CS 341: ALGORITHMS

Lecture 17: graphs – minimum spanning trees, single-source shortest paths

Slides by Trevor Brown (some material from Doug Stinson)

trevor.brown@uwaterloo.ca

(http://tbrown.pro)
MINIMUM SPANNING TREE
Problem can also be defined for directed graphs…
Problem can also be defined for minimum spanning forest. Algorithm taught here works.
If you add an edge e to a tree and this creates a cycle C, then removing any other edge $e' \in C$ will break the cycle and produce a tree.

Why would we compute an MST? Let’s see some applications…
APPLICATION: INTERNET BACKBONE PLANNING

- Want to connect n cities with internet backbone links
 - Direct links possible between each pair of cities
 - Each link has a certain dollar cost (excavation, materials, distance & time, legal costs...)
- Want to **minimize total cost**
APPLICATION: IMAGE SEGMENTATION

break image into regions by colour similarity via other techniques

turn regions into nodes, and add edges between them with weights = “dissimilarity,” then build MST

break MST into large, highly similar segments, and assign the dominant colour to each segment

Segments are easier for a machine learning algorithm to understand.

Just for fun, don’t need to know this
APPLICATION: CURVILINEAR FEATURE EXTRACTION

Want a machine to **recognize** this object

Edge detection algorithm

MST

Input to image recognition alg.

Final result

Just for fun, don’t need to know this

"Hair" removal

Paper
HOW TO ACTUALLY BUILD AN MST?

• Kruskal’s algorithm [introduced in this 3-page paper from 1955]

Assume that \(w(e_1) \leq w(e_2) \leq \cdots \leq w(e_m) \), where \(m = |E| \).

Algorithm: \(Kruskal(G, w) \)

\[
A \leftarrow \emptyset \\
\text{for } j \leftarrow 1 \text{ to } m \\
\quad \text{do } \begin{cases}
\quad \text{if } A \cup \{e_j\} \text{ does not contain a cycle} \\
\quad \text{then } A \leftarrow A \cup \{e_j\}
\end{cases}
\]

return \((A) \)

Suppose we have an oracle \(\text{wouldCreateCycle}(e_j) \)
Increasing edge weights: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

8 would create a cycle: a, c, b, d, a
11 would create a cycle: d, e, b, d
14 would create a cycle: c, f, e, b, d, a, c
15 would create a cycle: g, f, h, j, l, g
16 would create a cycle...
17 would create a cycle...
18 would create a cycle...
19 would create a cycle...
20 would create a cycle...

Done!
Implementation Details for Kruskal’s Algorithm

We use a **union-find** data structure to determine if an edge uv has vertices in two different trees.

Every tree T will contain a **leader vertex**.

To find the leader vertex from a vertex v, we use an auxiliary array L.

From v, follow a directed path $v \rightarrow L[v] \rightarrow L[L[v]] \cdots$ until we reach a vertex w with $L[w] = w$; then $w = \text{find}(v)$ is the leader vertex for the tree containing v.

Two vertices u and v are in the same tree if and only if $\text{find}(u) = \text{find}(v)$.

Initially, there are n one-vertex trees and $L[v] = v$ for all v.

When we use an edge uv to merge two trees, we perform the following **union** operation:

- $u' \leftarrow \text{find}(u)$
- $v' \leftarrow \text{find}(v)$
- $L[u'] \leftarrow v'$.
Suppose we also keep track of the depth of each tree. In step 3, we always take u' to be the leader of the tree having smaller depth.

If we merge two trees of depth d, we get a tree of depth $d + 1$. If we merge a tree of depth d and one of depth $< d$, we have a tree of depth d.

Then union and find each run in $O(\log n)$ time (this is because a tree of depth d has at least 2^d vertices, a fact that can be proven by induction on d).

This leads to an algorithm for MST having complexity $O(m \log n)$ (the pre-sort has complexity $O(m \log m)$, and the iterative part of the algorithm has complexity $O(m \log n)$).

Note: $O(m \log m) = 0(m \log n)$.
Why? $m \log m \in O(m \log^2 n) = O(m \cdot 2\log n) = O(m \log n)$. This is called union by rank
We can sort in $O(m)$ time using a non-comparison sort such as
radix sort or counting sort.

In addition to union by rank, union-find can be
implemented with path compression.

