Introduction to Intractability

P, NP, NP-completeness

Tue, March 26th
Outline For Today

1. Intractability: P, NP, NP-completeness
2. How to argue a problem is NP-complete
Fundamental (& Fast) Algorithms to Tractable Problems

- MergeSort
- Strassen’s MM
- BFS/DFS
- Dijkstra’s SSSP
- Kosaraju’s SCC
- Kruskal’s MST
- Floyd Warshall APSP
- Topological Sort
- ...

Common Algorithm Design Paradigms

- Divide-and-Conquer
- Greedy
- Dynamic Programming

Intractable Problems

- P vs NP
- Poly-time Reductions
- Undecidability

Mathematical Tools to Analyze Algorithms

- Big-oh notation
- Recursion Tree
- Master method
- Substitution method
- Exchange Arguments
- Greedy-stays-ahead Arguments

Other (Last Lecture)

- Randomized/Online/Parallel Algorithms
Focus of CS161

◆ Practical Algorithms to Fundamental Problems

◆ Almost-linear time super-fast algorithms
 ▪ Sorting: $O(n \log n)$
 ▪ Dijkstra: $O(m \log(n))$
 ▪ MST: $O(m \log(n))$

◆ Superlinear but still practical
 ▪ Strassen’s Algorithm: $O(n^{2.83})$
 ▪ Karatsuba Integer Multiplication: $O(n^{1.58})$
 ▪ Floyd-Warshall: $O(n^3)$
Interesting/Sad/Exciting Fact

Many other important problems seem impossible to solve very efficiently.

Ex: TSP, Knapsack, Independent Set

A critical skill that we all have to acquire is to recognize such problems.
One Technicality: Decision vs Optimization Problems

- From now on we will look at “Decision Problems”
- A decision problem has YES/NO answer.
- An optimization problem maximizes/minimizes a function.
- Ex:
 - Knapsack-Optimization: What’s the max value we can put into the knapsack?
 - Knapsack-Decision: Can we put value ≥ k into the knapsack?
If you can solve the optimization problem (say in time T) then you can solve the decision version in time T.

E.g.: Knapsack-Decision: Can we put value $\geq k$ into the knapsack?

```
Alg Knapsack-Decision(values, weights, W, k):
    Let $k^*$ = Knapsack-OPT(values, weights, W).
    if $k < k^*$ return YES
    else return NO
```
If you can solve the decision problem (say in time T) then you can solve the optimization version in time $T \cdot \log(b)$, where b is an appropriate bound on the value that the function we are optimizing can take.

Alg Knapsack-OPT(values, weights, W):

- **let** $b =$ sum of the values
- do binary search (i.e., $k = b, b/2, b/4, \ldots, 1$)
 - Knapsack-Decision(values, weights, W, k).
- **return** maximum k that returns YES
◆ We need decision problems for the formalism of P and NP.
◆ But the optimization versions of the problems are as hard (or as easy) as the decision versions.
Formalizing Tractability: Class P

- Given a computational (decision) problem C

- \mathcal{P}: $C \in \mathcal{P}$ (polynomial-time solvable) if \exists an algorithm solving C with $O(n^k)$ run-time, for some constant k.

 - where n is the input length in bits

 - k is some constant, say, 1, 2, 5, 1M, etc.

- Ex poly-times: $O(n)$, $O(n\log(n))$, $O(n^3)$, $O(n^{100000})$

- Ex: Every problem we saw so far (except 0-1 knapsack)
A rough test for **tractability**.

Caveat 1: n^{1000} is not tractable in practice

Caveat 2: Some intractable problems can actually be solved in some restricted form efficiently

But generally speaking, has been **extremely successful** in classifying tractable problems.
Example of Intractable Problem: TSP

TSP: Traveling Salesman Problem

Input: Complete graph G(V, E) with non-negative edge costs

Output: ∃ a tour with cost ≤ 12 [i.e., cycle visiting each v once]?
Example of Intractable Problem: TSP

TSP: Traveling Salesman Problem

Input: Complete graph $G(V, E)$ with non-negative edge costs

Output: \exists a tour with cost ≤ 12 [i.e., cycle visiting each v once]?

Min Tour: $A\to B\to D\to C\to A$
$= 13$

So the answer is NO.
Conjecture from 1965 (Jack Edmonds)

◆ We have been looking for a fast algorithm for TSP for > 80 years, and no one has succeeded.

◆ After 30 years or so in 1965, Jack Edmonds made the following conjecture:

There is no poly-time algorithm for TSP.

(equivalent to conjecture: $P \neq NP$)

To this day, no one has been able to prove/disprove this conjecture.
“The classes of problems which are respectively known and not known to have good algorithms are of great theoretical interest. [...] I conjecture that there is no good algorithm for the TSP. My reasons are the same as for any mathematical conjecture: (1) It is a legitimate mathematical possibility, and (2) I do not know.” (1965)
Making a Case For TSP’s Intractability?

◆ (So far) We have not been able to argue for TSP’s intractability in an absolute sense.

