P, NP, NP-completeness 2

Reductions

Thu, March 28th, April 2nd
Overview of the next 2 Lectures

- SAT
 - 3-(CNF)SAT
 - Indep. Set
 - Vertex Cover
 - Hamiltonian Cycle
 - TSP
 - CLIQUE
 - Subset Sum
 - 0/1 Knapsack
First: A bit of history on SAT

The First NP-Complete Problem
SAT: The First NP-Complete Problem

Input: A boolean formula φ consisting of:

- n boolean variables x_1, x_2, \ldots, x_n
- m boolean connectives: \land (AND), \lor (OR), \neg (NOT), \leftrightarrow (iff), \rightarrow (implication), ... (can be others)

and parantheses

Output: Is φ satisfiable?

I.e., are there true/false values to x_i that make φ true?
Example SAT Formulas

\[\varphi = (x_1 \rightarrow x_2) \land \neg x_2 \]

Q: Is this satisfiable?

A: Yes

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>((x_1 \rightarrow x_2) \land \neg x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example SAT Formulas

\[\varphi = (x_1 \rightarrow x_2) \land \neg x_2 \]

Q: Is this satisfiable?

A: Yes

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>((x_1 \rightarrow x_2) \land \neg x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example SAT Formulas

\[\varphi = (x_1 \rightarrow \neg x_2) \land \neg x_2 \]

Q: Is this satisfiable?

A: Yes

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>((x_1 \rightarrow \neg x_2) \land \neg x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example SAT Formula

\[\varphi = (x_1 \rightarrow \neg x_2) \land \neg x_2 \]

Q: Is this satisfiable?

A: Yes

\[
\begin{array}{c|c|c}
 x_1 & x_2 & (x_1 \rightarrow \neg x_2) \land \neg x_2 \\
 \hline
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 0 \\
\end{array}
\]
Example SAT Formula

\[\varphi = ((x_1 \land x_2 \land x_3) \leftrightarrow (\neg x_1 \land x_3)) \]

Q: Is this satisfiable?

A: No

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>\varphi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
1. C^* has to be in NP.
2. Every other NP problem has to reduce to C^*.
Can verify a solution $X^* = (x_1 = 0/1, \ldots, x_n = 0/1)$ is linear time!

Just check if X^* makes φ true!
Criterion 2: Why does every NP problem reduce to SAT?

Method 1: Cook-Levin Theorem (1971)
(Won’t show in class)

Method 2: Or you can show another known NP-Complete problem, e.g., CIRCUIT-SAT, reduces to SAT
(Also won’t show in class)

Instead will show some reductions across another set of problems (all NP-Complete)
Red arrows are reductions we have already done.
Recall Reductions: Showing C_2 is as hard as C_1

What does it mean for problem C_2 to be as hard as C_1?

Definition: C_1 \textit{reduces} to C_2, ($C_1 \leq_p C_2$), if given a poly-time algorithm for C_2, we can solve C_1 in poly-time.

\textbf{If C_1 reduces to C_2 $=>$ C_2 is “as hard as” C_1}

\begin{align*}
\Pi_1 & \in C_1 \quad \text{Poly-time} \\
C_1 & \rightarrow C_2 \\
\text{Converter} & \quad \Pi_2 \in C_2 \\
\text{Poly-time} & \quad \text{Alg for } C_2 \\
\rightarrow & \\
\text{Solution to } \Pi_1 & \\
\text{Poly-time} & \\
C_2 \text{ Solution} & \rightarrow C_1 \text{ Solution} \\
\text{Converter} & \\
\rightarrow & \\
\text{Solution to } \Pi_2
\end{align*}
An NP-complete C_1 reducing to C_2

Therefore C_2 is also NP-complete!
Red arrows are reductions we have already done.
Independent Set (IS)

Input: undirected graph $G=(V, E)$ & an integer k

Output: “yes” iff \exists subset $S \subseteq V$ of size $\geq k$ s.t.

no pair of vertices in S have an edge, i.e.,

$\nexists (u, v) \in E$ s.t. $u \in S$ and $v \in S$

Recall: We solved this in linear time on line graphs!
Q: ∃ an IS with size ≥ 5?
A: No
Q: \exists an IS with size $\geq 4?$
Q: \(\exists \) an IS with size \(\geq 4 \)?