Using both union by rank and path compression, we get a total
running time for Kruskal’s algorithm of $O(\alpha(m + n)(m + n))$,
where $\alpha(x)$ is the inverse Ackermann function.
For all practical x, $\alpha(x) \leq 5$, so this is pseudo-linear.
Kruskal(V[1..n], E[1..m])
1. sort E[1..m] in increasing order by weight
2. uf = new UnionFind data structure
3. mst = new List
4. for j = 1..m
5. set_a = uf.find(E[j].source)
6. set_b = uf.find(E[j].target)
7. if set_a != set_b
8. mst.add(E[j])
9. uf.merge(set_a, set_b)
10. return mst

Radix sort
Union-Find with path compression and union by rank
Is this hard to implement? No!
```cpp
class UnionFind {
    int * parent;
    int * rank;

    UnionFind(int n) {
        parent = new int[n];
        rank = new int[n];
        for (int i=0; i<n; i++) {
            rank[i] = 0;
            parent[i] = i;
        }
    }

    ~UnionFind() {
        delete[] parent;
        delete[] rank;
    }

    int find(int u) {
        if (u != parent[u]) parent[u] = find(parent[u]);
        return parent[u];
    }

    void merge(int x, int y) {
        x = find(x), y = find(y);
        if (rank[x] > rank[y]) parent[y] = x;
        else parent[x] = y;
        if (rank[x] == rank[y]) rank[y]++;
    }
};
```

Initialization

Free memory at end

Path compression

Union by rank
Suppose \(K \) is not an MST, for contradiction. Let \(O \) be an (optimal) MST. Note \(O \neq K \).

Label edges so \(w(f_1) < w(f_2) < \cdots < w(f_{n-1}) \).
(we prove this for distinct weights)

Adding \(f_j \) to \(O \) would create cycle \(C \)

Let \(e' = \text{smallest edge in } C \setminus K \)
(exists since no cycles in \(K \))

Kruskal considers \(e' \) before \(f_j \), and rejects \(e' \) despite taking \(f_1, \ldots, f_{j-1} \)

But \(f_1, \ldots, f_{j-1}, e' \in O \). Contradiction!
OTHER NOTABLE MST ALGORITHMS

• Prim’s algorithm
 • Incrementally extend a tree T into an MST, by:
 • Initializing T to contain any arbitrary node in G
 • Repeatedly selecting the smallest weight edge from any node in T to any node outside of T

• Borůvka’s algorithm
 • Like Kruskal (merging components), but with phases
 • In each phase, select an outgoing edge for every component, and add all edges found in the phase

There is also a fast parallel hybrid of Prim and Borůvka
DIJKSTRA’S ALGORITHM

Single-source shortest path in a graph with non-negative edge weights
PROBLEM: SINGLE SOURCE SHORTEST PATHS (SSSP)

- Input: graph $G = (V, E)$ and a non-negative weight function $w(e)$ defined for every edge e
- Problem: for every node $v \neq s_0$, output a path $s_0 \rightarrow v$ with the smallest total weight (among all paths $s_0 \rightarrow v$)
- I.e., each path P should minimize $w(P) = \sum_{e \in P} w(e)$

Let's study directed G.
Can also be defined for undirected G...

"Shortest" means minimum weight

And so on... one path for each node.
Dijkstra’s Algorithm

- Iteratively construct a set S of nodes for which we know the shortest path from s_0 (initially $S = \{s_0\}$).
- Maintain a distance $D[v]$ for each node v:
 - If $v \in S$ then $D[v] = \text{weight of the shortest path } s_0 \rightarrow v$
 - Otherwise, $D[v] = \text{weight of the shortest path } s_0 \rightarrow v$ such that all interior nodes on the path are in S
 - If there is no such path then $D[v] = \infty$
- Grow S by adding the $v \notin S$ that has the smallest $D[v]$ value.

Why can we add this v to S? Do we know the shortest path $s_0 \rightarrow v$?

Suppose $D[v]$ is correct for all v before adding v to S. We show this holds after...
Lemma 6.12

Suppose \(v \) has the smallest \(D \)-value of any vertex not in \(S \). Then \(D[v] \) equals the weight of the shortest path \(s_0 \rightarrow v \), which we denote \(P \).

Proof.

Suppose there is a path \(s_0 \rightarrow v' \) with weight less than \(D[v] \). Let \(v' \) be the first vertex of \(P' \) not in \(S \). Observe that \(v' \neq v \). Decompose \(P' \) into two paths: a path \(s_0 \rightarrow v' \) \(P_1 \) and a path \(v' \rightarrow v \) \(P_2 \). We have

\[
\begin{align*}
 w(P') &= w(P_1) + w(P_2) \\
 &\geq D[v'] + w(P_2) \\
 &\geq D[v]
\end{align*}
\]

Because \(D[v'] \geq D[v] \) (by assumption) and \(w(P_2) \geq 0 \) (non-negative weights).

This is a contradiction because we assumed \(w(P') < w(P) \).

Hence, we know the weight of the shortest path \(s_0 \rightarrow v \).

Suppose \(v' = v \) for contra. Then \(D[v'] = D[v] \), so \(w(P') \geq D[v] \).

Contradicts \(w(P') < D[v] \).
Considering a new candidate path to v', and possibly updating $D[v']$, is known as **relaxing** v'

To reconstruct an actual shortest path from distances, we also maintain a **predecessor** $\pi[v]$ for each node ($\pi[v] =$ previous node on a path $s_0 \leadsto v$ with weight $D[v]$)