◆ Instead accumulate evidence of intractability

Idea From Early 1970s:

Instead show “relative” intractability

(i.e. show TSP is as hard as bunch of other problems.)
Reductions

What does it mean for problem C_2 to be as hard as C_1?

Definition: C_1 reduces to C_2, $(C_1 \leq_p C_2)$, if given a poly-time algorithm for C_2, we can solve C_1 in poly-time.

If C_1 reduces to C_2 \Rightarrow C_2 is “as hard as” C_1
High-level Idea of Reduction

If we can solve C_2 efficiently, we can also solve C_1 efficiently

\Rightarrow C_2 as hard as C_1
Reductions are Transitive

Claim: If \(C_1 \leq_p C_2 \), and \(C_2 \leq_p C_3 \), then \(C_1 \leq_p C_3 \)

Proof: We have to argue if we have a poly-time algorithm for \(C_3 \),
we can solve \(C_1 \) efficiently. Or \(C_3 \) is as hard as \(C_1 \).

If we had a poly-time algorithm for \(C_3 \)

\[\Rightarrow \text{we could solve } C_2 \text{ in poly-time (since } C_2 \leq C_3 \) \]

\[\Rightarrow \text{we could solve } C_1 \text{ in poly-time (since } C_1 \leq C_2 \) \]

Q.E.D.
Contrapositive

Assume we knew NO efficient algorithm for C_1 exists

Then if $C_1 \leq_p C_2$, *there cannot be an efficient algorithm A for C_2*
Making a Case for TSP’s Intractability

If we can solve TSP efficiently, we can also solve C_1 efficiently

\Rightarrow **TSP is as hard as C_1**

Goal: Argue **TSP is as hard as a large set C of problems**
Definition: Completeness

Let \mathcal{C} be a set of problems.

If $\forall \ C_k \in \mathcal{C}, \ C_k \leq_p C_i$, then C_i is \mathcal{C}-complete.

(i.e. C_i is as hard as every other problem in \mathcal{C})

(i.e. C_i is the hardest problem in \mathcal{C})

Goal: Argue TSP is \mathcal{C}-complete for as large a set \mathcal{C} as possible.

The larger \mathcal{C}, the more evidence we accumulate for TSP’s intractability.
Arguing TSP is \mathcal{C}-complete for a large \mathcal{C}
Picking an Appropriate \mathcal{C}

Option 1: Let \mathcal{C} be any problem

Q: Could we hope to prove that TSP is as hard as any other computational problem?

A: No, there are problems, such as the Halting Problem, which we know are simply not solvable! (i.e., do not have any algorithms solving them, let alone an efficient one).

But TSP is solvable: if nothing, by brute-force search. Exponential-time but solvable.
Option 2: Let \mathcal{C} be all brute-force solvable problems

Definition (NP or brute-force solvable problems):

A problem $\mathcal{C} \in \text{NP}$ if:

1. Correct solutions have polynomial length.
2. Problem instances that have YES answer are verifiable given a claimed solution in poly-time.

All that is required to be in NP is that we can verify the solvable problems efficiently given a claimed solution.
Example NP problems

- Every problem we have seen in CS 341.
- Every problem in P.
- (Most-likely) Every problem you will ever see in practice.
- Ex: Decision version of TSP: \(\exists T \text{ of size } \leq k \)?
 1. Each tour \(T \) is a cycle of size \(n \), so poly-length.
 2. We can verify length of \(T \) in poly-time: just sum each edge in \(T \).
What is an NP-complete Problem?

C*: NP-complete

C* is as hard as any NP problem!
Solving an NP-complete Problem

If we can solve C* efficiently, we can solve every single NP problem (basically all problems in practice)!!!
Do NP-complete Problems Exist?

YES! They’re Everywhere!
(There are thousands of them)
Outline For Today

1. Intractability: P, NP, NP-completeness
2. How to argue a problem is NP-complete
Two Ways to Argue C* is NP-Complete (1)

1. Directly argue every NP problem reduces to C*

Done for SAT (& CIRCUIT-SAT) in 1970 by Cook & Levin
Two Ways to Argue C^* is NP-Complete (2)

2. Argue an NP-complete C^{**} reduces to C^*

B/c reductions are transitive => All NP problems reduce to C^*

Done since 1971 for 1000s of problems
History of NP-completeness

◆ < 1970: lots of unsolved problems

◆ 1971: Cook-Levin Thm: SAT is NP-complete (just from the definition of NP)

◆ 1972: Karp: By showing SAT reduces to 21 other problems, showed the existence of 21 other NP-complete problems. (why?)

◆ Since 1972: 1000s of problems are NP-complete.
Stephen Arthur Cook

Currently University of Toronto Professor
Leonid Levin

- Soviet-American computer scientist
- Currently at Boston University
History of NP-completeness

1972: Karp-Levin

NP

SAT

K₁

K₂

C₁

C₂

K₃

C₃

K₄

C₄

K₅

C₅

K₂₀...

