CS 341: ALGORITHMS

Trevor Brown

trevor.brown@uwaterloo.ca

DC 2338, Office hour M3-4pm
THIS TIME

• Strong connectedness
 • Algorithm using DFS
• Strongly connected components
 • Sharir’s algorithm (using DFS)
STRONG CONNECTEDNESS
Testing existence of all-to-all paths
STRONG CONNECTEDNESS

- In a directed graph,
 - \(v \) is reachable from \(w \) if there is a path from \(w \) to \(v \)
 - we denote this path \(w \rightarrow v \)
- A graph \(G \) is strongly connected iff every node is reachable from every other node
 - More formally: \(\forall_{w,v} \ w \rightarrow v \)
STRONG CONNECTEDNESS

- Is this graph **strongly connected**?

 No path from c to other nodes.

- How about this one?

 Yes. One big cycle.
STRONG CONNECTEDNESS

- How about this graph?

- How about this one?

Yes. Multiple intersecting cycles.

No. Two cycles with only a one-directional path between them.
APPLICATIONS OF CHECKING STRONG CONNECTEDNESS

- You gain some symmetry from knowing a graph is strongly connected

- For example, you can start a graph traversal at any node, and know the traversal will reach every node

- Without strong connectedness, if you want to run a graph traversal that reaches every node in a single pass, you would have to do additional processing to determine an appropriate starting node
APPLICATIONS OF CHECKING STRONG CONNECTEDNESS

• Useful as a sanity check!
• Suppose you want to run an algorithm that requires strong connectedness, and you believe your input graph is strongly connected
• Validate your input by testing whether this is true!
• Subtle, difficult-to-detect bugs often result if such an algorithm is run only on one component of a graph
• [More concrete applications once we generalize and talk about strongly connected components…]
STRONG CONNECTEDNESS

- Lemma: a graph is strongly connected
- iff for every node s,
- all nodes are reachable from s;
- and s is reachable from all nodes

Prove both directions:

(\Rightarrow) Suppose for all u, v we have $u \rightarrow \rightarrow v$. Fix any s. Node s is reachable from all nodes, and vice versa.

(\Leftarrow) Suppose s is reachable from all nodes and vice versa. For any u, v, we have $u \rightarrow \rightarrow s \rightarrow \rightarrow v$, and $v \rightarrow \rightarrow s \rightarrow \rightarrow u$.
STRONG CONNECTEDNESS

- How to use DFS to determine whether **every node is reachable** from a given node \(s \)?
- How to use DFS to determine whether **\(s \) is reachable** from every node?

DFS from \(s \) and see if every node turns black

What if we first **reverse** the direction of every edge?

Then \(s \rightarrow v \) in this new graph IFF \(v \rightarrow s \) in the original graph

DFS from \(s \)
• IsStronglyConnected($G = \{V, E\}$) where $V = v_1, v_2, ..., v_n$
 • $(colour, d, f) := DFSVisit(v_1, G)$
 • for $i := 1..n$
 • if $\text{colour}[v_i] \neq black$ then return $false$
 • Construct graph H by \textbf{reversing} all edges in G
 • $(colour, d, f) := DFSVisit(v_1, H)$
 • for $i := 1..n$
 • if $\text{colour}[v_i] \neq black$ then return $false$
 • return $true$
REVERSING EDGES: ADJACENCY MATRIX

reverse all edges

target

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

source

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
REVERSING EDGES: ADJACENCY MATRIX

reverse all edges
REVERSING EDGES: ADJACENCY MATRIX

reverse all edges

source

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

target

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

reverse all edges
REVERSING EDGES: ADJACENCY MATRIX

reverse all edges

source

target
REVERSING EDGES: ADJACENCY MATRIX

reverse all edges

source

target

a	b	c	d	e	f	g
a | 1 | | | | | |
b | | 1 | | | | | |
c | 1 | 1 | 1 | | | | |
d | 1 | | | 1 | | | |
e | | | | | 1 | | |
f | | | | | | 1 | |
g | | | | | | | 1

reverse all edges
REVERSING EDGES: ADJACENCY MATRIX

Source

Target

reverse all edges
Can do matrix transpose, or can just swap variables for source & target in your code!

