Lecture 8: Greedy Algorithms 1

CS 341: Algorithms

Thursday, Jan 31st 2019
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Greedy Algorithms

- Algorithms that iteratively make
 - “short-sighted”, “locally optimum looking” decisions
 - hoping to output a good solution (hopefully optimum)
- Example: Coin Changing
<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Difficulty</td>
<td>easy to design</td>
<td>difficult to design</td>
</tr>
</tbody>
</table>
Greedy vs Divide-And-Conquer Algorithms

<table>
<thead>
<tr>
<th>Greedy</th>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy to design</td>
<td>difficult to design</td>
</tr>
<tr>
<td>easy to analyze run-time</td>
<td>difficult to analyze run-time</td>
</tr>
<tr>
<td></td>
<td>Greedy</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>easy to design</td>
<td>easy to design</td>
</tr>
<tr>
<td>easy to analyze run-time</td>
<td>easy to analyze run-time</td>
</tr>
<tr>
<td>difficult to prove correctness</td>
<td>difficult to prove correctness</td>
</tr>
</tbody>
</table>
Two Common Correctness Proof Techniques

◆ Call greedy’s solution S_g, and let S be any other solution

1. “Greedy stays ahead”
 - Argue S_g is optimal/better than S at each step
 - Proof by induction

2. Exchange Arguments
 - Argue any S can be transformed into S_g step by step and without getting worse along the way

Warning: They’re common but not applicable to every greedy algorithm!
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Activity Selection

◆ **Input:** 1 resource (lecture room) & n requests (e.g. events)
where each request i has a start time $s(i)$ and finish time $f(i)$.

◆ **Output:** accept a maximum # requests that don’t overlap each other
◆ *I.e:* Select a set S of requests s.t.

$$\forall (i, j) \text{ either } f(i) \leq s(j) \text{ or } f(j) \leq s(i)$$
Example (1)
Example (1)

- $S_1=\{r_1, r_5, r_7, r_9\}$ selects 4 activities and is maximal
Example (2)
$S_2=\{r_2, r_5, r_7, r_9\}$ also selects 4 activities and is maximal
Check: Other Non-overlapping Sets Contain ≤ 3 Requests
Possible Greedy Strategies (1)

- Earliest-Starting-Request: Pick the earliest starting request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (1)

- **Earliest-Starting-Request**: Pick the earliest starting request
- **Remove any overlapping request**
- **Repeat until no requests left**
Possible Greedy Strategies (1)

- Earliest-Starting-Request: Pick the earliest starting request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (1)

- Earliest-Starting-Request: Pick the earliest starting request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (1)

- Earliest-Starting-Request: Pick the earliest starting request
- Remove any overlapping request
- Repeat until no requests left

![Diagram showing time and requests](image-url)
Possible Greedy Strategies (1)

- Earliest-Starting-Request: Pick the earliest starting request
- Remove any overlapping request
- Repeat until no requests left

Not optimal.
Problem: earliest starting request can be very long. Worst-case: as long as the entire timeline.
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left

Diagram:
- Time line from 7 to 1800
- Requests labeled as r_1, r_2, \ldots, r_9
- r_1 to 830
- r_2 to 845
- r_3, r_4, r_5 overlapping
- r_7 to 830
- r_8 to 1800
- r_9 to 1800
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left

![Diagram showing time intervals and requests](image_url)
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left

Not optimal.
Problem: can intersect two non-overlapping jobs that could have been accepted
Possible Greedy Strategies (2)

- Shortest-Request: Pick the shortest request
- Remove any overlapping request
- Repeat until no requests left

Not optimal.
Problem: can intersect two non-overlapping jobs that could have been accepted
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left

Diagram showing time slots and requests:
- r_1, r_2
- r_3, r_4, r_5, r_6, r_7, r_8, r_9

Time scale: 7 730 830 845 1800
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left

Now: r_5, and r_7 overlap with 3 other requests
r_3, r_4, and r_6 overlap with 4 other requests
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (3)

- Pick Request-That-Overlaps-With-Min-Other-Remaining-Requests
- Remove any overlapping request
- Repeat until no requests left

Seems to work.
But it actually won’t always return the optimum one.
Counter Example For Strategy 3

- Method for designing a counter example:
- Plant an optimal solution
- Plant a bad request that strategy 3 will pick in the first selection.
- Now: Make sure greedy picks the bad request
 - Bad request intersects with 2 other requests
 - Make sure every other request intersects with 3 or more.
Counter Example For Strategy 3
Counter Example For Strategy 3

