CS 341: Algorithms

Douglas R. Stinson

David R. Cheriton School of Computer Science
University of Waterloo

March 22, 2019
1. Course Information
2. Introduction
3. Divide-and-Conquer Algorithms
4. Greedy Algorithms
5. Dynamic Programming Algorithms
6. Graph Algorithms
7. Intractability and Undecidability
Intractability and Undecidability

Table of Contents

7 Intractability and Undecidability
- Decision Problems
- The Complexity Class P
- Decision, Optimal Value and Optimization Problems
- The Complexity Class NP
- Reductions
- NP-completeness and NP-complete Problems
- Undecidability
Decision Problems

Decision Problem: Given a problem instance I, answer a certain question “yes” or “no”.

Problem Instance: Input for the specified problem.

Problem Solution: Correct answer (“yes” or “no”) for the specified problem instance. I is a yes-instance if the correct answer for the instance I is “yes”. I is a no-instance if the correct answer for the instance I is “no”.

Size of a problem instance: $\text{Size}(I)$ is the number of bits required to specify (or encode) the instance I.
The Complexity Class \mathbf{P}

Algorithm Solving a Decision Problem: An algorithm A is said to solve a decision problem Π provided that A finds the correct answer ("yes" or "no") for every instance I of Π in finite time.

Polynomial-time Algorithm: An algorithm A for a decision problem Π is said to be a polynomial-time algorithm provided that the complexity of A is $O(n^k)$, where k is a positive integer and $n = \text{Size}(I)$.

The Complexity Class \mathbf{P} denotes the set of all decision problems that have polynomial-time algorithms solving them. We write $\Pi \in \mathbf{P}$ if the decision problem Π is in the complexity class \mathbf{P}.
Cycles in Graphs

Problem 7.1

Cycle

Instance: An undirected graph $G = (V, E)$.

Question: Does G contain a cycle?

Problem 7.2

Hamiltonian Cycle

Instance: An undirected graph $G = (V, E)$.

Question: Does G contain a hamiltonian cycle?

A hamiltonian cycle is a cycle that passes through every vertex in V exactly once.
Knapsack Problems

Problem 7.3

0-1 Knapsack-Dec

Instance: a list of profits, $P = [p_1, \ldots, p_n]$; a list of weights, $W = [w_1, \ldots, w_n]$; a capacity, M; and a target profit, T.

Question: Is there an n-tuple $[x_1, x_2, \ldots, x_n] \in \{0, 1\}^n$ such that $\sum w_ix_i \leq M$ and $\sum p_ix_i \geq T$?

Problem 7.4

Rational Knapsack-Dec

Instance: a list of profits, $P = [p_1, \ldots, p_n]$; a list of weights, $W = [w_1, \ldots, w_n]$; a capacity, M; and a target profit, T.

Question: Is there an n-tuple $[x_1, x_2, \ldots, x_n] \in [0, 1]^n$ such that $\sum w_ix_i \leq M$ and $\sum p_ix_i \geq T$?
Polynomial-time Turing Reductions

Suppose Π_1 and Π_2 are problems (not necessarily decision problems). A (hypothetical) algorithm B to solve Π_2 is called an **oracle** for Π_2.

Suppose that A is an algorithm that solves Π_1, assuming the existence of an oracle B for Π_2. (B is used as a subroutine within the algorithm A.)

Then we say that A is a **Turing reduction** from Π_1 to Π_2, denoted $\Pi_1 \leq^T \Pi_2$.

A Turing reduction A is a **polynomial-time Turing reduction** if the running time of A is polynomial, under the assumption that the oracle B has **unit cost** running time.

If there is a polynomial-time Turing reduction from Π_1 to Π_2, we write $\Pi_1 \leq^T_P \Pi_2$.

Informally: Existence of a polynomial-time Turing reduction means that if we can solve Π_2 in polynomial time, then we can solve Π_1 in polynomial time.
Travelling Salesperson Problems

Problem 7.5

TSP-Optimization

Instance: A graph G and edge weights $w : E \rightarrow \mathbb{Z}^+$.
Find: A hamiltonian cycle H in G such that $w(H) = \sum_{e \in H} w(e)$ is minimized.

