assume there is no dime in the optimal solution. Then the optimal solution contains only nickels and pennies, so $T \leq 5 + 4 = 9$ (property (2)); contradiction. Therefore the optimal solution contains at least one dime. Clearly the greedy solution contains at least one dime. By induction, the greedy solution for $T - 10$ is optimal. Therefore the greedy solution for T is also optimal.

$25 \leq T < 100$. Exercise.

$100 \leq T$. Exercise.
The Stable Matching Problem

Problem 4.6

Stable Matching

Instance: Two sets of size n say $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_n\}$. Each x_i has a preference ranking of the elements in Y, and each y_i has a preference ranking of the elements in X. $\text{pref}(x_i, j) = y_k$ if y_k is the j-th favourite element of Y of x_i; and $\text{pref}(y_i, j) = x_k$ if x_k is the j-th favourite element of X of y_i.

Find: A matching of the sets X and Y such that there does not exist a pair (x_i, y_j) which is not in the matching, but where x_i and y_j prefer each other to their existing matches. A matching with this property is called a **stable matching**.
Overview of the Gale-Shapley Algorithm

Elements of X propose to elements of Y.

If y_j accepts a proposal from x_i, then the pair \(\{x_i, y_j\} \) is matched.

An unmatched y_j must accept a proposal from any x_i.

If $\{x_i, y_j\}$ is a matched pair, and y_j subsequently receives a proposal from x_k, where y_j prefers x_k to x_i, then y_j accepts and the pair \(\{x_i, y_j\} \) is replaced by \(\{x_k, y_j\} \).

If $\{x_i, y_j\}$ is a matched pair, and y_j subsequently receives a proposal from x_k, where y_j prefers x_i to x_k, then y_j rejects and nothing changes.

A matched y_j never becomes unmatched.

An x_i might make a number of proposals (up to n); the order of the proposals is determined by x_i’s preference list.
Gale-Shapley Algorithm

Algorithm: \textit{Gale-Shapley}(X, Y, \text{pref})

\begin{align*}
\text{Match} & \leftarrow \emptyset \\
\text{while } & \text{ there exists an unmatched } x_i \\
& \begin{cases}
\text{let } y_j & \text{ be the next element in } x_i \text{’s preference list} \\
\text{if } y_j & \text{ is not matched} \\
\text{then } & \text{Match} \leftarrow \text{Match} \cup \{x_i, y_j\} \\
\text{do } & \begin{cases}
\text{suppose } \{x_k, y_j\} & \in \text{Match} \\
\text{if } y_j & \text{ prefers } x_i \text{ to } x_k \\
\text{else } & \begin{cases}
\text{then } & \text{Match} \leftarrow \text{Match}\backslash\{x_k, y_j\} \cup \{x_i, y_j\} \\
\text{comment: } & x_k \text{ is now unmatched}
\end{cases}
\end{cases}
\end{cases}
\end{align*}

return (\text{Match})
Example

Suppose we have the following preference lists:

\[
\begin{align*}
 x_1 & : y_2 > y_3 > y_1 \\
 x_2 & : y_1 > y_3 > y_2 \\
 x_3 & : y_1 > y_2 > y_3
\end{align*}
\]

\[
\begin{align*}
 y_1 & : x_1 > x_2 > x_3 \\
 y_2 & : x_2 > x_3 > x_1 \\
 y_3 & : x_3 > x_2 > x_1
\end{align*}
\]

The **Gale-Shapley algorithm** could be executed as follows:

<table>
<thead>
<tr>
<th>proposal</th>
<th>result</th>
<th>Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1) proposes to (y_2)</td>
<td>(y_2) accepts</td>
<td>({x_1, y_2})</td>
</tr>
<tr>
<td>(x_2) proposes to (y_1)</td>
<td>(y_1) accepts</td>
<td>({x_1, y_2}, {x_2, y_1})</td>
</tr>
<tr>
<td>(x_3) proposes to (y_1)</td>
<td>(y_1) rejects</td>
<td></td>
</tr>
<tr>
<td>(x_3) proposes to (y_2)</td>
<td>(y_2) accepts</td>
<td>({x_3, y_2}, {x_2, y_1})</td>
</tr>
<tr>
<td>(x_1) proposes to (y_3)</td>
<td>(y_3) accepts</td>
<td>({x_3, y_2}, {x_2, y_1}, {x_1, y_3})</td>
</tr>
</tbody>
</table>
Another Example