Yes
Q: \(\exists \) an IS with size \(\geq 4 \)?
Yes
Vertex Cover (VC)

Input: undirected graph $G = (V, E)$ & an integer k

Output: “yes” iff \exists subset $S \subseteq V$ of size $\leq k$ s.t.

$$\forall (u, v) \in E, \text{ either } u \in S \text{ or } v \in S$$

(each edge is “covered” by at least one vertex $\in S$)
Q: $\exists a$ VS with size ≤ 1?
Q: $\exists a$ VS with size ≤ 1?

A: Yes
\[IS \leq_p VC \]

Proof Idea

\[\exists \text{ an IS } S \text{ with size } = k \]

iff \[\exists \text{ an VC with size } = n-k \]

Just take \[S^C = V-S! \]
$IS \leq_p VC$ Proof by Picture
∃ an IS with size 4
There exists an IS with size 4.

So, there exists an VC with size 6.
\[IS \leq_p VC \text{ Proof by Picture (Reverse)} \]

\[\exists a \text{ VS with size 1} \]
$\exists a$ VS with size 1

So, $\exists IS$ with size 5
In general:

\(\exists \) an IS \(S \) with size \(\geq k \)

iff \(\exists \) an VC with size \(\leq n-k \)

Just take \(S^c = V-S \)!
Q: Runtime of our converter from IS to VC?

$O(1)$

Input to IS: $G(V, E), k$

Input to VC: $G(V, E), n-k$

Converter only replaces k with $n-k$
Let $X=\{G(V, E), k\}$ be an instance of IS. Then convert it to $X'=\{G(V, E), n-k\}$.

Claim: \(\exists \) an IS of size k in $G(V, E)$ iff \(\exists \) a VC of size $n-k$ in $G(V, E)$

Proof: \(\rightarrow \) let S be an IS s.t. $|S| = k$

Consider cut $(S, S^C=V-S)$. Since S is an IS

\(\forall (u, v) \in E \), at least one of u, v both \(\in V-S \) or

Therefore S^C is a VC of size $n-k$

\(\leftarrow \) Is similar (exercise)
Red arrows are reductions we have already done.
CLIQUE

Input: undirected graph $G=(V, E)$ & an integer k

Output: “yes” iff \exists subset $S \subseteq V$ of size $\geq k$ s.t.

$\forall u, v$ s.t u & v both $\in S$: $(u, v) \in E$ i.e.

S is a “clique” (all possible edges exist in S)
Q: ∃ an CLIQUE of size ≥ 4?
Q: ∃ an CLIQUE of size ≥ 4?
A: Yes
∃ an IS S with size $= k$ in $G=(V, E)$

iff \exists an CLIQUE with size $= k$ in G^C

($G^C=(V, E^C)$, contains missing edges of E)

Just take S in G^C!
$\mathsf{IS} \leq_p \mathsf{CLIQUE}$ Proof by Picture

![Graph G with vertices a, b, c, d, e, f connected in a pentagon configuration.](image)
\textbf{IS} \leq_p \textbf{CLIQUE} \text{ Proof by Picture}

\exists \text{ an IS with size 5 in } G
\[IS \leq_p \text{ CLIQUE} \]

Proof by Picture

\[G^C \]
∃ an IS with size 5 in G
So ∃ a CLIQUE of size 5 in G^c
In general

\[\exists \text{ an IS } S \text{ with size } \geq k \text{ in } G = (V, E) \]

iff \[\exists \text{ an CLIQUE with size } \geq k \text{ in } G^C \]
Q: Runtime of IS to CLIQUE converter?

\[O(n^2) \]

Input to IS: \(G(V, E), k \)

Input to CLIQUE: \(G^C(V, E^C), k \)

Converter constructs \(E^C \) by adding missing edges

(there may be at most \(O(n^2) \) of it)
Let $X = \{G(V, E), k\}$ be an instance of IS.

