Linear-Time Selection (page 1)

• Problem statement:
 – Given an array A of n numbers $A[1..n]$ and an integer i ($1 \leq i \leq n$), find the i^{th} smallest number in A.
 – Definition: The median of A is the $\left\lfloor n/2 \right\rfloor^{th}$ element in A.
 • Example: If $A = (7, 4, 8, 2, 4)$; then $|A| = 5$ and the 3rd smallest element (and median) is 4.

– Trivial solutions for our problem:
 • General approach: Sort the array and find the i^{th} element.
 – Execution time: $\Theta(n \log n)$
 • If i is a small constant (or n minus a small constant) we can easily design a linear-time scanning algorithm (similar to finding a minimum or maximum in the array).
• Strategy: Partition-based (divide and conquer) selection
 – Choose one element p from array A (pivot element)
 – Split input into three sets:
 • LESS: elements from A that are smaller than p
 • EQUAL: elements from A that are equal to p
 • MORE: elements from A that are greater than p
 – We then have three cases:
 • $i \leq |LESS|$: implies the element we are looking for is also the i^{th} smallest number in LESS,
 • $|LESS| < i \leq |LESS| + |EQUAL|$: implies the element we are looking for is p,
 • $|LESS| + |EQUAL| < i$: implies the element we are looking for is also the $(i - |LESS| - |EQUAL|)^{th}$ smallest element in MORE.
function SELECT(A, i)
// find i-th element in array A
p := choose_pivot(A);
// partition A into LESS, EQUAL, MORE
create new arrays LESS, EQUAL, MORE;
for i := 1 to size(A) do
 if A[i] < p then add A[i] to LESS;
 if A[i] = p then add A[i] to EQUAL;
 if A[i] > p then add A[i] to MORE;
// decide which case to pursue
if(size(LESS) >= i) then
 return SELECT(LESS, i);
else if(size(LESS) + size(EQUAL) >= i) then
 return p; // No recursive call
else
 return SELECT(MORE, i - size(LESS) - size(EQUAL));
Linear-Time Selection (page 4)

- Choice of pivot:
 - Option 1: Choose an arbitrary element (for example, the first element).
 - If we were given a sorted array and we are looking for the \(n^{th} \) smallest element, then execution time would be \(\Omega(n^2) \).
 - Option 2: Choose a random element.
 - This is better and gives us a “randomized” algorithm.
 - It can be shown that in this case the expected running time is \(\Theta(n) \), while worst-case running time is still \(\Theta(n^2) \).
 - See [CLRS, 9.2], if interested.
Another choice of pivot:

- Option 3: Use “grouping by fives” to select the pivot:
 1. Split the array $A[1..n]$ into $n/5$ groups each with 5 elements.
 2. From each group select the third smallest element (i.e., take median of each of the groups).
 - Denote the set of these elements as MEDIANS.
 3. Recursively call SELECT to obtain the median of MEDIANS.
 - (i.e.: the $\lceil n/2 \rceil^{th}$ smallest element of MEDIANS).
 4. Take the resulting element as pivot p.
• Lemma:
 – At least 1/4 of the elements in A are smaller than or equal to p (so $|\text{MORE}| \leq 3n/4$).

• Proof:
 – Imagine sorting elements in each of the groups from smallest to largest and ordering groups by their median.
 • This is not done by the algorithm.
 – Let us represent the whole set A by a table where each group is depicted as a single column and the columns are ordered by their medians.
 – Then the following figure demonstrates the claim (for the case where n is a multiple of 5):
Linear-Time Selection (page 7)

At least half the columns:

More than half the rows:

○ is $p = \text{median of medians}$

The arrows indicate that an element is greater than another element.
• Similar lemma:
 – At least 1/4 of the elements in A are greater than or equal to p (so $|\text{LESS}| \leq 3n/4$).

• In summary:
 – If we use p as pivot in SELECT, then arrays LESS and MORE each have at most $3n/4$ elements.
Linear-Time Selection (page 9)

• Run time analysis:
 – The running time $T(n)$ of the SELECT algorithm with the “group by fives” selection of pivot can be derived as follows:
 – Divide phase: $\Theta(n)$
 – Conquer phase:
 • To select “median of medians” we need time: $T(\lceil n/5 \rceil)$.
 • To run selection on one of the arrays: LESS or MORE, we need time: $\leq T(\lfloor 3n/4 \rfloor)$.
 – Combine phase: There is no combine work.
 – Thus we have: $T(n) = T(\lceil n/5 \rceil) + T(\lfloor 3n/4 \rfloor) + \Theta(n)$, with $T(1) \in \Theta(1)$.
The running time of the SELECT algorithm is $O(n)$ because: $T(n) \leq cn$ (constant c to be determined later).

Proof is by induction on n (substitution method):

- Base case:
 - For $n < 40$ the claim clearly holds as long as c is large enough.

- Induction step:
 - Assume that $n \geq 40$ and that for all $n_0 < n$, $T(n_0) \leq cn_0$. Then:

$$T(n) \leq T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\left\lceil \frac{3n}{4} \right\rceil\right) + kn$$

$$\leq c\left(\frac{n}{5} + 1\right) + \frac{3cn}{4} + kn \leq \frac{cn}{5} + \frac{cn}{40} + \frac{3cn}{4} + kn$$

$$\leq \frac{39cn}{40} + kn \leq cn \quad \text{as long as } k \leq c/40, \quad \text{i.e. } c \geq 40k.$$
Quick Sort Revisited

• Recall QuickSort:
 1. Select pivot element \(p \).
 2. Split the array into two parts: elements smaller than \(p \) and elements larger than \(p \).
 3. These can be sorted separately.
 – Hopefully, whenever we split the array, we get sub-arrays of approximately the same size to achieve \(\Theta(n \log n) \) running time.
 • However, if we are unlucky, we get \(\Omega(n^2) \) running time.
 – Idea: What if we use our SELECT algorithm to select pivot \(p \) to be the median?
 • Then every time we split, we guarantee “almost equal” splits thus having \(\Theta(n \log n) \) worst-case running time.
 • This is quite slow in practice (the constant associated with running SELECT is too large).
 • It is better to just select a random element (it can be proved that then we get \(\Theta(n \log n) \) expected running time).
Making Divide and Conquer Faster

• In practice:
 – Divide and conquer algorithms have often large multiplicative and additive constant overhead (for recursion, etc.) which makes them slower for small size data sets than the trivial algorithm.
 – Running time of a divide and conquer algorithm can be reduced if we solve small subproblems by some trivial algorithm (instead of dividing them further).
 – When to “divide" and when to use the trivial algorithm needs to be determined empirically.
An Example

function SELECT(A,i)
* if size(A)<100 then
* sort elements of A;
* return A[i];
else
// find i-th element in array A:
(The same code we studied earlier).