Lecture 2: MergeSort

CS 341: Algorithms

Thu, Jan 10th 2019
Outline For Today

1. Example 1: Sorting-Merge Sort-Divide & Conquer
Sorting

◆ Input: An array of integers in *arbitrary* order

| 10 | 2 | 37 | 5 | 9 | 55 | 20 |

◆ Output: Same array of integers in *increasing* order

| 2 | 5 | 9 | 10 | 20 | 37 | 55 |
Algorithm 1: Selection Sort

procedure selectionSort(Array X of size n):
 for i = 1 to n {
 let minIndex = i;
 for j = i+1 to n {
 if X[j] < X[minIndex]
 minIndex = j
 }
 X[i] <-- X[minIndex] (swap in place)
 }
return X
SelectionSort Simulation

minElement: 2
minIndex: 2
SelectionSort Simulation

minElement: 5
minIndex: 4
SelectionSort Simulation

i = 3

minElement: 9
minIndex: 5
SelectionSort Simulation

minElement: 10
minIndex: 4
SelectionSort Simulation

minElement: 20
minIndex: 7
SelectionSort Simulation

i = 6

minElement: 37
minIndex: 7
SelectionSort Simulation

Final Output

| 2 | 5 | 9 | 10 | 20 | 37 | 55 |
Analysis of Selection Sort

Q: How much time (# operations) does SelectionSort take?

```plaintext
procedure selectionSort(Array X of size n):
    for i = 1 to n {
        let minIndex = i;
        for j = i+1 to n {
            if X[j] < X[minIndex]
                minIndex = j
        }
        X[i] <-> X[minIndex]
    }
    return X
```

1 Op
1 Op
3 Ops
1 Op
1 Op
1 Op
1 Op
Analysis of Selection Sort

- inner loop block: $3(n-1) + 3(n-2) + ... + 3$

$$3 \sum_{k=1}^{n-1} k = \frac{3(n-1)n}{2} = \frac{3n^2 - 3n}{2}$$

- outer loop line: n

- initial assignment line: n

- swap line: n

- total: $\frac{3n^2 + 3n}{2}$

SelectionSort takes \((3n^2 + 3n)/2\) time on an input of size n.
Criticism of Our Analysis & Sloppiness in CS 341

- Criticism 1: Loop increment is not 1 but 2 operations.
- Criticism 2: Swap is not 1 but 3 operations.
- Criticism 3: At machine level, swap might be 100 operations.

In CS 341, we’ll be sloppy in our counting of what constitutes how many operations.

We’ll count as “1 operation” high-level operations such as addition/subtraction/comparison/swap, etc.

- Will make more formal with Big-oh notation in a few lectures
Algorithm 2: MergeSort (Divide & Conquer)

Assume n is power of 2. (Doesn’t really matter)

procedure mergeSort(Array X of size n):
 1. mergeSort(left subarray X[1,...,n/2])
 2. mergeSort(right subarray X[n/2+1,...,n])
 3. combine the left & right sorted halves

Will simulate how the third step is done.
MergeSort Downward-Recursive Steps
MergeSort Upward-Recursive Steps

1 4 5 7 8 10 11 12 13 14 19 21 31 96 98 105

1 7 8 11 13 14 19 105 4 5 10 12 21 31 96 98

7 8 13 105 1 11 14 19 4 10 96 98

5 12 21 31 5 31 12 21 105 7 13 8 14 1 19 11 4 10 98 16 31 5 21 12
Merge Subroutine Simulation 1

```
L:
5  31

R:
12 21

O:
5  12 21 31
```
Combine Subroutine Simulation 2
Pseudocode for Merge Subroutine

procedure merge(sorted lists L,R of size m/2):
 Out = empty array of size m
 i = 1; j = 1;
 for k = 1 to m:
 if L[i] < R[j]:
 Out[k] = L[i];
 i++;
 else:
 Out[k] = R[j];
 j++;
 return Out;
Analysis of MergeSort

Q: How much time (# operations) does MergeSort take?

procedure mergeSort(Array X of size n):

1. mergeSort(left subarray X[1,…,n/2])
2. mergeSort(right subarray X[n/2+1,…,n])
3. merge the left & right sorted halves

Simpler Question: How many operations does the merge subroutine (step 3 take) on an input of size m?
procedure merge(sorted lists L,R of size m/2):
 Out = empty array of size m
 i = 1; j = 1;
 for k = 1 to m:
 if L[i] < R[j]:
 Out[k] = L[i];
 i++;
 else:
 Out[k] = R[j];
 j++;
 Total: m + 2 + 4m = 5m + 2 ≤ 7m
Analysis of MergeSort

MergeSort takes $7n\log_2(n) + 7n$ time on an input of
Fundamental (& Fast) Algorithms to Tractable Problems

- MergeSort
- Strassen’s MM
- BFS/DFS
- Dijkstra’s SSSP
- Kosaraju’s SCC
- Kruskal’s MST
- Floyd Warshall APSP
- Topological Sort
- ...

Common Algorithm Design Paradigms

- Divide-and-Conquer
- Greedy
- Dynamic Programming

Mathematical Tools to Analyze Algorithms

- Big-oh notation
- Recursion Tree
- Master method
- Substitution method
- Exchange Arguments

Intractable Problems

- P vs NP
- Poly-time Reductions
- Undecidability

Other (Last Lecture)

- Randomized/Online/Parallel Algorithms
1. **Worst-case Runtime Analysis**
 - Justification 1: Easier to make worst-case analysis
 - Justification 2: Holds under any input => Very strong statement

2. **“Sloppy” in counting**
 - Justification: Can agree on high-level ops but impossible to agree on low-level ops
 - Will be different from language to language/architecture to architecture/compiler to compiler
3. Interested in very large inputs

- Mathematically can’t say $3n^2 + 3n/2 > 7n\log_2(n) \Rightarrow$ depends on n
- But for large n, can say that $3n^2 + 3n/2 > 7n\log_2(n)$
- So we’ll say: MergeSort is better than SelectionSort