Then convert it to $X` = \{G^C(V, E^C), k\}$

where E^C is the complement of E

Claim: \exists an IS of size k in $G(V, E)$ iff

\exists a CLIQUE of size k in $G^C(V, E^C)$

Proof: \rightarrow let S be an IS s.t. $|S| = k$

$\Rightarrow \forall u, v \in S, (u, v) \notin E$

$\Rightarrow \forall u, v \in S, (u, v) \in E^C \Rightarrow S$ is a clique in G^C

\leftarrow is similar (exercise) Important! The reverse argument has to be done!
Red arrows are reductions we have already done.
3-CNFSAT

Input: A boolean formula φ consisting of:
- n boolean variables x_1, x_2, \ldots, x_n
- m clauses connectives: \land (AND), \lor (OR), \neg (NOT)
and parantheses s.t.
(1) each clause has 3 distinct literals; AND
(2) φ is in Conjunctive Normal Form

Output: Is φ satisfiable?
Conjunctive Normal Form

\[
\varphi = (x_1 \lor \neg x_3 \lor x_7) \land (x_2 \lor \neg x_3 \lor x_5) \land (\neg x_1 \lor x_2 \lor \neg x_7) \land \ldots
\]

- \(x_i\) are literals

Clauses

\(\varphi\) is in CNF: if (1) each clause is an OR of literals or their negations \&

(2) \(\varphi\) is an AND of clauses

\(\varphi\) is in 3-CNF: if (1) \(\varphi\) is in CNF \&

(2) clauses have 3 distinct literals
3-CNFSAT \leq_p IS

Goal: Convert a 3CNFSAT formula φ into an IS instance (G,k) s.t.

1. Conversion is poly-time; AND

2. IS solution to (G, k) tells us whether φ is satisfiable or not

Ex: $\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

How to convert φ into a graph?
3-CNFSAT to IS Converter Step 1

Ex: \(\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4) \)

For each clause add 3 vertices with the literals as labels; AND
Add each edge between these labels (called “clause gadget”)
Ex: $\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

For any two vertices with labels x_i and $\neg x_i$: add another edge
Claim about relation of G and ϕ

Let m be the \# clauses in ϕ

ϕ is satisfiable

iff \exists an IS with size = m in G

Q: Can there be an IS of size > m in G?

A: No, b/c there are m clause gadgets in G
Q: Runtime of 3-CNFSAT to IS converter?

\[O(\text{poly}(m)) \]

Constructing clause gadgets takes \(O(m) \) time.

Adding \((x_i, \neg x_i) \) is also poly-time \(O(mn) \).
Left Direction: Ex: \(A=x_1=f; \ x_2=t; \ x_3=t; \ x_4=f \)

Ex: \(\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4) \)
Left Direction: Ex: $A=x_1=f; \ x_2=t; \ x_3=t; \ x_4=f$

Ex: $\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

For c_1 pick x_3
Left Direction: Ex: $A=x_1=f; x_2=t; x_3=t; x_4=f$

Ex: $\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

For c_1 pick x_3

For c_2 pick $\neg x_1$
Left Direction: Ex: $A=x_1=f; x_2=t; x_3=t; x_4=f$

Ex: $\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

For c_1 pick x_3

For c_2 pick $\neg x_1$

For c_3 pick x_3
Left Direction: Ex: $A=x_1=f; x_2=t; x_3=t; x_4=f$

Ex: $\varphi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_4) \land (\overline{x_2} \lor \overline{x_3} \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$