Complexity?

REVERSING EDGES: ADJACENCY MATRIX

Source:
```
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Target:
```
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

$$M_E$$

$$\left(M_E\right)^T$$
REVERSING EDGES: ADJACENCY LISTS

reverse edges

source

Complexity?

target

1. TransposeLists(adj[1..n])
2. newAdj = new array of n lists
3. for u = 1 .. n
4. for v in adj[u]
5. newAdj[v].insert(u)
6. return newAdj
• \textit{IsStronglyConnected}(G = \{V, E\}) where V = v_1, v_2, \ldots, v_n
 • \((colour, d, f) := DFSVisit(v_1, G)\)
 • for \(i := 1..n\)
 • if \(colour[v_i] \neq black\) then return \text{false}
 • Construct graph \(H\) by \textbf{reversing} all edges in \(G\)
 • \((colour, d, f) := DFSVisit(v_1, H)\)
 • for \(i := 1..n\)
 • if \(colour[v_i] \neq black\) then return \text{false}
 • return \text{true}

Complexity for adjacency lists? \(O(n + m)\)
Every node is black. Next step!

DFSVisit(a) in G
(a is arbitrary)
Every node is black. Next step!

EXAMPLE EXECUTION 1

Construct graph H

$DFSVisit(a)$ in G
(a is arbitrary)

Every node is black. Next step!

$DFSVisit(a)$ in H

Every node is black. So G is strongly connected!
Every node is black. Next step!

Could the result change if we started at a different node?

construct graph H

$DFSVisit(a)$ in G
(a is arbitrary)

Every node is black. Next step!

$DFSVisit(a)$ in H

Some nodes are not black

No path from those nodes to a

So G is not strongly connected!
STRONGLY CONNECTED COMPONENTS (SCC)

Graphs that are not strongly connected can be divided into components that are
These are called **strongly connected components (SCCs)**.

- This graph could be divided into **two graphs** that are each strongly connected.
STRONGLY CONNECTED COMPONENTS

- It could also be divided into **three graphs**...

 ![Diagram](image)

 - **Maximal, so SCC**
 - **Not maximal, so not SCC**

- But we want our SCCs to be **maximal** (as large as possible)
STRONGLY CONNECTED COMPONENTS

- So, the goal is to find these (maximal) SCCs:
For two vertices \(x \) and \(y \) of \(G \), define \(x \sim y \) if \(x = y \); or if \(x \neq y \) and there exist directed paths from \(x \) to \(y \) and from \(y \) to \(x \).

The relation \(\sim \) is an equivalence relation.

The strongly connected components of \(G \) are the equivalence classes of vertices defined by the relation \(\sim \).

A strongly connected component of a digraph \(G \) is a maximal strongly connected subgraph of \(G \).

Note: a connected component can contain just a single node.

Example: a node with no out-edges.
Consider this graph. These are its SCCs:

- The following is its component graph:
 - a, b, c, d
 - f, e, g
 - h, i
 - i, j, k
 - l

It has one node for each SCC.

And an edge between two nodes IFF there is an edge between the corresponding SCCs.
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

- Finding **all cyclic** dependencies in code
- Can find **single** cycle with an earlier DFS-based algorithm
- But it is nicer to find all cycles at once, so you don’t have to fix one to expose another
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

• Finding SCCs in a social network graph
 • Yields information about communities that have formed
 • Social Networks can study the evolution of those communities
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

- Explicit model checking in formal verification
- In model checking, we have a state machine, which represents the model of our soft-/hardware, and we try to prove that temporal logic formulas hold over it
- Idea: for a set of program states, prove bad things cannot happen in those states
- Example: CTL formula $\text{EG} (p)$ can be verified by finding SCCs & checking paths to them
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

• Studying **connectome graphs**
• These are graphs used for modelling **nervous systems**
• In such graphs vertices correspond to cells and edges correspond to physical cell contacts or synapses
• SCCs seem to have an important role in brain connectome graphs
• For example, a 2016 paper found that a fly brain connectome had **one** large SCC w/785 nodes (neurons), and other SCCs had only 1-2 nodes
• Similar structure in rat and cat brain samples. Motivates studying why!
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

