Minimum spanning tree

Problem: In an undirected graph with non-negative weights on edges, find a spanning tree of minimum total weight

Motivation: cheapest interconnection (electrical circuit, computer network, highway system)

Important subroutine for network optimization problems
Example of MST

Blue edges with any two of red edges give an MST
MST approaches

- Solution is not necessarily unique
- There are many algorithms
- General idea of greedy algorithms:

\[
A \leftarrow \emptyset \\
\text{while } A \text{ is not a spanning tree} \\
\quad \text{find edge } e \text{ of least weight with } \\
\quad \quad \text{"certain properties"} \\
\quad \text{add } e \text{ to } A
\]
Finding an edge to add

- Cut: partition of $V = (S, V \setminus S)$
- Crossing edge: has endpoint in each set
Correctness of MST algorithm

Theorem 1

If \(A \) can be extended to a MST, and no edge in \(A \) crosses \((S, V - S)\), then the edge of minimum weight crossing this cut can be added to \(A \).
Proof of Theorem 1

• Suppose we can find A, S, and edge e contradicting this. Then $A \cup \{e\}$ cannot be extended to a MST.

• Let T be a MST extending A.

• Adding e to T creates a unique cycle.
Proof of Theorem 1
Proof of Theorem 1

- Adding e to T creates unique cycle
- Some other edge e' in this cycle also crosses the cut defined by S
- e' is not in A since it crosses the cut
- Weight of e' is at least weight of e
- $T \cup \{e\} - \{e'\}$ is also a spanning tree and must have weight no greater than T
- This is a MST extending $A \cup \{e\}$.
Kruskal’s algorithm

- “certain property” = can be added to A without forming a cycle
Correctness of Kruskal’s algorithm

- During the algorithm, A is a forest of trees (stops when it is a single tree)
- What is the cut we can use in Theorem 1?
- $e = (u, v)$ is lightest edge that can be added without forming a cycle
- Let S be the vertices in the tree in A containing u
- v must be in $V - S$ (or e would form cycle)
- e must be lightest edge crossing this cut
Running time of Kruskal’s algorithm

- Maintain components of A
- Presort edges, run through them in order
- Given $e = (u, v)$, it can be added to A if and only if u, v are in different components
- Adding e to A merges these components
- Need union-find data structure
- Loop executed $n - 1$ times
- Sequence of $n - 1$ unions and $2m$ finds can be done in $O(m \log n)$ time
- Algorithm takes $\Theta(m \log n)$ time
Prim’s algorithm

- “certain property” = one endpoint shared with edge in A, one is not (i.e. leaves A)
Correctness of Prim’s algorithm

- A is always a single tree (stops when it is a spanning tree)
- What is the cut we can use in Thm 1?
- $S =$ endpoints of edges in A (or starting vertex s if A is empty)
- Implementation is not so obvious: how do we find lightest edge crossing cut ($S, V - S$)?
Implementation of Prim’s algorithm

- For each vertex \(v \) in \(V - S \), maintain \(\text{near}[v] = a \in S \) such that edge \((v, a)\) is lightest edge from \(v \) to \(S \)
- Initially \(\text{near}[v] = s \)
- Add to \(S \) the vertex \(w \) minimizing weight of \((\text{near}[w], w)\) [takes \(\Theta(n) \) time]
- When \(w \) added to \(S \), update \(\text{near}[v] \) if \((w, v)\) is lighter than \((\text{near}[v], v)\) [takes \(\Theta(n) \) time]
- Total running time \(\Theta(n^2) \)
Better implementation

- Keep vertices not in S in heap, ordered by near values
- Removing min or updating single near value takes takes $\Theta(\log n)$ time
- $n - 1$ removals, m updates
- Running time is $\Theta(m \log n)$
- Even better improvement uses Fibonacci heaps to get time of $\Theta(m + n \log n)$.
Single-source shortest path

