CS 341: Algorithms
Module 7: Graph Algorithms

Eugene Zima

Based on lecture notes by many previous CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2020
DFS on directed graphs

- Interpret “w adjacent to v” as finding directed edge (v, w)
- Edges (v, w) grouped into four types:
 - **Tree edge**
 - White w discovered from gray v
 - Actually a set of trees, or forest
 - **Back edges**
 - w ancestor of v or on stack when w visited (w gray)
 - **Forward edges**
 - w descendant of v (w black, $d[v] < d[w]$)
 - **Cross-edges**
 - All others (w black, $d[v] > d[w]$)
Topological sort

- A linear ordering of vertices of a Directed Acyclic Graph (DAG)
- For any directed edge \((u, v)\), \(u\) precedes \(v\) in ordering
Use of topological sort

- Application: nodes are tasks, edges are “precedences” (e.g. one task must be done before another can be started)
- A topological sort gives an order in which to do tasks
- Naive algorithm: look for a source (no incoming edges), choose and delete it
- This is $\Theta(n(n + m))$
Using DFS

- The finishing times $f[u]$ give a topological ordering (taken in decreasing order).
- Equivalently, in postprocessing (when vertex coloured black), put it on front of a linked list; resulting list is topologically ordered.
- Why does this work? Intuitively OK
- Need to show that for any directed edge (u, v), $f[u] > f[v]$; this is not obvious.
Proof of topological sort

Lemma
A graph is acyclic iff there are no back edges in a DFS of the graph.

Proof: (⇒) If there is a back edge, that edge plus the tree path forward gives a cycle.
Proof of topological sort

\[\iff \]

If there is a cycle, let \(u \) be the first discovered cycle vertex in DFS, and let \((v, u)\) be a cycle edge.

The white-path theorem applied to \(v, u \) says that \(v \) is a descendant of \(u \), so \((v, u)\) is a back edge.
Proof of topological sort

Apply DFS to a DAG, and consider directed edge \((u, v)\); must show \(f[v] < f[u]\).

- When \((u, v)\) explored, \(v\) can not be gray, because \((u, v)\) would be a back edge.
- If \(v\) is white, it becomes descendant of \(u\), so \(f[v] < f[u]\) by parenthesis theorem.
- If \(v\) is black, \(f[v]\) already set; \(f[u]\) must be bigger when it is set.
A strongly connected component is a maximal set of vertices $C \subseteq V$ such that for any u, v in C, there are directed paths from one to the other.
A naive algorithm for SCC

- Run DFS-visit from each node u to get $reach(u) =$ vertices reachable from u.
- $S \leftarrow reach(u)$; for every v in S, if $u \notin reach(v)$, delete v from S.
- What is left is a strongly connected component
- This takes $\Theta(n(n + m))$ time just to get one strongly connected component
Better use of DFS for SCC

- Let G^T be G with all edges reversed.
- G and G^T have the same strongly connected components.
- Can create G^T in $O(n + m)$ time.

Strongly-Connected-Components(G)

1. Call a DFS on G, recording finishing times.
2. Compute G^T.
3. Call a DFS on G^T, choosing roots in order of decreasing finishing time in first DFS (step 1).
4. Vertices of each tree in the depth-first forest is a strongly connected component.
SCC algorithm example
Intuition: the component graph

- Define a graph G^{SCC}: Each vertex is a strongly connected component of G.
- (u, v) is an edge in G^{SCC} iff there is an edge in G from a vertex in the component u to the component v.
The component graph

- G^{SCC} is a directed acyclic graph (DAG).
- The second DFS on G^T basically visits the vertices of $(G^T)^{SCC}$ in reverse topological order (or of G^{SCC} in topological order).
Proof of SCC algorithm

Extend definition of d and f (discovery time and finishing times) to sets:
For $U \subseteq V$, $d(U) = \min_{u \in U} d[u]$ and $f(U) = \max_{u \in U} f[u]$

Lemma 4

For two components C and C', if there is an edge from C to C', then $f(C) > f(C')$.

Proof:
If $d(C) < d(C')$, then when the first vertex x was discovered in C, there was a white path from x to all vertices in C and C'; the white-path and parenthesis theorems show $f[x] = f(C) > f(C')$.

\[C \quad \rightarrow \quad C' \]
Proof of lemma 4

- If $d(C) > d(C')$, when first vertex y discovered in C', all other vertices in C' are white, and as before $f[y] = f(C')$.
- Vertices of C are also white, and because of edge (u, v) from C to C, no vertices of C are reachable from y, so their discovery times and finishing times are $> f[y]$.
- Thus $f(C) > f(C')$.

![Diagram](image)
Proof of SCC algorithm (ctd.)

Corollary 5

For two components C, C', if there is an edge from C' to C in G^T, then $f(C) > f(C')$.

Thus the component first visited in the DFS search on G^T has no edge to any other component.
Conclusion of proof

Can now use induction on the number of trees visited in second DFS to show each one is a separate component

\[
\begin{array}{c}
\text{Diagram}
\end{array}
\]