- **Data filtering** before running other algorithms
- Consider Google maps; Nodes = intersections, edges = roads
- Don’t want to run path finding alg. on entire **global** graph!
- First restrict execution to a rectangle
- Then throw away everything except the strongly connected component that contains the source & target
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

• Solving **2-satisfiability**
 • Conjunctive normal form Boolean formulae with constraints on pairs of variables, e.g., \(f(x_1, x_2, x_3) = (x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_3 \lor \neg x_1) \)
 • Problem: is there an assignment of \((x_1, x_2, x_3)\) that makes this formula **true**?

• 2-satisfiability can solve many problems!
 • Arranging text labels (or other objects) in a diagram to avoid overlap, if each has two possible positions
 • Routing wires that can only bend once in a VLSI integrated circuit design
SO THE PROBLEM IS IMPORTANT...

• How do we solve it?
• What if we run DFS, then reverse all edges, then run DFS (like checking whether an entire graph is strongly connected?)
What if we run DFS, then **reverse all edges, then run DFS**?

- **DFSVisit(a)**
- **DFSVisit(h)**
- **DFSVisit(j)**

Reverse edges

We **did** visit everything we saw in our **DFSVisit(h)** above! But we also saw **more** nodes: j, k, l

Not clear how to identify remaining SCCs...

What if we perform our **DFSVisit** calls in a different order?
• What if we run DFS, then reverse all edges, then run DFS?

\[\text{DFSVisit}(a) \quad \text{DFSVisit}(h) \quad \text{DFSVisit}(j)\]

\[\text{DFSVisit}(j) \quad \text{DFSVisit}(h) \quad \text{DFSVisit}(a)\]

Problem: from e, we can reach other SCCs
Idea: perform same DFSVisit calls, but in reverse order

Identified three SCCs correctly, but clearly need more DFSVisit calls!
What if we run DFS, then reverse all edges, then run DFS?

\[\text{DFSVisit}(a) \quad \text{DFSVisit}(h) \quad \text{DFSVisit}(j) \]

\[\text{DFSVisit}(j) \quad \text{DFSVisit}(h) \quad \text{DFSVisit}(a) \quad \text{DFSVisit}(e) \]

Idea: call DFSVisit on all nodes in order of largest to smallest finishing time

Identified all SCCs correctly! Why?
By the DFS-based topological sort algorithm we saw earlier, we only visit nodes in the current SCC! So, we can identify precisely what is in this SCC.

REASONING ABOUT WHY THIS WORKS

- We DFS visit nodes by largest to smallest finishing time.
 - Recall this would be a topological order in a DAG.
 - But there may be cycles in each component!
- We prove the component graph is a DAG.
- And we prove our DFS visits the component graph in a topological order.
- So, the idea is: we perform DFS on SCCs one-by-one, in a topological order, which guarantees that any other SCCs reachable from the current DFS must already be finished/black (so won’t be visited).
FACT: COMPONENT GRAPH IS A **DAG**

- Proof by contradiction
 - Suppose there is a cycle v_1, v_2, \ldots, v_k
 - Consider any pair of nodes u, v in any of the corresponding components
 - Suppose u and v are located in different components $C_u \neq C_v$
 - Then one can navigate from u to v by moving from C_u to C_v in the component graph (moving freely within each component)
 - But then C_u and C_v are part of the **same SCC**---a contradiction!
PROVING DECREASING FINISH TIMES INDUCE A TOPOLOGICAL ORDER ON THE COMPONENT GRAPH

- **Definition:** For a strongly connected component C, let $d[C] = \min\{d[v] : v \in C\}$ and $f[C] = \max\{f[v] : v \in C\}$

- **Lemma:** if C_i, C_j are SCCs and there is an edge $C_i \rightarrow C_j$, then $f[C_i] > f[C_j]$