Now every remaining request intersects 3 other, so can pick any
Counter Example For Strategy 3
Similarly: every remaining request intersects 3 other
Counter Example For Strategy 3

Similarly: every remaining request intersects 3 other
Counter Example For Strategy 3

- Not optimal
Possible Greedy Strategies (4)

- **Earliest-Finishing-Request**: Pick the earliest finishing request
- **Remove any overlapping request**
- **Repeat until no requests left**

![Diagram showing possible greedy strategies with time line and requests labeled r1, r2, ..., r9.](image-url)
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left

Earliest-Finishing-Request: Pick the earliest finishing request
Remove any overlapping request
Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left

Earliest-Finishing-Request:

- Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left
Possible Greedy Strategies (4)

- Earliest-Finishing-Request: Pick the earliest finishing request
- Remove any overlapping request
- Repeat until no requests left

Looks Optimal

What’s the intuition?
Q: What’s the earliest time at which 1 request can be “fulfilled”, i.e. accepted and executed?
Q: What’s the earliest time at which 1 request can be “fulfilled”, i.e. accepted and executed?
A: Earliest finishing time of any job (e.g. 8:30am)
Q: What's the earliest time at which 2 requests can be fulfilled?
Q: What’s the earliest time at which 2 requests can be fulfilled?

Q2: Can we fulfill 2 requests by 8:30am?

A: No
Q: What’s the earliest time at which 2 requests can be fulfilled?

Q2: Can we accept 2 requests by 8:45am?

A: No
Q: What’s the earliest time at which 2 requests can be fulfilled?
Q2: Can we accept 2 requests by r_5’s finishing time (say 11am)?
A: Yes: $\{r_1, r_5\}$ or $\{r_2, r_5\}$
Q: What’s the earliest time at which 2 requests can be fulfilled?
Q2: Can we accept 2 requests by r_5’s finishing time (say 11am)?
A: Yes: $\{r_1, r_5\}$ or $\{r_2, r_5\}$
Q: What’s the earliest time at which 2 requests can be fulfilled?
Q2: Can we accept 2 requests by r_5’s finishing time (say 11am)?
A: Yes: {r_1, r_5} or {r_2, r_5}
Intuition

Q: What’s the earliest time at which 3 requests can be fulfilled?
Intuition

Q: What’s the earliest time at which 3 requests can be fulfilled?

Q2: Can we fulfill 3 requests by r_4 and r_6’s finishing time?

A: No
Q: What’s the earliest time at which 3 requests can be fulfilled?

Q2: Can we fulfill 3 requests by r_3’s finishing time?

A: No
Q: What’s the earliest time at which 3 requests can be fulfilled?
Q2: Can we fulfill 3 requests by r_7’s finishing time?
A: Yes = \{r_1, r_5, r_7\} or \{r_2, r_5, r_7\}
Q: What’s the earliest time at which 3 requests can be fulfilled?
Q2: Can we fulfill 3 requests by r_7’s finishing time?
A: Yes = \{r_1, r_5, r_7\} or \{r_2, r_5, r_7\}
Intuition

Q: What’s the earliest time at which 3 requests can be fulfilled?
Q2: Can we fulfill 3 requests by r_7’s finishing time?
A: Yes = \{r_1, r_5, r_7\} or \{r_2, r_5, r_7\}

Possible Claim: Earliest time that we can fulfill i jobs is the finishing time of the i-th job that earliest-ft greedy picks.

Looks like “Greedy is Staying Ahead”.
Key Claim: Greedy Stays Ahead

Let \(rg_1, rg_2, \ldots, rg_k \) be the \(k \) request that earliest-ft-greedy picks.

Key Claim: Earliest time that we can fulfill \(i \) requests is the \(f(rg_i) \).
(i.e. finishing time of the \(i \)-th request that earliest-ft-greedy picks)

Claim of Optimality: If Key Claim is true, then earliest-ft-greedy is optimal!

Why?
Proof of Optimality

Suppose there is another selection that accepts ≥ k+1 requests.

Call those requests rh₁, rh₂, rh₃, ..., rhₖ₊₁, ... for “request-hypothetical”

\[
\begin{align*}
\text{rh}_1 & \quad \text{rh}_2 & \quad \text{rh}_3 & \quad \ldots & \quad \text{rh}_k & \quad \text{rh}_{k+1} \\
\text{rg}_1 & \quad \text{rg}_2 & \quad \text{rg}_3 & \quad \ldots & \quad \text{rg}_k \\
\ldots & \quad \ldots & \quad \ldots & \quad \ldots & \quad \ldots
\end{align*}
\]

time

By Key Claim, \(f(\text{rh}_k) \geq f(\text{rg}_k) \).