Suppose we have the following preference lists:

\[
\begin{align*}
 x_1 : & y_1 > y_2 > y_3 > y_4 \\
 x_2 : & y_2 > y_3 > y_1 > y_4 \\
 x_3 : & y_3 > y_1 > y_2 > y_4 \\
 x_4 : & y_1 > y_2 > y_3 > y_4
\end{align*}
\]

\[
\begin{align*}
 y_1 : & x_2 > x_3 > x_4 > x_1 \\
 y_2 : & x_3 > x_4 > x_1 > x_2 \\
 y_3 : & x_4 > x_1 > x_2 > x_3 \\
 y_4 : & x_1 > x_2 > x_3 > x_4
\end{align*}
\]

Exercise: Show the execution of the *Gale-Shapley algorithm*.

D.R. Stinson (SCS)
Proof of Correctness

First we need to show that the algorithm always terminates, i.e., it is impossible that an unmatched x_i has proposed to every y_j.

Proof: Once an element of Y is matched, they are never unmatched. If x_i has proposed to every y_j, then every y_j is matched. But then every element of X is matched, which is a contradiction.

We now prove that the algorithm terminates with a stable matching. Suppose there is an instability: x_i is matched with y_j, x_k is matched with y_ℓ, x_i prefers y_ℓ to y_j and y_ℓ prefers x_i to x_k. Observe that x_i proposed to y_ℓ before proposing to y_j.

There three cases to consider:

(1) y_ℓ rejected x_i’s proposal.
(2) y_ℓ accepted x_i’s proposal, but later accepted another proposal.
(3) y_ℓ accepted x_i’s proposal, and did not accept any subsequent proposal.
Proof of Correctness (cont.)

(1) y_ℓ rejected x_i’s proposal. This could happen only if y_ℓ was already matched with someone they preferred to x_i. But y_ℓ ended up matched with someone they liked less than x_i. We conclude that y_ℓ did not reject a proposal by x_i.

(2) y_ℓ accepted x_i’s proposal, but later accepted another proposal. This could happen only if y_ℓ later received a proposal from someone they preferred to x_i. But y_ℓ ended up matched with someone they liked less than x_i, so this also did not happen.

(3) y_ℓ accepted x_i’s proposal, and did not accept any subsequent proposal. In this case, y_ℓ would have ended up matched to x_i, which did not happen.
Complexity

It is obvious that the number of iterations is at most n^2 since every x_i proposes at most once to every y_j.

It is possible to prove the stronger result that the maximum number of iterations is $n^2 - n + 1$.

The average number of iterations is $\Theta(n \log n)$ (but we will not prove this).

Is there an efficient way to identify an unmatched x_i at any point in the algorithm?

What data structure would be helpful in doing this?

What can we then say about the complexity of the algorithm?
Additional Comments

All executions of the *Gale-Shapley algorithm* result in the same matching. This matching can be characterized as follows: For every x_i, define $\text{best}(x_i) = y_j$ if there exists at least one stable matching in which x_i is paired with y_j, and there is no stable matching in which x_i is paired with a y_k that is preferred to y_j.

That is, $\text{best}(x_i)$ represents the “optimal outcome” for x_i given that the result is required to be a stable matching.

It can be shown that the matching resulting from the *Gale-Shapley algorithm* is

$$
\mathcal{M} = \{ \{x_i, \text{best}(x_i)\} : 1 \leq i \leq n \}.
$$

\mathcal{M} can also be characterized as $\mathcal{M} = \{ \{y_j, \text{worst}(y_j)\} : 1 \leq j \leq n \}$. That is, every y_j receives their “worst possible” match.

The algorithm is completely biased in favour of the proposers!