- **Proof.** Case 1 ($d[C_i] < d[C_j]$):
 - Let u be the earliest discovered node in C_i
 - All nodes in $C_i \cup C_j$ are white-reachable from u, so they are descendants in the DFS forest and finish before u
 - So $f[C_i] > f[C_j]$
PROVING DECREASING FINISH TIMES INDUCE A TOPOLOGICAL ORDER ON THE COMPONENT GRAPH

- **Definition:** For a strongly connected component C, let $d[C] = \min\{d[v] : v \in C\}$ and $f[C] = \max\{f[v] : v \in C\}$

- **Lemma:** if C_i, C_j are SCCs and there is an edge $C_i \rightarrow C_j$, then $f[C_i] > f[C_j]$

- **Proof.** Case 2 ($d[C_i] > d[C_j]$):
 - Since component graph is a DAG, there is **no edge** $C_j \rightarrow C_i$
 - Thus, **no nodes** in C_i are reachable from C_j
 - So we discover C_j and finish C_j **without** discovering C_i
 - Therefore $d[C_j] < f[C_j] < d[C_i] < f[C_i]$. QED
Using the Lemma to Build an Algorithm

- **Lemma**: if C_i, C_j are SCCs and there is an edge $C_i \rightarrow C_j$, then $f[C_i] > f[C_j]$

- **Algorithm**:
 - $(v_{i_1}, v_{i_2}, ..., v_{i_n}) = DFS_topsort(G)$
 - $H :=$ construct by reversing each edge in G
 - return := $DFS_SCC(H, (v_{i_1}, v_{i_2}, ..., v_{i_n}))$

Calls DFSVisit on nodes in topological order, and gives each node an SCC number in a component[] array, which is then returned.

This is called Sharir’s algorithm (sometimes Kosaraju’s algorithm).

This paper first introduced it.
PSEUDOCODE

Assume that $f[v_i_1] > f[v_i_2] > \cdots > f[v_i_n]$.

Algorithm: DFS ($H, (v_i_1, v_i_2, \ldots, v_i_n)$)

\[
\text{for } j \leftarrow 1 \text{ to } n \\
\begin{align*}
\text{do } colour[v_{i_j}] & \leftarrow \text{white} \\
\text{sec} & \leftarrow 0 \\
\text{for } j \leftarrow 1 \text{ to } n \\
\begin{align*}
\text{if } colour[v_{i_j}] = \text{white} & \\
\text{then } \\
\text{do } & \\
\text{sec} & \leftarrow \text{sec} + 1 \\
\text{DFSvisit}(H, v_{i_j}, \text{sec}) & \\
\text{return } (\text{comp})
\end{align*}
\end{align*}
\]

Algorithm: $\text{DFSvisit}(H, v, \text{sec})$

\[
\begin{align*}
\text{colour}[v] & \leftarrow \text{gray} \\
\text{comp}[v] & \leftarrow \text{sec} \\
\text{for each } w \in \text{Adj}[v] \\
\begin{align*}
\text{do } & \\
\text{if } \text{colour}[w] = \text{white} & \\
\text{then } \text{DFSvisit}(H, w, \text{sec}) & \\
\text{colour}[v] & \leftarrow \text{black}
\end{align*}
\end{align*}
\]

Complexity? $O(n + m)$
Proof of Correctness of Sharir’s Algorithm

First, note that G and H have the same strongly connected components. Let $u = v_{i_1}$ be the first vertex visited in step 3. Let C be the s.c.c. containing u and let C' be any other s.c.c.

$f(C) > f(C')$, so there is no edge from C' to C in G (by the Lemma). Therefore there is no edge from C to C' in H.

Hence no vertex in C' is reachable from u in H.

Therefore, $DFSvisit(u)$ explores the vertices in C (and only those vertices); this forms one DFS tree in H.

Next, $DFSvisit(v_{i_2})$ explores the vertices in the s.c.c. containing v_{i_2}, etc.

Every time we make an initial call to $DFSvisit$, we are exploring a new s.c.c.

We increment scc, which is used to label the various s.c.c. $comp[v]$ denotes the label of the s.c.c. containing v.