Problem 7.6

TSP-Optimal Value

Instance: A graph G and edge weights $w : E \rightarrow \mathbb{Z}^+$.
Find: The minimum T such that there exists a hamiltonian cycle H in G with $w(H) = T$.

Problem 7.7

TSP-Decision

Instance: A graph G, edge weights $w : E \rightarrow \mathbb{Z}^+$, and a target T.
Question: Does there exist a hamiltonian cycle H in G with $w(H) \leq T$?
TSP-Optimal Value $\leq_{T_P}^{T} \text{TSP-Dec}$

Algorithm: $TSP-OptimalValue-Solver(G, w)$

1. **external** $TSP-Dec-Solver$
2. $hi \leftarrow \sum_{e \in E} w(e)$
3. $lo \leftarrow 0$
4. **if not** $TSP-Dec-Solver(G, w, hi)$ **then return** (∞)
5. **while** $hi > lo$
 1. $mid \leftarrow \left\lfloor \frac{hi + lo}{2} \right\rfloor$
 2. **do**
 1. **if** $TSP-Dec-Solver(G, w, mid)$ **then** $hi \leftarrow mid$
 2. **else** $lo \leftarrow mid + 1$
 3. **return** (hi)

This is a standard binary search technique.
TSP-Optimization \leq^T_P TSP-Dec

Algorithm: \textit{TSP-Optimization-Solver}(G = (V, E), w)

external \textit{TSP-OptimalValue-Solver}, \textit{TSP-Dec-Solver}

$T^* \leftarrow \textit{TSP-OptimalValue-Solver}(G, w)$

if $T^* = \infty$ then return ("no hamiltonian cycle exists")

$w_0 \leftarrow w$

$H \leftarrow \emptyset$

for all $e \in E$

\begin{cases}
 w_0[e] \leftarrow \infty \\
 \text{if not} \ TSP-Dec-Solver(G, w_0, T^*)
 \text{do} \ \text{then} \ \\
 \quad \{ w_0[e] \leftarrow w[e] \\
 \quad H \leftarrow H \cup \{e\} \\
\end{cases}

return (H)
Proof of Correctness

Clearly H contains a hamiltonian cycle of minimum weight T^* at the end of the algorithm. We claim that H is precisely a hamiltonian cycle.

Suppose not; then $C \cup \{e\} \subseteq H$, where C is a hamiltonian cycle of weight T^* and $e \in G \setminus C$. Consider the iteration when e was added to H. Let G' denote the graph G at this point in time. G' contains a hamiltonian cycle of weight T^* but $G' \setminus \{e\}$ does not, so e is included in H. We are assuming that

$$C \cup \{e\} \subseteq H,$$

which implies

$$C \subseteq H \setminus \{e\}.$$

Since $H \subseteq G'$, we have

$$C \subseteq H \setminus \{e\} \subseteq G' \setminus \{e\}.$$

Therefore e would not have been added to H, which is a contradiction.
Certificates

Certificate: Informally, a certificate for a yes-instance I is some “extra information” C which makes it easy to verify that I is a yes-instance.

Certificate Verification Algorithm: Suppose that Ver is an algorithm that verifies certificates for yes-instances. Then $Ver(I, C)$ outputs “yes” if I is a yes-instance and C is a valid certificate for I. If $Ver(I, C)$ outputs “no”, then either I is a no-instance, or I is a yes-instance and C is an invalid certificate.

Polynomial-time Certificate Verification Algorithm: A certificate verification algorithm Ver is a polynomial-time certificate verification algorithm if the complexity of Ver is $O(n^k)$, where k is a positive integer and $n = \text{Size}(I)$.
The Complexity Class NP

Certificate Verification Algorithm: A certificate verification algorithm Ver is said to solve a decision problem Π provided that

- for every yes-instance I, there exists a certificate C such that $\text{Ver}(I, C)$ outputs “yes”.
- for every no-instance I and for every certificate C, $\text{Ver}(I, C)$ outputs “no”.

