CS 341: Algorithms
Module 6: Dynamic Programming

Eugene Zima
Based on lecture notes by many previous CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2020
Problem specification:
We are given n objects and a knapsack. Each object i has a positive weight w_i and a positive value v_i. The knapsack can carry a weight not exceeding W. Fill the knapsack so that the value of objects in the knapsack is maximized.

Brute force:
Try all possibilities. An object can be in or out and we sum weights to be sure we are not over W. This has complexity $\Theta(n2^n)$.

Greedy:
At each step add the object with the highest v_i/w_i ratio. Does not work. Counterexample?
Integer Knapsack - DP

Recall that objects are numbered from 1 to \(n \).

Definition of a subproblem

Let \(V[i, j] \) be the maximum value of the objects, selected from the first \(i \) objects, that can fit into a knapsack with upper weight limit \(j \) (the optimal value will be found in \(V[n, W] \)).

Key observation:

We either use object \(i \) in the optimal solution or we do not.

Suppose object \(i \) is not in the Knapsack. Then there is no difference between \(V[i - 1, j] \) and \(V[i, j] \).

Suppose object \(i \) is in the Knapsack. Our claim, for this case, is that \(V[i, j] = V[i - 1, j - w_i] + v_i \).

Consider an optimal selection extracted from the first \(i - 1 \) objects with a weight limitation of \(j - w_i \).
Integer Knapsack: Derivation of the Recurrence

Looking at only these first $i - 1$ objects, we can assume we have an optimal selection that is not more valuable than those chosen from the first $i - 1$ objects as used in $V[i,j]$.

This is true because:
A more valuable selection from objects 1 to $i - 1$ could be extended with object i and we would get a total value in excess of $V[i,j]$ in contradiction of the fact that $V[i,j]$ is optimal. So the value of $V[i,j]$ must be v_i plus the optimal solution for the first $i - 1$ objects with a weight limitation of $j - w_i$.

Considering the above facts we are able to make up the following recurrence for $V[i,j]$:

$$V[i,j] = \max\{V[i - 1,j], v_i + V[i - 1,j - w_i]\}$$

Base case: $V[0,j] = 0$.

Order of computation:
Use row-order from top-left down to the bottom-right corner.
Knapsack Problem: Pseudo-code for DP

```plaintext
for j := 0 to W do
    V[0,j]:=0;
for i := 1 to n do
    for j := 1 to W do
        sol := V[i-1, j];
        if (w[i] <= j) then
            othersol := V[i-1, j-w[i]] + v[i];
            if (othersol > sol) then
                sol := othersol;
        V[i, j] := sol;
return V[n, W];
```

Complexity? $\Theta(nW)$. Is it good or bad???
We can make the program more memory efficient. Note that to compute value $V[i, j]$, we need only the cells from the previous line and to the left of $V[i - 1, j]$ (including $V[i - 1, j]$).
for j := 0 to W do
 V[j] := 0;
for i := 1 to n do
 for j := W downto 1 do
 sol := V[j];
 if (w[i] <= j) then
 othersol := V[j-w[i]] + v[i];
 if (othersol > sol) then
 sol := othersol;
 V[j] := sol;
return V[W];
More simplifications..

for j := 0 to W do
 V[j] := 0;
for i := 1 to n do
 for j := W downto 1 do
 if (w[i] <= j) then
 othersol := V[j-w[i]] + v[i];
 if (othersol > V[j]) then
 V[j] := othersol;
 return V[W];
Recovery of the solution added

for j := 0 to W do
 \(V[j] := 0; \ D[j] := 0; \)
for i := 1 to n do
 for j := W downto 1 do
 if (\(w[i] \leq j \)) then
 othersol := \(V[j-w[i]] + v[i] \);
 if (othersol > \(V[j] \)) then
 \(V[j] := \) othersol; \(D[j] := i; \)
print \(V[W] \);
\\ recover the items in knapsack
j:=W;
while (j>0) and (D[j]>0) do
 print(D[j]); j:=j-w[D[j]];
Minimum Length Triangulation

Problem 4.4

Minimum Length Triangulation v1

Instance: n points q_1, \cdots, q_n in the Euclidean plane that form a convex n-gon P.