For c_1 pick x_3
For c_2 pick $\overline{x_1}$
For c_3 pick x_3
For c_4 pick $\overline{x_4}$
Left Direction: if φ is sat -> \exists m-size IS

If φ is satisfiable, i.e., \exists assignment A satisfying φ
for each clause: \exists at least one True literal (x_i or $\neg x_j$)
Pick one of those literals arbitrarily in each clause.
Claim: vertices in G of these literals are independent
B/c we picked 1 from each gadget and we cannot
have picked an x_i and $\neg x_i$ at the same time
Right Dir: IS = \{x_2 \in c_1, \ x_4 \in c_2, \ x_4 \in c_3, \ \neg x_3 \in c_4\}

Ex: \varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land \\
(\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)

A=x_1=t/f; \ x_2=t; \ x_3=f; \ x_4=t;

A indeed satisfies \varphi
Right Direction: if ∃ m-size IS S in G

If ∃ m-size IS S in G

=> Each \(x_i \) (or \(\neg x_i \)) ∈ S is in separate clause gadget (b/c within each gadget all vertices are connected)

⇒ Let A be s.t. we set each \(x_i \) (or \(\neg x_i \)) ∈ S to True

Note we cannot set \(x_i \) and \(\neg x_i \) to True simultaneously

b/c in G, there is an edge between each \((x_i, \neg x_i) \).

⇒ Assign non-assigned literals \(x_i \) (or \(\neg x_i \)) arbitrarily

⇒ Claim: A satisfies \(\varphi \) b/c by construction there is at least one literal in each clause that’s T
Red arrows are reductions we have already done
Subset Sum

Input: A set of $X:\{x_1, x_2, \ldots, x_n\}$ of integers and a target t

Output: YES if $\exists S \subseteq X$ s.t sum of S’s elements equals exactly t

Example:
$X = \{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}$
$t = 3754$

YES: $S = \{1, 16, 64, 1040, 1093, 1284\}$
Subset Sum \leq_p 0-1 Knapsack

Goal: Take Subset Sum instance $\{x_1, \ldots, x_n\}$, t

Turn into a 0-1 Knapsack Instance:

$A=\{v_1, \ldots, v_n\}$, $B=\{w_1, \ldots, w_n\}$, W

Note: 0-1 Knapsack-DECISION: n items, W, V

\exists a set of items with weight $\leq W$

and value $\geq V$

Idea: $A=\{x_1, \ldots, x_n\}$, $B=\{x_1, \ldots, x_n\}$, $W=t$, $V=t$

Make each item s.t 1 weight always equal 1 value.

Ask if we can pack into a knapsack of size t, value at least t

Note value can’t be $> t$ because each weight has 1 value
Red arrows are reductions we have already done.
Recall Vertex Cover (VC)

Input: undirected graph $G=(V, E)$ & an integer k

Output: “yes” iff \exists subset $S \subseteq V$ of size $\leq k$ s.t.

$$\forall (u, v) \in E, \text{ either } u \in S \text{ or } v \in S$$

(each edge is “covered” by at least one vertex $\in S$)
VC Example

Q: \(\exists \) a VS with size \(\leq 1 \)?

A: Yes
Vertex Cover \leq_p Subset Sum

Goal: Take VC instance G, k

Turn into a Subset Sum Instance:

$X = \{x_1, ..., x_n\}$, t s.t.