The Complexity Class NP denotes the set of all decision problems that have polynomial-time certificate verification algorithms solving them. We write $\Pi \in \text{NP}$ if the decision problem Π is in the complexity class NP.

Finding Certificates vs Verifying Certificates: It is not required to be able to find a certificate C for a yes-instance in polynomial time in order to say that a decision problem $\Pi \in \text{NP}$.

Important Fact: $\text{P} \subseteq \text{NP}$.
Certificate Verification Algorithm for Hamiltonian Cycle

A certificate consists of an n-tuple, $X = [x_1, \ldots, x_n]$, that might be a hamiltonian cycle for a given graph $G = (V, E)$ (where $n = |V|$).

Algorithm: Hamiltonian Cycle Certificate Verification(G, X)

- $flag \leftarrow \text{true}$
- $Used \leftarrow \{x_1\}$
- $j \leftarrow 2$

while $(j \leq n)$ and $flag$

- do
 - $flag \leftarrow (x_j \notin Used) \text{ and } (\{x_{j-1}, x_j\} \in E)$
 - if $(j = n)$ then $flag \leftarrow flag \text{ and } (\{x_n, x_1\} \in E)$
 - $Used \leftarrow Used \cup \{x_j\}$
 - $j \leftarrow j + 1$

return $(flag)$
Polynomial Transformations

For a decision problem Π, let $\mathcal{I}(\Pi)$ denote the set of all instances of Π. Let $\mathcal{I}_{\text{yes}}(\Pi)$ and $\mathcal{I}_{\text{no}}(\Pi)$ denote the set of all yes-instances and no-instances (respectively) of Π.

Suppose that Π_1 and Π_2 are decision problems. We say that there is a polynomial transformation from Π_1 to Π_2 (denoted $\Pi_1 \leq_P \Pi_2$) if there exists a function $f : \mathcal{I}(\Pi_1) \rightarrow \mathcal{I}(\Pi_2)$ such that the following properties are satisfied:

- $f(I)$ is computable in polynomial time (as a function of $\text{size}(I)$, where $I \in \mathcal{I}(\Pi_1)$)
- if $I \in \mathcal{I}_{\text{yes}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{yes}}(\Pi_2)$
- if $I \in \mathcal{I}_{\text{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{no}}(\Pi_2)$
Polynomial Transformations (cont.)

Polynomial transformations are also known as Karp reductions or many-one reductions.

A polynomial transformation can be thought of as a (simple) special case of a polynomial-time Turing reduction, i.e., if $\Pi_1 \leq_P \Pi_2$, then $\Pi_1 \leq^T_P \Pi_2$.

Given a polynomial transformation f from Π_1 to Π_2, the corresponding Turing reduction is as follows:

1. Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$.
2. Given an oracle for Π_2, say A, run $A(f(I))$.

We transform the instance, and then make a single call to the oracle.

Very important point: We do not know whether I is a yes-instance or a no-instance of Π_1 when we transform it to an instance $f(I)$ of Π_2.

To prove the implication "if $I \in \mathcal{I}_{\text{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{no}}(\Pi_2)$", we usually prove the contrapositive statement "if $f(I) \in \mathcal{I}_{\text{yes}}(\Pi_2)$, then $I \in \mathcal{I}_{\text{yes}}(\Pi_1)$."
Two Graph Theory Decision Problems

Problem 7.8

Clique

Instance: An undirected graph $G = (V, E)$ and an integer k, where $1 \leq k \leq |V|$.

Question: Does G contain a clique of size $\geq k$? (A **clique** is a subset of vertices $W \subseteq V$ such that $uv \in E$ for all $u, v \in W$, $u \neq v$.)

Problem 7.9

Vertex Cover

Instance: An undirected graph $G = (V, E)$ and an integer k, where $1 \leq k \leq |V|$.

Question: Does G contain a vertex cover of size $\leq k$? (A **vertex cover** is a subset of vertices $W \subseteq V$ such that $\{u, v\} \cap W \neq \emptyset$ for all edges $uv \in E$.)
Clique \leq^P Vertex-Cover

Suppose that $I = (G, k)$ is an instance of Clique, where $G = (V, E)$, $V = \{v_1, \ldots, v_n\}$ and $1 \leq k \leq n$.