- Think of weights as lengths of edges
- Given a weighted graph and source s, $\delta(s, v) = \text{length of shortest } s - v \text{ path}$
- We wish to compute all $\delta(s, v)$ [and the corresponding paths]
- If edge weights are nonnegative, a greedy algorithm will work (Dijkstra’s algorithm)
- General proof in book simplified here
Dijkstra’s algorithm

- Looks similar to Prim’s MST algorithm
- Start with source s in set S
- For vertices v not in S, maintain quantities
 - $\pi[v]$, a vertex in S
 - $d[v]$ which is $\delta(s, \pi[v]) + w(\pi[v], v)$
- Intuition: $d[v]$ is the length of the shortest path to v using vertices in S only (call this an S-internal path), and $\pi[v]$ is the last vertex in S on this path
Dijkstra’s algorithm

- Initially $S \leftarrow \{s\}$, $d[s] \leftarrow 0$ and for all v not in S, if $(s, v) \in E$ then $\pi[v] \leftarrow s$ and $d[v] \leftarrow w(s, v)$ otherwise $\pi[v] \leftarrow nil$ and $d[v] \leftarrow \infty$
- To choose a vertex u to add to S, pick one with smallest d-value
- Update other d-values with

 $$d[v] \leftarrow \min\{d[v], d[u] + w(u, v)\}$$

- We prove this works by induction on the size of S
Initialize S, d, π
while $S \neq V$
 $u \leftarrow v \notin S$ minimizing $d[v]$
 add u to S
for $v \notin S$
 $d[v] \leftarrow \min\{d[v], d[u] + w(u, v)\}$
 (if $d[v]$ changes, $\pi[v] \leftarrow u$)

- Running time of algorithm is $\Theta(n^2)$
Example of Dijkstra’s alg’m
Proof of Dijkstra’s algorithm

- Prove by induction on $|S|$ that
 1. For all $v \in S$, $d[v] = \delta(s, v)$
 2. For all $w \not\in S$, $d[w]$ = length of minimum S-internal $s - w$ path (so $d[w] \geq \delta(s, w)$) and $\pi[w] = \text{last vertex on such a path}$
 3. For any $v \in S$, $w \not\in S$, $d[v] \leq d[w]$

- Base case: $|S| = 1$
 - Since $d[s] = 0$ and for all v not in S, $\pi[v] = s$ and $d[v] = w(s, v)$, these are trivially true
Proving statement 1

- Assume statements true for $|S| = k - 1$
- When k^{th} vertex u chosen to be added to S, $d[u]$ = length of a shortest S-internal path to u (by inductive hypothesis 2)
- Suppose $d[u] > \delta(s, u)$
- Choose any shortest $s - u$ path P
- It leaves S for the first time by some edge (x, y) and by ind.hyp. 1, $d[x] = \delta(s, x)$
- The segment of P from s to y has length $d[y]$ (by ind.hyp 2) so $d[y] \leq \delta(s, u) < d[u]$, contradicting the choice of u; so statement 1 is true
Proving statement 2

• Thus when \(k^{th} \) vertex \(u \) added to \(S \), \(d[u] = \delta(s, u) \), as required.

• After \(u \) added, what do shortest \(S \)-internal path to \(v \not\in S \) look like?

• If one does not use \(u \), then it must be the shortest \((S - \{u\}) \)-internal path to \(v \), and this path has length \(d[v] \leq d[u] + w(u, v) \), so the algorithm does not change anything.

• If one uses \(u \) and \((u, v) \) is the last edge, the path has length \(\delta(s, u) + w(u, v) \), so the algorithm updates correctly.
Proving statements 2 and 3

- If one uses u but some (y, v) is the last edge
 - $d[y] \leq d[u]$ (ind. hyp. 3)
 - u was just added, so the shortest $s - y$ path doesn’t use u
 - Adding (y, v) gives a shortest S-internal path to v avoiding u
 - The algorithm does not change anything
- Thus statement 2 is proved
- Statement 3 follows because of the choice of u minimizing $d[u]$
- Where did we use non-negativity?