\exists a VC of size $\leq k \iff \exists S \subseteq X$ s.t. sum of S equal exactly t
Vertex Cover \leq_p Subset Sum

Interpretations:

- v_i are vertices
- y_i will be “place holders”
Vertex Cover \(\leq_p \) Subset Sum

Interpretations:
- \(v_i \) are vertices
- \(y_i \) will be “place holders”
- 1st Clmn: will force to select exactly \(k \) items

<table>
<thead>
<tr>
<th>(v_i)</th>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_3)</th>
<th>(e_4)</th>
<th>(e_5)</th>
<th>(e_6)</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_2)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(v_3)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(v_4)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(v_5)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(y_1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y_2)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y_5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(y_6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table:
- **k = 3**
- **t = 3**

| \(t \) | 3 | \(e_1 \) | 2 | \(e_2 \) | 2 | \(e_3 \) | 2 | \(e_4 \) | 2 | \(e_5 \) | 2 | \(e_6 \) | 2 | Total: 15018 |
Vertex Cover ≤ₚ Subset Sum

Interpretations:
- v_i are vertices
- y_i will be “place holders”
- 1st Clmn: will force to select exactly k items
- each v_i row: adjacent edges of v_i

Interpret numbers as base $k+1$ (in example = 4)

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v_5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>y_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>y_6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>t</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Claim

\(\exists \text{ VC } C \text{ of size } \leq k \iff \exists \ S \subseteq X \text{ with sum } 15018 \)
\exists VC C of size $\leq k \Rightarrow \exists$ $S \subseteq X$ with sum 15018

1) Complete C to size exactly k by adding any $k-|C|$ vertices.

2) Fix missing digits by adding Y rows

\{4356, 4161, 5393, 1024, 64, 16, 4\} add up to 15018

$k = 3$

\[
\begin{array}{c}
e_3 \\
e_1 \\
e_2 \\
e_5 \\
e_6 \\
e_4 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
u_1 & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & \text{decimal} \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 5184 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 4356 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 4116 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 4161 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 5393 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
y_1 & 0 & 1 & 0 & 0 & 0 & 0 & 1024 \\
y_2 & 0 & 0 & 1 & 0 & 0 & 0 & 256 \\
y_3 & 0 & 0 & 0 & 1 & 0 & 0 & 64 \\
y_4 & 0 & 0 & 0 & 0 & 1 & 0 & 16 \\
y_5 & 0 & 0 & 0 & 0 & 0 & 1 & 4 \\
y_6 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
t & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 15018 \\
\end{array}
\]
∃ VC C of size ≤ k ⇐⇒ ∃ S ⊆ X with sum 15018

Suppose S sums to t.
Let C = S ∩ V (red rows)
1) each e_i has 3 1’s, so no carry overs
2) |C| = k (b/c the first digit is k
3) C is a VC b/c at least one v_j ∈ C must contribute a 1 to each “column” e_i, i.e., covers e_i.

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5184</td>
</tr>
<tr>
<td>v_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4356</td>
</tr>
<tr>
<td>v_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4116</td>
</tr>
<tr>
<td>v_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4161</td>
</tr>
<tr>
<td>v_5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5393</td>
</tr>
<tr>
<td>y_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1024</td>
</tr>
<tr>
<td>y_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td>y_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>y_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>y_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>y_6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>15018</td>
</tr>
</tbody>
</table>

k = 3
Previous Reductions Tree

Red arrows are reductions we have already done.

- SAT
 - 3-(CNF)SAT
 - Indep. Set → Vertex Cover
 - Hamiltonian Cycle
 - TSP
 - CLIQUE
 - Subset Sum
 - 0/1 Knapsack
Your Problem is NP-complete. Now What?

◆ Option 1: Focus to special-case inputs.
 ▪ Ex: Independent Set is NP-complete.
 ▪ Focusing on line graphs, had a $O(n)$ DP alg.

◆ Option 2: Find an approximate answer.
 ▪ Will show a very simple algorithm for 0-1 Knapsack.

◆ Option 3: Be exponential time but better than brute-force search.
 ▪ 0-1 Knapsack $O(nW)$ runtime DP algorithm.

◆ Option 4: Heuristics: fast algorithms that are not always correct (or even approximate)

◆ Option 5: Mix some of these options
For NP-complete Problems

the algorithmic tools in our toolbox can be used as is.

But we have to give up something:

(1) generality, (2) exactness, or (3) efficiency.