Construct an instance $f(I) = (H, \ell)$ of Vertex Cover, where $H = (V, F)$, $\ell = n - k$ and

$$v_iv_j \in F \iff v_iv_j \notin E.$$

H is called the complement of G, because every edge of G is a non-edge of H and every non-edge of G is an edge of H.

We have $\text{Size}(I) = n^2 + \log_2 k \in \Theta(n^2)$ Computing H takes time $\Theta(n^2)$ and computing ℓ takes time $\Theta(\log n)$, so $f(I)$ can be computed in time $\Theta(\text{Size}(I))$, which is polynomial time.
Clique \(\leq_P\) Vertex-Cover (cont.)

Suppose \(I\) is a yes-instance of Clique. Therefore there exists a set of \(k\) vertices \(W\) such that \(uv \in E\) for all \(u, v \in W\). Define \(W' = V \setminus W\). Clearly \(|W'| = n - k = \ell\). We claim that \(W'\) is a vertex cover of \(H\).

Suppose \(uv \in F\) (so \(uv \notin E\)). If \({u, v}\) \(\cap W' \neq \emptyset\), we’re done, so assume \(u, v \notin W'\). Therefore \(u, v \in W\). But \(uv \notin E\), so \(W\) is not a clique. This is a contradiction and hence \(f(I)\) is a yes-instance of Vertex Cover.

Suppose \(f(I)\) is a yes-instance of Vertex Cover. Therefore there exists a set of \(\ell = n - k\) vertices \(W'\) that is a vertex cover of \(H\). Define \(W = V \setminus W'\). Clearly \(|W| = k\). We claim that \(W\) is a clique in \(G\)
Properties of Polynomial-time Transformations

Theorem 7.10

If Π_1 and Π_2 are decision problems, $\Pi_1 \leq_P \Pi_2$ and $\Pi_2 \in \mathcal{P}$, then $\Pi_1 \in \mathcal{P}$.

Proof.

Suppose A is a poly-time algorithm for Π_2, having complexity $O(m^\ell)$ on an instance of size m. Suppose f is a transformation from Π_1 to Π_2 having complexity $O(n^k)$ on an instance of size n. We solve Π_1 as follows:

1. Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$.
2. Run $A(f(I))$.

It is clear that this yields the correct answer. We need to show that these two steps can be carried out in polynomial time as a function of $n = \text{Size}(I)$. Step (1) can be executed in time $O(n^k)$ and it yields an instance $f(I)$ having size $m \in O(n^k)$. Step (2) takes time $O(m^\ell)$. Since $m \in O(n^k)$, the time for step (2) is $O(n^{k\ell})$, as is the total time to execute both steps.
Theorem 7.11

Suppose that Π_1, Π_2 and Π_3 are decision problems. If $\Pi_1 \leq_P \Pi_2$ and $\Pi_2 \leq_P \Pi_3$, then $\Pi_1 \leq_P \Pi_3$.

Proof.

We have a polynomial transformation f from Π_1 to Π_2, and another polynomial transformation g from Π_2 to Π_3. We define $h = f \circ g$, i.e., $h(I) = g(f(I))$ for all instances I of Π_1. (Exercise: fill in the details.)
The Complexity Class NPC

The complexity class **NPC** denotes the set of all decision problems Π that satisfy the following two properties:

- $\Pi \in \text{NP}$
- For all $\Pi' \in \text{NP}$, $\Pi' \leq_P \Pi$.

NPC is an abbreviation for **NP-complete**.

Note that the definition does not imply that NP-complete problems exist!
The Complexity Class NPC (cont.)

Theorem 7.12

If $P \cap NPC \neq \emptyset$, then $P = NP$.

Proof.

We know that $P \subseteq NP$, so it suffices to show that $NP \subseteq P$. Suppose $\Pi \in P \cap NPC$ and let $\Pi' \in NP$. We will show that $\Pi' \in P$.