Which means \(s(\text{rh}_{k+1}) \) and \(f(\text{rh}_{k+1}) \) are both \(\geq f(\text{rg}_k) \).

But such a request \(k+1 \) cannot exist b/c earliest-ft-greedy would not have stopped at \(k \) and have picked it as \(k+1^{st} \) request as well.
Proof of Key Claim

Upshot: Just a repetition of the proof of optimality!

Let \(rg_1, rg_2, ..., rg_k \) be the \(k \) request that earliest-ft-greedy picks.

Key Claim: Earliest time that we can fulfill \(i \) requests is \(f(rg_i) \).

Proof by Induction on \(i \):

Base Case \(i=1 \): Holds b/c \(f(rg_1) \) is the earliest finishing time of all requests.

Inductive Hypothesis. Suppose claim holds for \(i=t \). (Now show holds for \(i=t+1 \)).

Suppose for purpose of contradiction another schedule \(rh_1, rh_2, ..., rh_t, rh_{t+1} \) is s.t.

\[
 f(rh_{t+1}) < f(rg_{t+1}).
\]

We know that \(f(rg_t) \leq f(rh_t) \leq s(rh_{t+1}) \leq f(rh_{t+1}) \leq f(rg_{t+1}) \)

This is a contradiction b/c then \(rh_{t+1} \) does not overlap with \(rg_1, ..., rg_t \) and by the greedy criterion earliest-ft-greedy would pick \(rh_{t+1} \) over \(rg_{t+1} \) but didn’t.
procedure earliestFTGreedy(Array R of size n):
 sort(R by finishing times)
 $S_g = \{ R[0] \}$; // insert the first job
 for (i = 1; i < n; i++):
 if (R[i].start < S_g.last.finish) {
 i++;
 } else {
 S_g.insert(R[i]);
 }
 return S_g

Runtime: $O(n \log(n))$
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Scheduling Problem 1

◆ **Input:** A set of n jobs J. Each job j_i has length l_i

Job 1

Job 2

...

Job n

◆ **Output:** A schedule of the jobs on a processor

\[
\sum_{i=1}^{n} C_i \quad \text{completion time of job } i
\]

is minimum over all possible $n!$ schedules.
Completion Time of Job i

Definition: time when job i finishes

i.e., sum of scheduled job lengths up to and including job i

Total Cost of S_1:

$1 + 6 + 9 + 10 = 26$
Another Example Schedule

Total Cost of S_1: $1 + 6 + 9 + 10 = 26$

Total Cost of S_2: $1 + 4 + 5 + 10 = 20$

Goal is to find the min cost schedule!
Let’s Start Simple

What are all possible schedules?

S₁

<table>
<thead>
<tr>
<th>Time</th>
<th>J₁</th>
<th>J₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Cost: 3 + 8 = 11

S₂

<table>
<thead>
<tr>
<th>Time</th>
<th>J₂</th>
<th>J₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Cost: 5 + 8 = 13
Why Put One Job In Front of Another?

Observation:

Shorter jobs have less impact on the completion times of future jobs
Greedy Scheduling Algorithm

Schedule jobs by increasing lengths

procedure greedySchedule(Array J of size n):
 return sort(J)

Run-time \(O(n \log(n)) \)!
Ex:

J_1 3
J_2 5
J_3 1
J_4 1

S_g 1 1 3 5

Total Cost of S_g: $1 + 2 + 5 + 10 = 18$
Comparing S_g to Previous Schedules

S_1

J_3 : 1
J_2 : 5
J_1 : 3
J_4 : 1

S_2

J_3 : 1
J_1 : 3
J_4 : 1
J_2 : 5

S_g

J_3 : 1
J_4 : 1
J_1 : 3
J_2 : 5
Proof of Correctness (1)

◆ “Greedy stays ahead” proof:
 ▪ Induct on the cost of the first k jobs executed
 ▪ Argue \(S_g \) beats everyone else at each step
◆ Let \(S[i] \): the ith job that a schedule S executes
 ▪ E.g., \(S_g[1] \) is the first job \(S_g \) executes
◆ Let \(\text{Cost}(S, i) \): be the sum of the costs of the first i jobs that schedule S executes.
 ▪ E.g., \(\text{Cost}(S_g, 3) \) is the sum of completion times
 \[S_g[1], S_g[2], S_g[3]: S_g[1] + (S_g[1]+S_g[2]) + (S_g[1]+S_g[2]+S_g[3]) \]
◆ Goal: Argue \(\forall S, \text{Cost}(S_g, n) \leq \text{Cost}(S, n) \) by inducting on i
Proof of Correctness (2)