K₂₁

C₆

Cₖ
History of NP-completeness

Since 1972
Method 1: Direct Argument: Ex: CIRCUIT-SAT

Input: A circuit C of AND, OR, and NOT gates

n inputs x_1, x_2, \ldots, x_n

Output: Is C satisfiable, are there 0/1 values to x_i that make C output 1?

![Circuit Diagram]
Method 1: Direct Argument: Ex: CIRCUIT-SAT

Idea for proving every NP problem C* reduces to CIRCUIT-SAT:
Every NP problem by dfn has a poly-time verifier algorithm A. A takes poly-size inputs and runs poly-time. Represent the state of the machine at each time-step of A by a sub-circuit. Merge the sub-circuits into a circuit Z. (All poly-time operations) And argue that C* returns YES iff circuit Z has a satisfiable input.
Show that TSP is NP-complete => i.e. TSP is as hard as any other NP problem
By showing that another known NP-complete problem reduces to it.
Reducing C^* to $C^{**} \Rightarrow C^{**}$ is NP-complete

If we can solve C^{**} efficiently \Rightarrow we solve C^* efficiently \Rightarrow therefore we solve all NP problems efficiently
Why is TSP NP-complete?

HAM-CYCLE Problem:
Input: Undirected Graph $G(V, E)$
Output: YES if G contains a Hamiltonian cycle/NO o.w

Dfn: A Ham. Cycle is a simple cycle that contain each vertex of the graph once.

Fact: Hamiltonian Cycle is NP-complete.

$$\text{SAT} \leq_p \text{3-SAT} \leq_p \text{CLIQUE} \leq_p \text{VERTEX-COVER} \leq_p \text{HAM-CYCLE}$$
Hamiltonian Cycle Example (1)
Answer: YES.
Hamiltonian Cycle Example
Answer: NO. Any complete cycle has to visit A twice
Observation: TSP vs Hamiltonian Cycle

TSP is simply asking for the minimum weight HC. (or TSP-Decision is asking if a HC with weight < k exists?)
HAM-CYCLE \leq_p TSP

$\Pi_1 \in HC$ $\xrightarrow{\text{Efficient HC-TSP Converter}}$ $\Pi_2 \in TSP$ $\xrightarrow{\text{Efficient Alg A for TSP}}$

Solution to HC $\xrightarrow{\text{Efficient TSP-HC Solution Converter}}$ Solution to TSP

Need to show the two converters
HAM-CYCLE \leq_p TSP

Let $G(V, E)$ be the input to HAM-CYCLE

HC-TSP Converter:

Let $G^*(V, E^*)$ be a complete graph with edge weights:

- $w((u, v)) = 0$ if $(u, v) \in E$
- $w((u,v)) = 1$ if $(u, v) \notin E$

Runtime: $O(n^2)$

TSP-HC Solution Converter:

\exists a Hamiltonian Cycle in G \iff \exists a TSP Tour with weight 0

Runtime: $O(1)$
Proof of Claim

=> If ∃ a Hamiltonian Cycle C in G, then since each edge of C has weight 0 in E*, then C is a tour in G* with weight 0

<= If ∃ a tour T with weight 0 in G*, then all of its edges must be of weight 0, and hence from E, so T is a hamiltonian cycle in G

Q.E.D

Therefore, if we can solve TSP efficiently, we can solve HAM-CYCLE efficiently.
Completing TSP’s NP-completeness Proof

If we can solve TSP efficiently, we can solve HAM-CYCLE efficiently
(by just transforming the input G to G* in poly-time & transforming the solution of TSP to HC in poly-time)
since HAM-CYCLE is NP-complete
⇒ we can solve every single NP problem efficiently
⇒ TSP is NP-complete

Q.E.D
Can’t prove (to this day) that TSP is hard in an absolute sense. But we argued that TSP is “hard” in a relative sense. That is we showed TSP is NP-complete => i.e. TSP is as hard as any other NP problem. This is our evidence that TSP is intractable.
Does $P = NP$?

We know $P \subseteq NP$. Two possibilities:

- $P \neq NP$
- $P = NP$

Is every problem, whose solutions are efficiently verifiable, is also efficiently solvable?

We don’t know. But most people believe $P \neq NP$.
Why Do People Believe $P \neq NP$?

1. There are 1000s of NP-complete problems and for none of them is there a poly-time algorithm.
2. Counter to General Human Experience
3. Also some weird mathematical consequences, such as polynomial hierarchy collapsing, and others.

But We Simply Don’t Know (Yet)!
How could we resolve P vs NP?

Prove an NP-complete problem is NOT solvable in poly time.

Prove an NP-complete problem is solvable in poly time.

We don’t know which world we live in.
Option 1: Focus to special-case inputs.
- Ex: Independent Set is NP-complete.
- Focusing on line graphs, had a O(n) DP alg.

Option 2: Find an approximate answer.
- Will show a very simple algorithm for 0-1 Knapsack.

Option 3: Be exponential time but better than brute-force search.
- 0-1 Knapsack O(nW) runtime DP algorithm.

Option 4: Heuristics: fast algorithms that are not always correct (or even approximate)

Option 5: Mix some of these options