1. Since $\Pi' \in NP$ and $\Pi \in NPC$, it follows that $\Pi' \leq_P \Pi$ (definition of NP-completeness).

2. Since $\Pi' \leq_P \Pi$ and $\Pi \in P$, it follows that $\Pi' \in P$ (see slide #180).
Satisfiability and the Cook-Levin Theorem

Problem 7.13

CNF-Satisfiability

Instance: A boolean formula F in n boolean variables x_1, \ldots, x_n, such that F is the conjunction (logical “and”) of m clauses, where each clause is the disjunction (logical “or”) of literals. (A literal is a boolean variable or its negation.)

Question: Is there a truth assignment such that F evaluates to true?

Theorem 7.14 (Cook-Levin Theorem)

CNF-Satisfiability \in NPC.
Proving Problems NP-complete

Now, given any NP-complete problem, say Π_1, other problems in NP can be proven to be NP-complete via polynomial transformations from Π_1, as stated in the following theorem:

Theorem 7.15

Suppose that the following conditions are satisfied:

- $\Pi_1 \in \text{NPC}$,
- $\Pi_1 \leq_P \Pi_2$, and
- $\Pi_2 \in \text{NP}$.

Then $\Pi_2 \in \text{NPC}$.
More Satisfiability Problems

Problem 7.16
3-CNF-Satisfiability

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly three literals.

Question: Is there a truth assignment such that F evaluates to true?

Problem 7.17
2-CNF-Satisfiability

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly two literals.

Question: Is there a truth assignment such that F evaluates to true?

3-CNF-Satisfiability $\in \text{NPC}$, while 2-CNF-Satisfiability $\in \text{P}$.
CNF-Satisfiability \(\leq^P 3 \text{-CNF-Satisfiability} \)

Suppose that \((X, C)\) is an instance of **CNF-SAT**, where \(X = \{x_1, \ldots, x_n\}\) and \(C = \{C_1, \ldots, C_m\}\). For each \(C_j\), do the following:

case 1 If \(|C_j| = 1\), say \(C_j = \{z\}\), construct four clauses:

\[
\{z, a, b\}, \{z, a, \overline{b}\}, \{z, \overline{a}, b\}, \{z, \overline{a}, \overline{b}\}.
\]

case 2 If \(|C_j| = 2\), say \(C_j = \{z_1, z_2\}\), construct two clauses:

\[
\{z_1, z_2, c\}, \{z_1, z_2, \overline{c}\}.
\]

case 3 If \(|C_j| = 3\), then leave \(C_j\) unchanged.

case 4 If \(|C_j| \geq 4\), say \(C_j = \{z_1, z_2, \ldots, z_k\}\), then construct \(k - 2\) new clauses:

\[
\{z_1, z_2, d_1\}, \{\overline{d_1}, z_3, d_2\}, \{\overline{d_2}, z_4, d_3\}, \ldots,
\]

\[
\{\overline{d_{k-4}}, z_{k-2}, d_{k-3}\}, \{\overline{d_{k-3}}, z_{k-1}, z_k\}.
\]
Correctness of the Transformation

Suppose I is a yes-instance of **CNF-SAT**. We show that $f(I)$ is a yes-instance of **3-CNF-SAT**. Fix a truth assignment for X in which every clause contains a true literal. We consider each clause C_j of the instance I.

1. If $C_j = \{z\}$, then z must be true. The corresponding four clauses in $f(I)$ each contain z, so they are all satisfied.
2. If $C_j = \{z_1, z_2\}$, then at least one of the z_1 or z_2 is true. The corresponding two clauses in $f(I)$ each contain z_1, z_2, so they are both satisfied.
3. If $C_j = \{z_1, z_2, z_3\}$, then C_j occurs unchanged in $f(I)$.
4. Suppose $C_j = \{z_1, z_2, z_3, \ldots, z_k\}$ where $k > 3$ and suppose $z_t \in C_j$ is a true literal. Define $d_i = \text{true}$ for $1 \le i \le t - 2$ and define $d_i = \text{false}$ for $t - 1 \le i \le k$. It is straightforward to verify that the $k - 2$ corresponding clauses in $f(I)$ each contain a true literal.
Conversely, suppose \(f(I) \) is a yes-instance of 3-CNF-SAT. We show that \(I \) is a yes-instance of CNF-SAT.