- **Base Case:** $\forall S, \text{Cost}(S_g, 1) = S_g[1] \leq \text{Cost}(S, 1)$ since $S_g[1]$ is the shortest length job

- **Inductive Hypothesis:** $\text{Cost}(S_g, k-1) \leq \text{Cost}(S, k-1)$

\[
\text{Cost}(S_g, k) = \text{Cost}(S_g, k-1) + \sum_{i=1}^{k} \text{length}(S_g[i])
\]

\[
\leq \quad \leq \quad \leq
\]

\[
\text{Cost}(S, k) = \text{Cost}(S, k-1) + \sum_{i=1}^{k} \text{length}(S[i])
\]

By inductive hypothesis

By greedy criterion of S_g

QED
Outline For Today

1. Introduction to Greedy Algorithms
2. Activity Selection
3. Job Scheduling 1
4. Job Scheduling 2
Scheduling Problem 2

◆ Input: Now each job i has length l_i AND weight w_i

<table>
<thead>
<tr>
<th>Job 1</th>
<th>l_1, w_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job 2</td>
<td>l_2, w_2</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Job n</td>
<td>l_n, w_n</td>
</tr>
</tbody>
</table>

◆ Output: A schedule of the jobs on a processor

\[\text{s.t.:} \quad \sum_{i=1}^{n} w_i C_i \quad \text{weighted completion time of job } i \]

is minimum over all possible $n!$ schedules.
Example Schedule And Cost

Total Cost of S_1:

$$3*1 + 2*6 + 1*9 + 1*10 = 34$$
Q1: What To Do When Weights Are Same?

Same As Un-weighted Case → Shorter lengths first

Previous Greedy Algorithm is Optimal
Q2: What To Do When Lengths Are Same?

\[
\begin{align*}
J_1 & : \ l=3 \ w=2 \\
J_2 & : \ l=3 \ w=3 \\
J_3 & : \ l=3 \ w=1 \\
J_4 & : \ l=3 \ w=4 \\
\end{align*}
\]

minimize: \[\sum_{i=1}^{n} w_i C_i \]

Higher weights first
Q3: What To Do With Mixed L & W?

◆ Say J_1 is shorter and also has less weight than J_2?

J_1 \hspace{1cm} l=3 \hspace{0.5cm} w=1

J_2 \hspace{1cm} l=5 \hspace{0.5cm} w=2

$\minimize \sum_{i=1}^{n} w_i C_i$

◆ Unclear:

- Intuition for Q1 says J_1 should come first
- Intuition for Q2 says J_2 should come first

Ideal Scenario: Combine l and w into a single score that combines both intuitions and we could order by that score
Possible Combined Scores?

◆ The combined score \(f(l_i, w_i) \) should satisfy:

1. If weights same \(\rightarrow \) shorter lengths get smaller scores
2. If lengths same \(\rightarrow \) larger weights get smaller scores

◆ Guess 1: \(f_1(l_i, w_i) = l_i - w_i \)

◆ Guess 2: \(f_2(l_i, w_i) = l_i / w_i \)

Is either one correct?
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th></th>
<th>(l)</th>
<th>(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_1)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(J_2)</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

\[f_1 = l_i - w_i, \quad f_2 = l_i/w_i\]

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_1) ((l=3, w=1))</td>
</tr>
<tr>
<td>(J_2) ((l=5, w=2))</td>
</tr>
</tbody>
</table>

SCHEDULE

TOTAL COST
Let’s First Try To Eliminate One Guess

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1</td>
<td>$l=3$</td>
<td>$w=1$</td>
</tr>
<tr>
<td>J_2</td>
<td>$l=5$</td>
<td>$w=2$</td>
</tr>
</tbody>
</table>

$$f_1 = l_i - w_i \quad f_2 = l_i/w_i$$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1 ($l=3$, $w=1$)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>J_2 ($l=5$, $w=2$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCHEDULE

TOTAL COST
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th>Item</th>
<th>Dimensions</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>J₁</td>
<td>l=3, w=1</td>
<td>f₁ = lᵢ - wᵢ = 2</td>
</tr>
<tr>
<td>J₂</td>
<td>l=5, w=2</td>
<td>f₂ = lᵢ/wᵢ = 3</td>
</tr>
</tbody>
</table>