Find: A triangulation of P such that the sum S_c of the lengths of the $n-3$ chords is minimized.

Problem 4.5

Minimum Length Triangulation v2

Instance: n points q_1, \cdots, q_n in the Euclidean plane that form a convex n-gon P.

Find: A triangulation of P such that the sum S_p of the perimeters of the $n-2$ triangles is minimized.

Let L denote the perimeter of P. Then we have that $S_p = L + 2S_c$. Hence the two versions have the same optimal solutions.
We consider version 2 of the problem. The edge \(q_n q_1 \) is in a triangle with a third vertex \(q_k \), where \(k \in 2, \cdots, n - 1 \).

For a given \(k \), we have:

1. the triangle \(q_1 q_k q_n \),
2. the polygon with vertices \(q_1, \cdots, q_k \),
3. the polygon with vertices \(q_k, \cdots, q_n \).

The optimal solution will consist of optimal solutions to the two subproblems in (2) and (3), along with the triangle in (1).
Recurrence Relation

For $1 \leq i < j \leq n$, let $S[i, j]$ denote the optimal solution to the subproblem consisting of the polygon having vertices q_i, \ldots, q_j. Let $\Delta(q_i, q_k, q_j)$ denote the perimeter of the triangle having vertices q_i, q_k, q_j.

Then we have the recurrence relation

$$S[i, j] = \min \{ \Delta(q_i, q_k, q_j) + S[i, k] + S[k, j] \colon i < k < j \}$$

the base cases are given by

$$S[i, i + 1] = 0$$

for all i.

We compute all $S[i, j]$ with $j - i = c$, for $c = 2, 3, \ldots, n - 1$.
Weighted Interval Scheduling

Problem 4.6

Problem: Weighted Interval Scheduling.

Instance: A set I of n intervals $[s_1, f_1], \cdots, [s_n, f_n]$ with weights $\omega_1, \cdots, \omega_n$.

Question: Find subset S of disjoint intervals that maximizes $\sum_{i \in S} \omega_i$.

Greedy approach does not work (example?)
Denote: \(OPT(I)\) - optimum set \(S\); \(\omega_{OPT(I)}\) - corresponding weight.

The structure of optimal solution:
Consider interval \(i\): it is either in \(OPT(I)\) or not.
If \(i \in OPT(I)\) then \(OPT(I) = \{i\} \cup OPT(I')\), where \(I'\) denotes intervals disjoint from \(i\).
If \(i \notin OPT(I)\) then \(OPT(I) = OPT(I - \{i\})\). Therefore

\[
\omega_{OPT(I)} = \max \left\{ \omega_{OPT(I - \{i\})}, \omega_i + \omega_{OPT(I')} \right\}
\]

Using this directly one ends up with exponential running time
(solving subproblems for \(2^n\) subsets of \(I\)).
Rename the intervals, by sorting if necessary, so that
\[f_1 \leq f_2 \leq \cdots \leq f_n. \]
Denote \(p(j) \) the largest index \(i < j \) such that interval \(i \) is disjoint from the interval \(j \).

Let \(opt(j) \) be the weight of optimal solution that considers intervals \(1, 2, \ldots, j \).

Then \(opt(0) = 0 \) and
\[
opt(j) = \max \{ \omega_j + opt(p(j)), opt(j - 1) \}
\]
Ex: \(p(8) = 5, \ p(7) = 3, \ p(2) = 0. \)
Sort intervals according to finish time
Compute \(p[j] \) for each \(j \)
\(\text{opt}[0] = 0 \)
for \(j \) from 1 to \(n \)
 \(\text{opt}[j] = \max\{\text{opt}[j-1], \text{opt}[p[j]] + w[j]\} \)
Output \(\text{opt}[n] \)

Complexity?
Solution recovery ...

\[j = n \]

while (j>=0) do
\[\text{if (opt}[p[j]]+w[j] > \text{opt}[j-1])} \]
print j
\[j = p[j] \]
else
\[j = j-1 \]