1. Four clauses in \(f(I) \) having the form \(\{z, a, b\} \), \(\{z, a, \bar{b}\} \), \(\{z, \bar{a}, \bar{b}\} \), and \(\{z, \bar{a}, b\} \) are all satisfied if and only if \(z = \text{true} \). Then the corresponding clause \(\{z\} \) in \(I \) is satisfied.

2. Two clauses in \(f(I) \) having the form \(\{z_1, z_2, c\} \), \(\{z_1, z_2, \bar{c}\} \) are both satisfied if and only if at least one of \(z_1, z_2 = \text{true} \). Then the corresponding clause \(\{z_1, z_2\} \) in \(I \) is satisfied.

3. If \(C_j = \{z_1, z_2, z_3\} \) is a clause in \(f(I) \), then \(C_j \) occurs unchanged in \(I \).
Correctness of the Transformation (cont.)

(4) Finally, consider the \(k - 2 \) clauses in \(f(I) \) arising from a clause
\(C_j = \{z_1, z_2, z_3, \ldots, z_k\} \) in \(I \), where \(k > 3 \). We show that at least one of
\(z_1, z_2, \ldots, z_k = \text{true} \) if all \(k - 2 \) of these clauses contain a true literal.

Assume all of \(z_1, z_2, \ldots, z_k = \text{false} \). In order for the first clause to contain a true literal, \(d_1 = \text{true} \). Then, in order for the second clause to contain a true literal, \(d_2 = \text{true} \). This pattern continues, and in order for the second last clause to contain a true literal, \(d_{k-3} = \text{true} \).

But then the last clause contains no true literal, which is a contradiction.

We have shown that at least one of \(z_1, z_2, \ldots, z_k = \text{true} \), which says that the clause \(\{z_1, z_2, z_3, \ldots, z_k\} \) contains a true literal, as required.
3-CNF-Satisfiability \leq_P Clique

Let I be the instance of 3-CNF-SAT consisting of n variables, x_1, \ldots, x_n, and m clauses, C_1, \ldots, C_m. Let $C_i = \{z_1^i, z_2^i, z_3^i\}$, $1 \leq i \leq m$.

Define $f(I) = (G, k)$, where $G = (V, E)$ according to the following rules:

- $V = \{v_{ij}^i : 1 \leq i \leq m, 1 \leq j \leq 3\}$,
- $v_{ij}^i v_{ij'}^{i'} \in E$ if and only if $i \neq i'$ and $z_j^i \neq z_{j'}^{i'}$, and
- $k = m$.

Non-edges of the constructed graph correspond to

1. “inconsistent” truth assignments of literals from two different clauses; or
2. any two literals in the same clause.
Example

\[I : \begin{cases}
C_1 = \{ x_1, \overline{x}_2, \overline{x}_3 \} \\
C_2 = \{ \overline{x}_1, x_2, x_3 \} \\
C_3 = \{ x_1, x_2, x_3 \}
\end{cases} \]

\[x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false} \]

\[f(I) : \]
Problem 7.18

Subset Sum

Instance: A list of sizes $S = [s_1, \ldots, s_n]$; and a target sum, T. These are all positive integers.

Question: Does there exist a subset $J \subseteq \{1, \ldots, n\}$ such that
\[\sum_{i \in J} s_i = T?\]
Vertex Cover \(\leq_P\) Subset Sum

Suppose \(I = (G, k)\), where \(G = (V, E)\), \(|V| = n\), \(|E| = m\) and \(1 \leq k \leq n\).