SCHEDULE

TOTAL COST
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th></th>
<th>f₁ = lᵢ - wᵢ</th>
<th>f₂ = lᵢ/wᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>J₁</td>
<td>l=3, w=1</td>
<td>2</td>
</tr>
<tr>
<td>J₂</td>
<td>l=5, w=2</td>
<td>3</td>
</tr>
<tr>
<td>SCHEDULE</td>
<td>J₁ :: J₂</td>
<td></td>
</tr>
<tr>
<td>TOTAL COST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let’s First Try To Eliminate One Guess

\[f_1 = l_i - w_i \quad f_2 = l_i / w_i \]

<table>
<thead>
<tr>
<th></th>
<th>(f_1)</th>
<th>(f_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_1) (l=3, w=1)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(J_2) (l=5, w=2)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SCHEDULE</td>
<td>(J_1 : J_2)</td>
<td></td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>13 + 28 = 19</td>
<td></td>
</tr>
</tbody>
</table>
Let’s First Try To Eliminate One Guess

\[
\begin{align*}
J_1 & : l=3 \quad w=1 \\
J_2 & : l=5 \quad w=2
\end{align*}
\]

\[
\begin{array}{c|c|c}
 & f_1 = l_i - w_i & f_2 = l_i/w_i \\
\hline
J_1 (l=3, w=1) & 2 & 3 \\
J_2 (l=5, w=2) & 3 & \\
\hline
\text{SCHEDULE} & J_1::J_2 & \\
\hline
\text{TOTAL COST} & 1*3 + 2*8 = 19 & \\
\end{array}
\]

TOTAL COST = 19
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th>J_1</th>
<th>l=3</th>
<th>w=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_2</td>
<td>l=5</td>
<td>w=2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J_1 (l=3, w=1)</th>
<th>f_1 = l_i - w_i</th>
<th>f_2 = l_i/w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1 (l=3, w=1)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>J_2 (l=5, w=2)</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

SCHEDULE

J_1::J_2

TOTAL COST

1*3 + 2*8 = 19
Let’s First Try To Eliminate One Guess

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>w</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$f_1 = l_i - w_i$

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>f_2</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

SCHEDULE

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL COST

1*3 + 2*8 = 19
Let’s First Try To Eliminate One Guess

<table>
<thead>
<tr>
<th>J_1</th>
<th>l=3 w=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_2</td>
<td>l=5 w=2</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 f_1 &= l_i - w_i \\
 f_2 &= l_i/w_i
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>f_1</th>
<th>f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1 (l=3, w=1)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>J_2 (l=5, w=2)</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

SCHEDULE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1::J_2</td>
<td>J_2::J_1</td>
</tr>
</tbody>
</table>

TOTAL COST

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13 + 28 = 19</td>
<td>25 + 18 = 18</td>
</tr>
</tbody>
</table>

Guess 1 is certainly not optimal.

Is Guess 2 optimal?
Greedy Weighted Scheduling Algorithm

Schedule jobs by increasing $\frac{l_i}{w_i}$ scores

procedure greedySchedule(Array J of size n):
 return sort(J by $\frac{l_i}{w_i}$ scores)

Run-time $O(n \log(n))$!
Greedy Weighted Scheduling Algorithm

Total Cost of S_g:
$3 \times 1 + 1 \times 2 + 2 \times 7 + 1 \times 10 = 29$
Proof of Correctness (1)

◆ By Exchange Argument:
 - Argue *any S can be transformed into S_g* step by step and
 without getting worse along the way

◆ Let’s rename jobs so that S_g schedules jobs in order:

 $J_1, J_2, ..., J_n$

 i.e., J_1 happens to be the job with smallest l/w ratio

◆ Therefore $S_g = J_1 :: J_2 :: ... :: J_n$
Proof of Correctness (2)

Consider any other schedule $S \neq S_g$

Claim: In $S=J_{s_1}::J_{s_2}:::J_{s_n}$ there is a job k, right after a job i where $k < i$.

Exchange J_9 with J_6
Proof of Correctness (3)

Exchange J_{11} with J_8

Exchange J_8 with J_9

$S \backslash \{J_1, J_{11}\}$
Completing the Proof

- **Recall Claim:** In $S = J_{s1}::J_{s2}:::..::J_{sn}$ there is a job k, right after a job i where $k < i$.

- **Q:** How does the cost of S change when we swap i and j?

By renaming of jobs and $k < i = \Rightarrow l_k/w_k \leq l_i/w_i = \Rightarrow w_i l_k \leq w_k l_i$

QED