Suppose \(V = \{v_1, \ldots, v_n\}\) and \(E = \{e_0, \ldots, e_{m-1}\}\). For \(1 \leq i \leq n\), \(0 \leq j \leq m - 1\), let \(C = (c_{ij})\), where

\[
c_{ij} = \begin{cases}
1 & \text{if } e_j \text{ is incident with } v_i \\
0 & \text{otherwise}.
\end{cases}
\]

Define \(n + m\) sizes and a target sum \(W\) as follows:

\[
a_i = 10^m + \sum_{j=0}^{m-1} c_{ij}10^j \quad (1 \leq i \leq n)
\]

\[
b_j = 10^j \quad (0 \leq j \leq m - 1)
\]

\[
W = k \cdot 10^m + \sum_{j=0}^{m-1} 2 \cdot 10^j
\]

Then define \(f(I) = (a_1, \ldots, a_n, b_0, \ldots, b_{m-1}, W)\).
Correctness of the Transformation

Suppose I is a yes-instance of Vertex Cover. There is a vertex cover $V' \subseteq V$ such that $|V'| = k$. For $i = 1, 2$, let E^i denote the edges having exactly i vertices in V'. Then $E = E^1 \cup E^2$ because V' is a vertex cover. Let

$$A' = \{a_i : v_i \in V'\} \quad \text{and} \quad B' = \{b_j : e_j \in E^1\}.$$

The sum of the sizes in A' is

$$k \cdot 10^m + \sum_{\{j : e_j \in E^1\}} 10^j + \sum_{\{j : e_j \in E^2\}} 2 \times 10^j.$$

The sum of the sizes in B' is

$$\sum_{\{j : e_j \in E^1\}} 10^j.$$

Therefore the sum of all the chosen sizes is

$$k \cdot 10^m + \sum_{\{j : e_j \in E\}} 2 \cdot 10^j = k \cdot 10^m + \sum_{j=1}^{m} 2 \cdot 10^j = W.$$
Correctness of the Transformation (cont.)

Conversely, suppose \(f(I) \) is a yes-instance of \textbf{Subset Sum}. We show that \(I \) is a yes-instance of \textbf{Vertex Cover}. Let \(A' \cup B' \) be the subset of chosen sizes. Define \(V' = \{v_i : a_i \in A'\} \). We claim that \(V' \) is a vertex cover of size \(k \). In order for the coefficient of \(10^m \) to be equal to \(k \), we must have \(|V'| = k \) (there can’t be any carries occurring). The coefficient of any other term \(10^j \) \((0 \leq j \leq m - 1) \) must be equal to \(2 \). Suppose that \(e_j = v_i v_{i'} \). There are two possible situations that can occur:

1. \(a_i \) and \(a_{i'} \) are both in \(A' \). Then \(V' \) contains both vertices incident with \(e_j \).
2. exactly one of \(a_i \) or \(a_{i'} \) is in \(A' \) and \(b_j \in B' \). In this case, \(V' \) contains exactly one vertex incident with \(e_j \).

In both cases, \(e_j \) is incident with at least one vertex in \(V' \).
Subset Sum \leq_P 0-1 Knapsack

Let I be an instance of Subset Sum consisting of sizes $[s_1, \ldots, s_n]$ and target sum T.

Define

$$p_i = s_i, \quad 1 \leq i \leq n$$
$$w_i = s_i, \quad 1 \leq i \leq n$$
$$M = T$$

Then define $f(I)$ to be the instance of 0-1 Knapsack consisting of profits $[p_1, \ldots, p_n]$, weights $[w_1, \ldots, w_n]$, capacity M and target profit T.

Exercise: Prove the correctness of this transformation.
Hamiltonian Cycle \leq_P TSP-Dec

Let I be an instance of Hamiltonian Cycle consisting of a graph $G = (V, E)$.

For the complete graph K_n, where $n = |V|$, define edge weights as follows:

$$w(uv) = \begin{cases}
1 & \text{if } uv \in E \\
2 & \text{if } uv \notin E.
\end{cases}$$

Then define $f(I)$ to be the instance of TSP-Dec consisting of the graph K_n, edge weights w and target $T = n$.

Exercise: Prove the correctness of this transformation.
Summary of Polynomial Transformations

CNF-SAT
↓
3-CNF-SAT
↓
Clique
↓
Vertex Cover

Subset Sum
↓
0-1 Knapsack

Hamiltonian Cycle
↓
TSP-Decision

In the above diagram, arrows denote polynomial transformations. The transformation \(\text{Vertex Cover} \leq_P \text{Hamiltonian Cycle} \) is complicated and is described in a supplementary note.
NP-hard Problems

A problem Π is **NP-hard** if there exists a problem $\Pi' \in \text{NPC}$ such that $\Pi' \leq^{T}_{P} \Pi$.

Every NP-complete problem is automatically NP-hard, but there exist NP-hard problems that are not NP-complete.

Typical examples of NP-hard problems are optimization problems corresponding to NP-complete decision problems.

For example, $\text{TSP-Optimization} \leq^{T}_{p} \text{TSP-Decision}$ and $\text{TSP-Decision} \in \text{NPC}$, so TSP-Optimization is NP-hard.

This is a “trivial” Turing reduction; the reduction in the reverse direction, which was given on slide # 269, is more complex.
Undecidability

A decision problem \(\Pi \) is **undecidable** if there does not exist an algorithm that solves \(\Pi \).

If \(\Pi \) is undecidable, then for every algorithm \(A \), there exists at least one instance \(I \in I(\Pi) \) such that \(A(I) \) does not find the correct answer ("yes" or "no") in finite time.

Problem 7.19

Halting

Instance: A computer program \(A \) and input \(x \) for the program \(A \).

Question: When program \(A \) is executed with input \(x \), will it halt in finite time?
Undecidability of the Halting Problem

Suppose that \textit{Halt} is a program that solves the \textbf{Halting Problem}. Consider the following algorithm \textit{Strange}.

\textbf{Algorithm: } \textit{Strange}(A)

- external \textit{Halt}
- if not \textit{Halt}(A, A)
 - then return ()
- else
 \begin{align*}
 &i \leftarrow 1 \\
 &\text{while } i \neq 0 \text{ do } i \leftarrow i + 1
 \end{align*}

What happens when we run \textit{Strange}(\textit{Strange})?
Undecidability of the Halting Problem (cont.)

The statement “\textit{Halt} solves the Halting problem” means that

\[
\text{Halt}(A, x) = \begin{cases}
true & \text{if } A(x) \text{ halts} \\
false & \text{if } A(x) \text{ doesn’t halt.}
\end{cases}
\]

Note that \(A\) (the “algorithm”) and \(I\) (the “input” to \(A\)) are both strings over some finite alphabet.

What happens when we run \(\text{Strange(Strange)}\)?

We have

\[
\text{Strange(Strange)} \text{ halts } \iff \text{Halt(Strange, Strange)} = \text{false} \\
\iff \text{Strange(Strange)} \text{ does not halt.}
\]

The only conclusion we can make is that the program \(\text{Halt}\) does not exist!
Another Undecidable Problem

Here is another example of an undecidable problem. The problem Halt-All takes a program A as input and asks if A halts on all inputs x.

We describe a Turing reduction $\text{Halting} \leq_T \text{Halt-All}$, which proves that Halt-All is undecidable.

Assume we have a program HaltAllSolver.

For a fixed program A and input x, let $B_x()$ be the program that executes $A(x)$ (so B_x has no input).

Here is the reduction:

1. Given A and x (an instance of Halting), construct the program B_x.
2. Run $\text{HaltAllSolver}(B_x)$,

We have

$$\text{HaltAllSolver}(B_x) = \text{true} \iff A(x) \text{ halts},$$

so we can solve the halting problem.
The Post Correspondence Problem

The following problem is also undecidable.

Problem 7.20

Post Correspondence

Instance: two finite lists $\alpha_1, \ldots, \alpha_N$ and β_1, \ldots, β_N of words over some alphabet A of size ≥ 2.

Question: Does there exist a finite list of indices, say i_1, \ldots, i_K, where $i_j \in \{1, \ldots, N\}$ for $1 \leq j \leq N$, such that

$$\alpha_{i_1} \cdots \alpha_{i_K} = \beta_{i_1} \cdots \beta_{i_K},$$

where a “product” of words denotes their concatenation.